首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conjugated linoleic acid (CLA) has anti-carcinogenic and anti-atherosclerosis activity, and modulatory effects on the immune system and lipid metabolism. To produce a transgenic rice plant that can accumulate CLA, a linoleate isomerase gene that can convert linoleic acid to trans-10, cis-12 CLA was introduced and expressed under the control of seed-specific promoters from the oleosin and globulin genes. The fatty acid composition of the transgenic rice grain was analyzed by gas chromatography. Although there was no clear difference in the fatty acid composition between seeds from transformed versus untransformed plants, a peak of trans-10, cis-12 CLA methyl ester, which was not present in seeds from untransformed plants, was found in transformed plants. The trans-10, cis-12 CLA comprised an average of 1.3% (w/w) of the total fatty acids in seeds carrying the oleosin promoter in comparison to 0.01% (w/w) in seeds carrying the globulin promoter. In addition, approximately 70 and 28% of the total amount of the CLA isomer were present in the triacylglycerol and free fatty acid fractions, respectively. These results demonstrate the ability to produce fatty acid components of vegetable oils with novel physiological activities in crops.  相似文献   

2.
Specific isomers of conjugated linoleic acid (CLA), a fatty acid with potentially beneficial physiological and anticarcinogenic effects, were efficiently produced from linoleic acid by washed cells of Lactobacillus acidophilus AKU 1137 under microaerobic conditions, and the metabolic pathway of CLA production from linoleic acid is explained for the first time. The CLA isomers produced were identified as cis-9, trans-11- or trans-9, cis-11-octadecadienoic acid and trans-9, trans-11-octadecadienoic acid. Preceding the production of CLA, hydroxy fatty acids identified as 10-hydroxy-cis-12-octadecaenoic acid and 10-hydroxy-trans-12-octadecaenoic acid had accumulated. The isolated 10-hydroxy-cis-12-octadecaenoic acid was transformed into CLA during incubation with washed cells of L. acidophilus, suggesting that this hydroxy fatty acid is one of the intermediates of CLA production from linoleic acid. The washed cells of L. acidophilus producing high levels of CLA were obtained by cultivation in a medium containing linoleic acid, indicating that the enzyme system for CLA production is induced by linoleic acid. After 4 days of reaction with these washed cells, more than 95% of the added linoleic acid (5 mg/ml) was transformed into CLA, and the CLA content in total fatty acids recovered exceeded 80% (wt/wt). Almost all of the CLA produced was in the cells or was associated with the cells as free fatty acid.  相似文献   

3.
A simple and reliable method for synthesizing four isomers of parinaric acid from alpha-linolenic acid (ALA) in high yields is described. The methylene-interrupted, cis triene system (1,4,7-octatriene) of ALA and common to other naturally occurring polyunsaturated fatty acids was transformed to a conjugated tetraene system (1,3,5,7-octatetraene). The synthesis involves bromination of ALA using 0.l M Br(2) in a saturated solution of NaBr in methanol, esterification of the fatty acid dibromides, double dehydrobromination by 1,8-diazabicyclo[5.4.0]undec-7-ene and saponification of the conjugated esters to a mixture of free conjugated acids. Addition of one molecule of bromine to the 12,13-double bond of ALA and subsequent dehydrobromination produces alpha-parinaric acid (9Z,11E,13E,15Z-octadecatetraenoic acid); addition of Br(2) to the 9,10-double bond or 15,16-double bond and then dehydrobromination and rearrangement yields 9E,11E,13E,15Z-octadecatetraenoic or 9E,11E,13E,15Z-octadecatetraenoic acids, respectively. The mixture of parinaric acid isomers is obtained in 65% yield, and the isomers can be purified by preparative HPLC; alternatively, the isomers can be converted by base catalyzed cis-trans isomerization (or by treatment with I(2)) to exclusively beta-parinaric acid (9E,11E,13E,15E-octadecatetraenoic acid). The various parinaric acid isomers were characterized by (1)H NMR, (13)C NMR, UV, GLC, HPLC and mass spectrometry.  相似文献   

4.
Six commercial lipases, in either free or immobilized forms, were screened for their ability to catalyze acyl exchange between the triacylglycerols of butteroil (milkfat) and conjugated linoleic acid (CLA) in an organic solvent-free medium. Immobilized lipase preparations from Candida antarctica and Mucor miehei demonstrated the ability to increase the CLA content of the milk fat acylglycerols from the native value of 0.6 g/100 g fat to values which were at least an order of magnitude higher. Comparable increases were also obtained with a free enzyme from Candida rugosa.

