首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dialdehyde starch obtained by periodate oxidation from potato starch was converted into its disemicarbazone (DSC), dithiosemicarbazone (DTSC), dihydrazone (DHZ) and dioxime (DOX). The Cu(II) complexes of these compounds were prepared and characterized by Raman and EPR spectra, as well as by the measurements of magnetic susceptibility. EPR investigations showed that two types of complexes with different surroundings of copper centres existed in each starch derivative. Besides nitrogen atoms of the CN moiety and sulphur atoms of the CS moiety, also oxygen atoms from starch hydroxyl groups and/or water molecule were proposed as the coordination sites for the central copper ions.  相似文献   

2.
Retrograded starch is a crystal formed by starch molecules with hydrogen bonds. Many literatures have reported its physicochemical character, but its crystal structure is so far unclear. As we isolate amylose and amylopectin from retrograded maize, sweet potato and potato starches in 4.0M KOH solutions and make them retrograde alone in neutral solution (adjusted by HCl) to form crystal, a new phenomenon appears, crystals of KCl do not appear in retrograded potato amylose, potato amylopectin, and maize amylose, indicating that those crystals may absorb K(+) and (or) Cl(-), and those ions probably act with aldehyde of starch or hydroxy of fatty acid attached in starch, such characteristic may make retrograded starches replace graphite as anode with high-capacity in lithium-ion rechargeable batteries.  相似文献   

3.
Eleven different glucans (wheat starch, potato amylopectin, potato amylose, pullulan, alternan, regular comb dextran, alpha-cellulose, microcrystalline cellulose, CM-cellulose, chitin, and chitosan) that had their C-6 primary alcohol groups oxidized to carboxyl groups by reaction with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion (TEMPO), were reacted with Azotobacter vinelandii poly-beta-(1-->4)-D-mannuronic acid C-5-epimerase. All of the oxidized polysaccharides reacted with the C-5-epimerase, as evidenced by comparing: (1) differences in the relative viscosities; (2) differences in the carbazole reaction; (3) differences in their susceptibility to acid hydrolysis, and (4) differences in their ability to form calcium gels, before and after reaction. We further show the formation of L-iduronic acid from D-glucuronic acid for oxidized and epimerized amylose by 2D NOESY and COSY + 1H NMR.  相似文献   

4.
“Retrogradation” has been used to describe the changes that occur in starch after gelatinization, from an initially amorphous state to a more ordered or crystalline state, which has a significant impact on starch application in food, textiles and materials fields. But mechanism of starch retrogradation is still unclear until now and there is no breakthrough in this area. Here we are speculating a possible structure of retrograded maize starch by UV (binding with iodine) and IR spectra of it and its compositions. We speculate that nucleation of retrograded starch origins from combination of reducing end of amylopectin and non-reducing end of amylose, and retrogradation terminates at combining of non-reducing end of amylopectin and reducing end of amylose. The chain length of resistant digestion retrograded starch should be nearly same. The hydroxyl associated with sixth carbon atoms of glucan must form hydrogen bond with other hydroxyl of starch.  相似文献   

5.
The time course of the (1 leads to 4)-alpha-D-glucopyranosyltransfer reactions catalyzed by the cyclodextrin glycosyltransferase ((1 leads to 4)-alpha-D-glucan: [(1 leads to 4)-alpha-D-glucopyranosyl]transferase (cyclizing), EC 2.4.1.19, CGT) from Klebsiella pneumoniae was studied with several commercial amyloses, potato starch, and amylopectin, respectively. Amyloses were poor substrates for the cyclization reaction. In the initial phase of the transfer reactions, the CGT catalyzed a rapid shortening of the amylose chains. The rate of this shortening reaction was significantly accelerated by addition of maltooligosaccharides. Maximum rate of cyclohexaamylose formation was reached with amylose chains sufficiently short (less than Glc100) for the cyclization reaction. Cyclohexaamylose was formed with maximum rate from amyloses containing amylopectin impurities in the initial phase of the transfer reactions, suggesting that the non-reducing ends of the outer amylopectin chains serve as acceptors for the disproportionation of the amylose. Accordingly, water-soluble, high-molecular-weight products containing higher percentages of lengthened outer-chains were obtained from potato starch or amylopectin. In the course of the transfer reactions, only traces of smaller maltooligosaccharides were detected chromatographically.  相似文献   

