首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It was shown previously that 422 (aP2) protein, a 15-kDa fatty acid binding protein, is phosphorylated on Tyr19 both in vitro by the insulin receptor tyrosine kinase and in intact 3T3-L1 adipocytes treated with insulin and phenylarsine oxide (PAO). Phospho-422(aP2) protein (pp15) accumulates in cells treated with insulin and PAO because the arsenical blocks turnover of the phosphoryl group of pp15. These findings suggest that a PAO-sensitive enzyme mediates turnover of the pp15 tyrosine phosphoryl group. We have purified and characterized two membrane protein tyrosine phosphatases (PTPases) from 3T3-L1 adipocytes that catalyze hydrolysis of phospho-Tyr19 of authentic pp15. These enzymes, designated PTPases HA1 and HA2, were purified approximately 20,000-fold and approximately 15,000-fold, respectively, and shown to differ markedly in their sensitivity to both vanadate and phosphotyrosine. Both enzymes are inhibited by PAO and accordingly can be labeled with 4-[125I]iodo-PAO. By this method, it was demonstrated that PTPases HA1 and HA2 have molecular masses of approximately 60 kDa and approximately 38 kDa, respectively. Both enzymes exhibit substrate preference for pp15 when compared with other phosphotyrosine-containing protein substrates. Proteins containing phosphoserine and phosphothreonine do not serve as substrates for the enzymes. The pp15 PTPase HA2 is expressed both in 3T3-L1 preadipocytes and adipocytes, whereas pp15 PTPase HA1 is expressed only in 3T3-L1 adipocytes.  相似文献   

3.
Using differential display, we sought to identify novel genes expressed in the early stages of 3T3-L1 adipocyte differentiation. A gene which we have named "band25" was identified, and a full-length cDNA sequence was assembled. Sequence analysis revealed that the 2842-bp cDNA encodes a putative 628-amino acid protein product, which is a member of the GTPase-activating protein (GAP) family. This gene may be the murine homolog of the human MgcRacGAP protein, which was identified in male germ cells. Other closely related proteins include the Drosophila protein Rotund, several chimerins, and the human breakpoint cluster region (Bcr) protein. These GAP proteins all specifically inactivate Rac, a member of the Ras-like family of proteins. A consensus sequence for a diacyl glycerol/phorbol ester-binding domain was also found in the Band25 sequence. The expression of band25 mRNA is regulated during the differentiation of both adipocytes and myoblasts. Its mRNA was shown to be expressed at a low level in confluent 3T3-L1 preadipocytes and in differentiated 3T3-L1 adipocytes. Expression of band25 was increased 15.5 fold by 24 h after the induction of differentiation, when 3T3-L1 cells undergo several rounds of postconfluent cell division. Expression was also high in growing 3T3-L1 and C2C12 cells but decreased progressively as C2C12 cells underwent differentiation. These observations suggest that the expression of band25 is growth regulated and that the protein could play a role in the regulation of growth-related processes.  相似文献   

4.
Non-esterified fatty acids are thought to be one of the causes for insulin resistance. However, the molecular mechanism of fatty acid-induced insulin resistance is not clearly known. In this study, we first examined the effect of palmitate on insulin signaling in 3T3-L1 adipocytes. We found that 1h treatment with 1 mmol/l palmitate had no effect on insulin binding, tyrosine phosphorylation of insulin receptors, 185 kDa proteins and Shc, and PI3 kinase activity in 3T3-L1 adipocytes. Then, the effects of palmitate on MAP kinase activity and glucose uptake in fully differentiated 3T3-L1 adipocytes were compared with those in poorly differentiated 3T3-L1 cells and in HIRc-B cells. Palmitate treatment had no effect on MAP kinase activity in fully differentiated 3T3-L1 adipocytes, while it inhibited MAP kinase in poorly differentiated 3T3-L1 cells and HIRc-B cells. Glucose transport in 3T3-L1 adipocytes treated with palmitate for 1 h, 4 h and 16 h was higher than that in control cells, but palmitate treatment caused a rightward shift of the insulin-dose responsive curve for glucose uptake in HIRc-B cells. Palmitate treatment did not significantly affect basal and insulin-stimulated GLUT4 translocation. When the cells were treated with PD98059, a specific MEK inhibitor, insulin-stimulated glucose uptake was not affected in 3T3-L1 adipocytes, while it was almost completely inhibited in HIRc-B cells. These results suggest the primary effect of palmitate on adipocytes may not involve insulin resistance of adipocytes themselves.  相似文献   