In addition to the screening studies, the effects of the weight ratio of milkfat to CLA on the product distribution and of the water content on the kinetics and maximum extent of this acidolysis reaction were systematically investigated in a batch reactor: The fatty acids liberated from the butteroil triacylglycerols were primarily short chain fatty acids, especially butyric and caproic acids.

Modified butteroils were also produced via acidolysis of butteroil with CLA in a packed bed reactor containing an immobilized lipase preparation from C. antarctica. Significant enrichment of the butteroil in CLA residues was accomplished at reactor space times (fluid residence times) of 2–4 h at 40–60°C. Under these conditions, approximately 80–90% of the free CLA fed to the reactor is (inter)esterified.  相似文献   


5.
Specific isomers of conjugated linoleic acid (CLA), a fatty acid with potentially beneficial physiological and anticarcinogenic effects, were efficiently produced from linoleic acid by washed cells of Lactobacillus acidophilus AKU 1137 under microaerobic conditions, and the metabolic pathway of CLA production from linoleic acid is explained for the first time. The CLA isomers produced were identified as cis-9, trans-11- or trans-9, cis-11-octadecadienoic acid and trans-9, trans-11-octadecadienoic acid. Preceding the production of CLA, hydroxy fatty acids identified as 10-hydroxy-cis-12-octadecaenoic acid and 10-hydroxy-trans-12-octadecaenoic acid had accumulated. The isolated 10-hydroxy-cis-12-octadecaenoic acid was transformed into CLA during incubation with washed cells of L. acidophilus, suggesting that this hydroxy fatty acid is one of the intermediates of CLA production from linoleic acid. The washed cells of L. acidophilus producing high levels of CLA were obtained by cultivation in a medium containing linoleic acid, indicating that the enzyme system for CLA production is induced by linoleic acid. After 4 days of reaction with these washed cells, more than 95% of the added linoleic acid (5 mg/ml) was transformed into CLA, and the CLA content in total fatty acids recovered exceeded 80% (wt/wt). Almost all of the CLA produced was in the cells or was associated with the cells as free fatty acid.  相似文献   

6.
Lipase (EC 3.1.1.3) from oilseed rape (Brassica napus L., cv Ceres) hydrolyzes triacylglycerols containing a broad range of fatty acids at similar rates. In esterification reactions carried out in hexane, rape lipase also uses a wide range of fatty acids and alcohols as reaction partners. However, the rates of esterification of petroselinic, gamma-linolenic, stearidonic and docosahexaenoic acids are only between 2 and 7% that of oleic acid. The common feature of these fatty acids is that the first double bond is cis-4 or cis-6. Petroselaidic acid with a trans-6 double bond is esterified about 10-times faster than petroselinic acid. Arachidonic and eicosapentaenoic acids, both with the first double bond being cis-5, are esterified about 20-times faster than docosahexaenoic acid. By analogy, tripetroselinin and tri-gamma-linolenin are hydrolyzed at 14% and 1.5%, respectively, of the rate of triolein hydrolysis. The rape lipase esterifies primary alcohols but cannot esterify secondary and tertiary alcohols.  相似文献   

7.
Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.  相似文献   

8.
In the biosynthetic pathway of Spodoptera littoralis sex pheromone, (E,E)-10,12-tetradecadienoic acid is produced from (Z)-11-tetradecenoic acid by desaturation and concomitant migration of the precursor double bond. With the aim of identifying the enzyme involved in this biotransformation, yeast Deltaelo1/Deltaole mutants, which are both elongase 1 and Delta9 desaturase-deficient, were transformed with the S. littoralis Delta11 desaturase gene using a Cu+2 inducible expression vector. The transformants produced a recombinant polyhistidine-tagged Delta11 desaturase that could be detected by immunoblotting from cell lysates. Lipid analysis revealed that besides producing large quantities of C11-monounsaturated fatty acids, mainly (Z)-11-hexadecenoic acid, (E,E)-10,12-tetradecadienoic acid and minor amounts of (E,Z)-10,12-hexadecadienoic acid were also produced, as well as very low quantities of another tetradecadienoate, which was tentatively identified as the (E,Z)-10,12-tetradecadienoic isomer. None of these dienes was detected with the Delta11 desaturase gene of Trichoplusia ni, which does not produce conjugated dienes as pheromone components. We conclude that the Delta11 desaturase of S. littoralis is a bifunctional enzyme with both Delta11 and Delta10,12 desaturation activities. The relationship between the substrate structure and the stereochemical outcome of the reaction is discussed.  相似文献   