6.
A new approach for the determination of the botanical origin of starch is presented based on the formation of starch-triiodide complexes. The starch samples were extracted from wheat (Srpanjka), potato, maize, rye (Barun), barley (Conduct), rice, tapioca and a commercial modified starch. The amylose/amylopectin ratios of starches, among various other properties, differ between starches of different botanical origins. Triiodide ions bind characteristically to the amylose and amylopectin of the starch depending on the starch's origin. The new technique includes direct potentiometric measurements of the response of free triiodide ions in starch-triiodide solutions where the data is analysed by principal component analysis (PCA). PCA gave graphical results for statistical differentiation between starches of different botanical origins.  相似文献   

7.
The initial rate of the fast reaction among amylose, iodine, and iodide ions was studied in unfractionated corn, potato, rice, wheat, and arrowroot starches. It was found that the reaction followed the same rate equation as the one established in a previous study using pure amylose fractions containing no amylopectin. There were significant differences, however, among the rate constants of the various starches investigated. These variations were explained in terms of the different average molecular weights of the amylose fractions of these starches. Since whole potato starch indicated a rate constant well within the fange of those of pure amylose fraction (obtained from the same potato starch samples), it was concluded, that amylopectin did not interfere significantly with the rate of the complexation reaction.  相似文献   

8.
Tang H  Hills BP 《Biomacromolecules》2003,4(5):1269-1276
To investigate the domain structure and dynamics of polysaccharides in the native starch granules, a variety of high resolution, solid-state (13)C NMR techniques have been applied to all three (A-, B-, and C-) types of starch with different water content. Both single-pulse-excitation magic-angle-spinning (SPEMAS) and cross-polarization-magic-angle-spinning (CPMAS) methods have been employed together with the PRISE (proton relaxation induced spectral-editing) techniques to distinguish polysaccharide fractions in different domains and having distinct dynamics. It has been found that, for all three types of dry starch granules, there are two sets of NMR signals corresponding to two distinct ordered polysaccharides. Hydration leads to substantial mobilization of the polysaccharides in the amorphous regions, but no fundamental changes in the rigidity of the polysaccharides in the crystalline (double) helices. Full hydration also leads to limited mobility changes to the polysaccharides in the amorphous lamellae (branching zone) within the amylopectin clusters and in the gaps between the arrays of the amylopectin clusters. Under magic-angle spinning, proton relaxation-time measurements showed a single component for T(1), two components for T(1rho), and three components for T(2). PRISE experiments permitted the neat separation of the (13)C resonances of polysaccharides in the crystalline lamellae from those in the amorphous lamellae and the amylose in the gaps between amylopectin clusters. It has been found that the long (1)H T(1rho) component ( approximately 30 ms) is associated with polysaccharides in the crystalline lamellae in the form of double helices, whereas the short T(1rho) component (2-4 ms) is associated with amylose in the gaps between amylopectin clusters. The short (1)H T(2) component ( approximately 14 micros) is associated with polysaccharides in the crystalline lamellae; the intermediate component (300-400 micros) is associated with polysaccharides in the amorphous lamellae and amylose in the gaps between amylopectin clusters. The long T(2) component is associated with both mobile starch protons and the residue water protons.  相似文献   

9.
Starch re-structured directly in potato tubers by antisense suppression of starch branching enzyme (SBE), granule bound starch synthase (GBSS) or glucan water dikinase (GWD) genes was studied with the aim at disclosing the effects on resulting physico-chemical and enzyme degradative properties. The starches were selected to provide a combined system with specific and extensive alterations in amylose and covalently esterified glucose-6-phosphate (G6P) contents. As an effect of the altered chemical composition of the starches their hydrothermal characteristics varied significantly. Despite of the extreme alterations in phosphate content, the amylose content had a major affect on swelling power, enthalpy for starch gelatinization and pasting parameters as assessed by Rapid Visco Analysis (RVA). However, a combined influence of the starch phosphate and long glucan chains as represented by high amylose or long amylopectin chain length was indicated by their positive correlation to the final viscosity and set back (RVA) demonstrating the formation of a highly hydrated and gel-forming system during re-structuring of the starch pastes. Clear inverse correlations between glucoamylase-catalyzed digestibility and amylopectin chain length and starch phosphate and lack of such correlation with amylose content indicates a combined structuring role of the phosphate groups and amylopectin chains on the starch glucan matrix.  相似文献   

10.
Molecular fractionation of starch by density-gradient ultracentrifugation   总被引:2,自引:0,他引:2  
Amylose and amylopectin in corn and potato starches were fractionated by centrifugation at 124,000g for 3-72 h at 40 degrees C in a gradient media, Nycodenz, based on their sedimentation rate differences. The fractions were collected from a centrifuge tube, and then analyzed by the phenol-sulfuric acid method and iodine-binding test. Amylopectin, a large and highly branched starch molecule, migrated faster than amylose and quickly reached its isopycnic point with a buoyant density of about 1.25 g/mL, exhibiting a sharp and stable carbohydrate peak. Amylose, which is a relatively small and linear molecule, however, migrated slowly in a broad density range and continued moving to higher density regions, eventually overlapping with amylopectin peak as the centrifugation continued. This could indicate that the buoyant density of amylose is similar to that of amylopectin. Under centrifugal conditions of 3 h and 124,000g, amylose and amylopectin molecules were clearly separated, and the presence of intermediate starch molecules (11.5 and 7.7% for corn and potato starch, respectively) was also observed between amylose and amylopectin fractions. The amylose content of corn and potato starches was 22.6 and 21.1%, respectively, based on the total carbohydrate analysis after the ultracentrifugation for 3 h. In alkaline gradients (pH 11 or 12.5), the sedimentation rate of starch molecules and the buoyant density of amylopectin were reduced, possibly due to the structural changes induced by alkali.  相似文献   

11.
《Phytochemistry》1999,52(4):555-559
Carbon isotope ratios (expressed as δ13C values) were determined for various sources of starch and the starch fractions amylose and amylopectin. The δ13C values of amylose were consistently less negative, 0.4–2.3 ‰, than those of amylopectin in kernal starch from maize (Zea mays) and barley (Hordeum vulgare) and in tuber starch from potato (Solanum tuberosum). Kernel starch isolated from the maize mutants wx1 and ae1, with known genetic lesions in the starch biosynthetic pathway, also showed significant differences in δ13C values. Collectively, these results suggest that variation in carbon isotope ratios in the amylose and amylopectin components of starch may be attributed to isotopic discrimination by the enzymes involved in starch biosynthesis.  相似文献   

12.
The effects of starch granules on the rheological behaviour of gels of native potato and high amylopectin potato (HAPP) starches have been studied with small deformation oscillatory rheometry. The influence of granule remnants on the rheological properties of samples treated at 90 °C was evident when compared with samples treated at 140 °C, where no granule remnants were found. The presence of amylose in native potato starch gave to stronger network formation since potato starch gave higher moduli values than HAPP, after both 90 and 140 °C treatments. In addition, amylose may have strengthened the network of HAPP because higher moduli values were obtained when native potato starch was added to the system. The moduli values of the mixtures also increased with increasing polysaccharide concentration in the system, which is due to an increment in the polysaccharide chain contacts and entanglements. Finally, it was found that a mixture of commercial amylose from potato starch and HAPP resulted in lower values of G′ compared to native potato starch. This indicates that the source of amylose is important for the properties in a blend with native amylopectin.  相似文献   