9.
In this paper we describe a rapid method for identifying bacteria which convert free linoleic acid to conjugated linoleic acid (CLA). This method is based on spectrophotometric detection of CLA and compares well with the standard gas-liquid chromatography method. This method should facilitate high-throughput screening of bacterial isolates for the ability to produce conjugated fatty acids.  相似文献   

10.
In this paper we describe a rapid method for identifying bacteria which convert free linoleic acid to conjugated linoleic acid (CLA). This method is based on spectrophotometric detection of CLA and compares well with the standard gas-liquid chromatography method. This method should facilitate high-throughput screening of bacterial isolates for the ability to produce conjugated fatty acids.  相似文献   

11.
Menhaden oil, a rich source of n-3 fatty acids, was interesterified with conjugated linoleic acid (CLA) in a reaction medium composed solely of substrates and either free or immobilized commercial lipase preparations. Of five lipases tested, an immobilized preparation from Mucor miehei provided the fastest rate of incorporation of CLA into fish oil acylglycerols; however, and as observed with most of the lipases utilized, a significant proportion of the n-3 fatty acid residues were liberated in the process. A soluble lipase from Candida rugosa converted free CLA to acylglycerol residues while leaving the n-3 fatty acid residues virtually untouched. Even though the reaction rate was slower for this enzyme than for the other four lipase preparations, the specificity of the free C. rugosa lipase gives it the greatest potential for commercial use in preparing fish oils enriched in CLA residues but still retaining their original n-3 fatty acid residues.  相似文献   

12.
The ability of a series of 18 carbon acetylenic fatty acids to fulfill the unsaturated fatty acid requirements of Escherichia coli and Saccharomyces cerevisiae was investigated. Despite their high melting points (greater than 40 degrees C), several isomers of the acetylenic fatty acids were as efficient or more efficient in supporting growth than the analogous fatty acid having a cis-double bond. The efficiencies of the different positional isomers in supporting cell proliferation varied from essentially 0 cells per fmol for the 2-5 and 13-17 isomers to high values when the acetylenic bond was near the center of the chain: e.g. 45 E. coli and 5.5 S. cerevisiae cells/fmol for the 10 isomer. A striking ineffectiveness of the 9 isomer was observed with E. coli. The 7, 8 and 10 isomers were at least 10-fold more efficient than any of the other positional isomers in supporting the growth of E. coli. In contrast, the 9 isomer was among the most effective acetylenic fatty acids tested with the yeast mutant. Chromatographic analysis of the extracted lipids indicated that each of the acetylenic isomers tested (except delta2 and delta3) could be esterified by the prokaryotic and eukaryotic microorganisms. The content of unsaturated plus cyclopropane acids observed when growth ceased in E. coli cultures supplemented with growth-limiting concentrations of the acetylenic fatty acids ranged from approx. 15 mol% for the 8 isomer to approx. 35 mol% for the 14 and 17 isomers. The 8-11 isomers were observed to be esterified predominantly at the two position in phosphatidylethanolamine of E. coli and in phosphatidylcholine of S. cerevisiae.  相似文献   

13.
The dietary effects of conjugated linoleic acid (CLA) on Ig production of Sprague-Dawley rats were examined at various doses such as 0 (control), 0.05, 0.10, 0.25, and 0.50%. CLA increased IgG and IgM production of spleen lymphocytes in a dose-dependent manner, and these levels reached a plateau at 0.25%. IgA production was not detected in the control group, while it was detected in all CLA-fed groups and IgA productivity of spleen lymphocytes increased in a dose-dependent manner at the doses from 0.05 to 0.50%. Dietary CLA did not affect serum Ig levels. The major fatty acid composition of spleen lymphocytes was not affected by dietary CLA, which itself was hardly incorporated into the cells. In an in vitro assay, the effects of CLA and its oxidative derivatives, furan type fatty acids, on Ig productivity were also examined. As a result, 100 microM CLA suppressed Ig production of spleen lymphocytes and the degree was as follows IgA > IgG > IgM. Each CLA isomer and the furan type fatty acids also suppressed Ig production but the degree was weaker than the mixture of CLA isomers. In this result, dietary CLA increased Ig productivity of spleen lymphocytes in vivo.  相似文献   