13.
The effect of amylose deposition on the amylopectin crystalline lamellar organization in potato starch granules was studied by mild acid, so‐called lintnerization, of potato tuber starch transgenically engineered to deposit different levels of amylose. The starch granules were subjected to lintnerization at different temperatures (25, 35, and 45°C) and to two levels of solubilization, ~ 45 and 80%. The rate of the lintnerization increased with temperature but was suppressed by amylose. The molecular size of the lintner dextrins increased with temperature, but this effect was suppressed by the presence of amylose. At high temperatures and low‐amylose content, the degree of branches was high with the concomitant increase in size in the dextrins. A portion of the branches was resistant to debranching enzymes possibly due to specific structural formations. The effects of temperature suggested a unique granular architecture of potato starch, and a model showing the dependence of temperature on the dynamic arrangement of amylopectin and amylose in the crystalline and amorphous lamellae for the potato starch is suggested. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The esterification of the three polysaccharides, starch, amylose and amylopectin was carried out in pyridine-DMSO by succinic anhydride. The carboxylic groups in the succinylated polysaccharides were measured by FT-IR spectroscopy. The succinic derivatives were tested as alpha-amylase (1,4-alpha-D-glucan glucano hydrolase, E.C. 3.2.1.1) substrates. A colorimetric assay of the alpha-amylase activity indicated that this enzyme is active on succinic esters of starch and amylose and that the activity shows a linear decrease with the number of succinic units introduced into the polysaccharide. Since the colorimetric test was not suitable for the detection of the alpha-amylase activity when succinylated amylopectin was the substrate, we set-up an assay based on the labeling by a paramagnetic probe of the free carboxylic groups of succinylated polysaccharides. The kinetics of the alpha-amylase reaction were monitored by ESR spectroscopy through the increase of the mobility of the paramagnetic probe. The spin label used was the commercially available 4-amino-tempo. By this method we demonstrated that alpha-amylase is active on succinylated amylopectin. The utility of the assay for monitoring alpha-amylase activity when other methods (i.e. colorimetric tests) fail, is discussed.  相似文献   

15.
NMR analyses of polysaccharide derivatives containing amine groups   总被引:4,自引:0,他引:4  
Amylose, amylopectin, hydroxyethylcellulose, methylcellulose, and cellulose were reacted with diethylaminoethyl chloride HCl salt and 3-chloro-2-hydroxy-propyltrimethylammonium chloride under aqueous alkaline conditions in order to introduce tertiary amine and quaternary ammonium groups into polysaccharides. Degrees of substitution were obtained from 1H- or 13C-NMR spectra of hydrolyzates, and distributions of diethylaminoethyl groups in polysaccharides were measured by 13C-NMR. Since amylose, amylopectin, and hydroxyethylcellulose were soluble in the reaction media, these three polysaccharides had higher reactivity for etherifications than cellulose. Methyl-cellulose, which has hydrophobic methyl groups, had as much reactivity as cellulose. Primary hydroxyl groups, C-6, of polysaccharides had the highest reactivity for diethylaminoethylation.  相似文献   

16.
The amount of B-type crystallinity in compression-moulded, glycerol-plasticised potato starches was strongly dependent on both the properties of the potato starch used and the applied processing conditions. The presence of amylose and the morphology of the potato starch used, but also processing parameters such as moulding temperature and water content during moulding affected the amount of B-type crystallinity in the materials and thus the ultimate mechanical properties of the plasticised starches. This indicated that the direct relation between composition and physical properties of processed starches is not always valid; processing parameters are important tools for controlling the physical properties of processed starches as they influence the amount of B-type crystallinity in the material. It was shown that the total amount of B-type crystallinity in the glycerol-plasticised potato starches should be considered as a summation of residual amylopectin crystallinity and recrystallisation of both amylose and amylopectin, being strongly dependent on the applied processing conditions. In order to explain the observed amount of B-type crystallinity in these starches, partial (co-)crystallisation of both amylose and amylopectin should occur at high moulding temperatures. The measured mechanical properties of the plasticised potato starches correlated well with the amount of B-type crystallinity observed in the materials.  相似文献   

17.
A combined DSC–SAXS approach was employed to study the effects of amylose and phosphate esters on the assembly structures of amylopectin in B-type polymorphic potato tuber starches. Amylose and phosphate levels in the starches were specifically engineered by antisense suppression of the granule bound starch synthase (GBSS) and the glucan water dikinase (GWD), respectively. Joint analysis of the SAXS and DSC data for the engineered starches revealed that the sizes of amylopectin clusters, thickness of crystalline lamellae and the polymorphous structure type remained unchanged. However, differences were found in the structural organization of amylopectin clusters reflected in localization of amylose within these supramolecular structures. Additionally, data for annealed starches shows that investigated potato starches possess different types of amylopectin defects. The relationship between structure of investigated potato starches and their thermodynamic properties was recognized.  相似文献   

18.
In higher plants several isoforms of starch synthase contribute to the extension of glucan chains in the synthesis of starch. Different isoforms are responsible for the synthesis of essentially linear amylose chains and branched, amylopectin chains. The activity of granule-bound starch synthase I from potato has been compared with that of starch synthase II from potato following expression of both isoforms in Escherichia coli. Significant differences in their activities are apparent which may be important in determining their specificities in vivo. These differences include affinities for ADPglucose and glucan substrates, activation by amylopectin, response to citrate, thermosensitivity and the processivity of glucan chain extension. To define regions of the isoforms determining these characteristic traits, chimeric proteins have been produced by expression in E. coli. These experiments reveal that the C-terminal region of granule-bound starch synthase I confers most of the specific properties of this isoform, except its processive elongation of glucan chains. This region of granule-bound starch synthase I is distinct from the C-terminal region of other starch synthases. The specific properties it confers may be important in defining the specificity of granule-bound starch synthase I in producing amylose in vivo.  相似文献   

19.
Both of the two forms of glucoamylase (glucoamylases I and II) from the wheat bran culture of Mucor rouxianus hydrolyzed amylopectin, amylose, glycogen, soluble starch, maltotriose, and maltose, but did not act on isomaltose and isomaltotriose. Phenyl α-maltoside was hydrolyzed into glucose and phenyl α-glucoside by both glucoamylases. Maltose was hydrolyzed about one-fifth as rapidly as amylopectin. Both enzymes produced glucose from amylopectin, amylose, glycogen, soluble starch in the yields of almost complete hydrolysis. They hydrolyzed amylose with the inversion of configuration, producing the β-anomer of glucose. Glucoamylase II hydrolyzed raw starch at 3-fold higher rate than glucoamylase I. The former hydrolyzed rice starch almost completely into glucose, whereas the latter hydrolyzed it incompletely (nearly 50%).  相似文献   

20.
A combined approach of fluorophore-assisted capillary electrophoresis (FACEL), high-sensitivity differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and light (LM) and scanning electron microscopy (SEM) was applied to study the effects of changes in amylopectin chain-length distribution on the assembly structures of sweet potato starches with similar amylose levels. It was shown that unlike ordinary sweet potato starch, starch extracted from Quick Sweet cultivar of sweet potato had anomalous high level of amylopectin chains with a degree of polymerization (DP) 6–12. Joint analysis of the obtained data revealed that amylopectin chains with DP 10–24 are, apparently, the dominant material for the formation of supramolecular structures in starch granules. In contrast, amylopectin chains with DP < 10 facilitated the formation of defects within crystalline lamellae. An increase in relative content of amylopectin chains with DP < 10 is accompanied by the correlated structural alterations manifested at all levels of starch granule organization (crystalline lamellae, amylopectin clusters, semi-crystalline growth rings, and granule morphology). Thus, the short amylopectin chains with DP < 10 were considered as an origin of the defectiveness in starch supramolecular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号