14.
In addition to their reported antitumorigenic properties, various conjugated linoleic acid (CLA) isomers have also been shown to decrease prostanoid synthesis as a result of inhibiting the cyclooxygenase (COX) enzyme. We have previously reported that several CLA isomers inhibited both platelet aggregation and formation of thromboxane A(2) (TXA(2)), a proaggregatory and vasoconstrictive agent. Since the interaction between platelets and vascular endothelial cells is essential to maintaining vascular homeostasis, we decided to investigate the effects of various CLA isomers on the production of endothelial prostacyclin (PGI(2)), a potent vasodilator and inhibitor of platelet function. Using interleukin 1-beta (IL1-beta)-stimulated human umbilical vein endothelial cells (HUVECs), we initially established that HUVECs of passage #2 should be used since these cells were most responsive to thrombin-induced conversion of endogenous arachidonic acid to PGI(2), as monitored by the formation of its stable, inactive metabolite, 6-ketoPGF(1alpha). In the first part of the study, the effects of CLA isomers in the free fatty acid form were tested. The 10(E), 12(Z)- and 9(Z), 11(E)-CLA isomers inhibited thrombin-induced 6-ketoPGF(1alpha) formation with I(50)'s of 2.6 and 5.5 microM, whereas the 9(Z), 11(Z)- and 9(E), 11(E)-CLA were ineffective at concentrations up to 60 microM. The inhibitory effect of the 10(E), 12(Z)-CLA was irreversible. Next, the effects of CLA incorporation into HUVECs on PGI(2) generation was determined. An average 8-fold stimulation of 6-ketoPGF(1alpha) formation was obtained with quiescent IL1-beta-exposed HUVECs pretreated for 18 h with 25 microM 9(Z), 11(Z)-CLA, whereas cells preincubated with the 10(E), 12(Z) isomer enhanced this eicosanoid 3-fold. Such IL1-beta-treated HUVECs prelabeled with 25 microM 9(Z), 11(Z)-CLA became refractory to thrombin stimulation, as measured by 6-ketoPGF(1alpha) production, whereas a small, statistically insignificant, inhibition was observed upon thrombin treatment of HUVECs prelabeled with the 10(E), 12(Z) isomer. Qualitative similar results were obtained with resting or thrombin-stimulated platelets containing these esterified CLA isomers indicating that these effects occur with cells that contain either the COX-1 or COX-2 isozymes. The results of this in vitro study indicate that the effects of CLA on cellular prostanoid formation in endothelial cells and platelets can be either inhibitory or stimulatory, and this seems to depend not only on the specific CLA isomer and whether or not the CLA is in the free fatty acid form or esterified into cellular lipids, but also whether cells are in the resting or stimulated state. These findings suggest that in vivo, CLA might have multiple, complex effects on vascular homeostasis.  相似文献   

15.
The biosynthesis of arachidonic acid (20:4(Delta5Z,8Z,11Z,14Z)) from linoleic acid in plants by transgenic means requires the sequential and specific action of two desaturation reactions and one elongation reaction. Here, we describe the isolation of a specific acyl-lipid-desaturase catalyzing the formation of the double bond at position 5 from a cDNA library from Phytophthora megasperma. The isolated full-length cDNA harbors a sequence of 1740 bp encoding a protein of 477 amino acids with a calculated molecular weight of 53.5 kDa. The desaturase sequence contained a predicted N-terminal cytochrome b(5)-like domain, as well as three histidine-rich domains. For functional identification, the cDNA was expressed in Saccharomyces cerevisiae, and the formation of newly formed fatty acids was analyzed. The expression of the heterologous enzyme resulted in the formation of arachidonic acid after di-homo-gamma-linolenic acid supplementation and in the formation of eicosapentaenoic acid synthesis from omega3-arachidonic acid. Results presented here on the substrate specificity identify this expressed protein as a classical Delta5-acyl-lipid-desaturase, capable of specifically introducing a double bond at the Delta5 position solely in 20-carbon-atom chain length fatty acids containing a double bond at position Delta8. Detailed analysis of the different lipid species showed a preferential occurrence of the desaturation reaction for fatty acids esterified to phosphatidylcholine.  相似文献   

16.
The effects of four conjugated linoleic acid (CLA) isomers on in vitro collagen-induced human platelet aggregation and thromboxane (TXB(2), the inactive metabolite of the proaggregatory TXA(2)) production were examined. As the free fatty acid (FFA), 9t, 11t-CLA was the most effective inhibitor of these two processes (I(50)s of 2.2 and 4 microM, respectively) and the 9c, 11c-CLA was the least effective (I(50)s of 8.3 and 37 microM) of the isomers tested. When platelets were preesterified with either 25 microM 9t, 11t-CLA or 9c, 11c-CLA, CLA incorporation in total platelet lipids increased from 0.24% to 0.31% and 0.38%, and most of this increase was found to be in the phosphatidyl choline and phosphatidyl ethanolamine subclasses. The decrease in arachidonic acid (AA) content in total fatty acids or phospholipids was an order of magnitude greater. Furthermore, no significant differences between platelets prelabeled with either 9t, 11t- or 9c, 11c-CLA in the inhibition of collagen-induced aggregation and TXB(2) formation were observed. However, platelets prelabeled with 9c, 11c-CLA stimulated basal TXB(2) production (4-fold) which was not observed with platelets pretreated with either 9t, 11t-CLA, linoleic acid or stearic acid. This enhancement was associated with a 2.4-5-fold increase in the release of endogenous AA. Our results suggest that the presence of a conjugated cis, cis double bond appears to change the lipid environment sufficiently to stimulate the basal platelet phospholipase activity, which in turn increases the formation of TXB(2).  相似文献   

17.
18.

Background

Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower HDL cholesterol, raise LDL cholesterol, and increase the risk of coronary heart disease. The effects of conjugated linoleic acid and trans fatty acids from ruminant animals are less clear. We reviewed the literature, estimated the effects trans fatty acids from ruminant sources and of conjugated trans linoleic acid (CLA) on blood lipoproteins, and compared these with industrial trans fatty acids.

Methodology/Principal Findings

We searched Medline and scanned reference lists for intervention trials that reported effects of industrial trans fatty acids, ruminant trans fatty acids or conjugated linoleic acid on LDL and HDL cholesterol in humans. The 39 studies that met our criteria provided results of 29 treatments with industrial trans fatty acids, 6 with ruminant trans fatty acids and 17 with CLA. Control treatments differed between studies; to enable comparison between studies we recalculated for each study what the effect of trans fatty acids on lipoprotein would be if they isocalorically replaced cis mono unsaturated fatty acids. In linear regression analysis the plasma LDL to HDL cholesterol ratio increased by 0.055 (95%CI 0.044–0.066) for each % of dietary energy from industrial trans fatty acids replacing cis monounsaturated fatty acids The increase in the LDL to HDL ratio for each % of energy was 0.038 (95%CI 0.012–0.065) for ruminant trans fatty acids, and 0.043 (95% CI 0.012–0.074) for conjugated linoleic acid (p = 0.99 for difference between CLA and industrial trans fatty acids; p = 0.37 for ruminant versus industrial trans fatty acids).

Conclusions/Significance

Published data suggest that all fatty acids with a double bond in the trans configuration raise the ratio of plasma LDL to HDL cholesterol.  相似文献   

19.
Membranes of intact rabbit reticulocytes and rat liver mitochondrial membranes oxygenated by the pure reticulocyte lipoxygenase contain 13-keto-9Z,11E-octadecadienoic acid and 9-keto-10E,12Z-octadecadienoic acid. In mitochondrial membranes not treated with lipoxygenase and in rabbit erythrocyte membranes these products were not detected. The chemical structure of the compounds has been identified by cochromatography with authentic standards on various types of HPLC columns, by uv and ir spectroscopy and GC/MS. In the membranes of rabbit reticulocytes up to 2% of the linoleate residues are present as its 9- and 13-keto derivatives. Most of the keto compounds (up to 90%) are esterified in the membrane ester lipids, only about 10% were found in the free fatty acid fraction. It is proposed that the keto dienoic fatty acids are formed via decomposition of hydroperoxy polyenoic fatty acids originating from the oxygenation of the membrane lipids by the reticulocyte lipoxygenase.  相似文献   

20.
The dietary effects of conjugated linoleic acid (CLA) on Ig production of Sprague-Dawley rats were examined at various doses such as 0 (control), 0.05, 0.10, 0.25, and 0.50%. CLA increased IgG and IgM production of spleen lymphocytes in a dose-dependent manner, and these levels reached a plateau at 0.25%. IgA production was not detected in the control group, while it was detected in all CLA-fed groups and IgA productivity of spleen lymphocytes increased in a dose-dependent manner at the doses from 0.05 to 0.50%. Dietary CLA did not affect serum Ig levels. The major fatty acid composition of spleen lymphocytes was not affected by dietary CLA, which itself was hardly incorporated into the cells. In an in vitro assay, the effects of CLA and its oxidative derivatives, furan type fatty acids, on Ig productivity were also examined. As a result, 100 μM CLA suppressed Ig production of spleen lymphocytes and the degree was as follows IgA>IgG>IgM. Each CLA isomer and the furan type fatty acids also suppressed Ig production but the degree was weaker than the mixture of CLA isomers. In this result, dietary CLA increased Ig productivity of spleen lymphocytes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号