5.
Perilipins, the major structural proteins coating the surfaces of mature lipid droplets of adipocytes, play an important role in the regulation of triacylglycerol storage and hydrolysis. We have used proteomic analysis to identify CGI-58, a member of the alpha/beta-hydrolase fold family of enzymes, as a component of lipid droplets of 3T3-L1 adipocytes. CGI-58 mRNA is highly expressed in adipose tissue and testes, tissues that also express perilipins, and at lower levels in liver, skin, kidney, and heart. Both endogenous CGI-58 and an ectopic CGI-58-GFP chimera show diffuse cytoplasmic localization in 3T3-L1 preadipocytes, but localize almost exclusively to the surfaces of lipid droplets in differentiated 3T3-L1 adipocytes. The localization of endogenous CGI-58 was investigated in 3T3-L1 cells stably expressing mutated forms of perilipin using microscopy. CGI-58 binds to lipid droplets coated with perilipin A or mutated forms of perilipin with an intact C-terminal sequence from amino acid 382 to 429, but not to lipid droplets coated with perilipin B or mutated perilipin A lacking this sequence. Immunoprecipitation studies confirmed these findings, but also showed co-precipitation of perilipin B and CGI-58. Remarkably, activation of cAMP-dependent protein kinase by the incubation of 3T3-L1 adipocytes with isoproterenol and isobutylmethylxanthine disperses CGI-58 from the surfaces of lipid droplets to a cytoplasmic distribution. This shift in subcellular localization can be reversed by the addition of propanolol to the culture medium. Thus, CGI-58 binds to perilipin A-coated lipid droplets in a manner that is dependent upon the metabolic status of the adipocyte and the activity of cAMP-dependent protein kinase.  相似文献   

6.
The protein product of the c-Cbl proto-oncogene is prominently tyrosine phosphorylated in response to insulin in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. After insulin-dependent tyrosine phosphorylation, c-Cbl specifically associates with endogenous c-Crk and Fyn. These results suggest a role for tyrosine-phosphorylated c-Cbl in 3T3-L1 adipocyte activation by insulin. A yeast two-hybrid cDNA library prepared from fully differentiated 3T3-L1 adipocytes was screened with full-length c-Cbl as the target protein in an attempt to identify adipose-specific signaling proteins that interact with c-Cbl and potentially are involved in its tyrosine phosphorylation in 3T3-L1 adipocytes. Here we describe the isolation and the characterization of a novel protein that we termed CAP for c-Cbl-associated protein. CAP contains a unique structure with three adjacent Src homology 3 (SH3) domains in the C terminus and a region showing significant sequence similarity with the peptide hormone sorbin. Both CAP mRNA and proteins are expressed predominately in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. CAP associates with c-Cbl in 3T3-L1 adipocytes independently of insulin stimulation in vivo and in vitro in an SH3-domain-mediated manner. Furthermore, we detected the association of CAP with the insulin receptor. Insulin stimulation resulted in the dissociation of CAP from the insulin receptor. Taken together, these data suggest that CAP represents a novel c-Cbl binding protein in 3T3-L1 adipocytes likely to participate in insulin signaling.  相似文献   

7.
Akt is a key insulin-activated protein kinase. We searched for Akt substrates in 3T3-L1 adipocytes by means of immunoprecipitation with an Akt phosphomotif-specific antibody (PAS antibody). Four insulin-elicited phosphoproteins were isolated and identified by mass spectrometry. The identity of each protein was established by isolating the protein from lysates of untreated and insulin-treated adipocytes with an antibody specific for the protein and showing that the PAS antibody reacted only with the protein in the immunoprecipitate from insulin-treated cells. These proteins have sizes of 47, 75, 105, and 250 kDa on SDS PAGE, and have been designated pp47, 75, 105, and 250. The effect of inhibitors on the phosphorylation of the proteins, the identified sites of phosphorylation, and in vitro phosphorylation by recombinant Akt further indicated that pp47, 105, and 250 are likely to be Akt substrates, whereas pp75 may not be. pp47 and 105 are novel proteins with no known or predicted function. pp75 was previously found as a protein that associated with the colony-stimulating factor receptor, designated as Fms-interacting protein. pp250 is a novel protein with a predicted GTPase activating protein (GAP) domain for Rheb and/or Rap at its carboxy terminus. The subcellular and tissue distributions of the four proteins were determined.  相似文献   

8.
Recently we identified a novel 250 kDa protein in adipocytes that is a substrate for the insulin-activated protein kinase Akt. We refer to this protein as AS250 for Akt substrate of 250 kDa. AS250 has a predicted GTPase activating protein (GAP) domain at its carboxy terminus. This domain shows some homology to the GAP domains for Rheb at the carboxy terminus of the protein tuberin and for Rap1 in the protein Rap1 GAP. The present study further characterizes AS250. The cDNA sequence for human AS250 is reported, and the sites that undergo phosphorylation upon insulin treatment of adipocytes have been identified by tandem mass spectrometry. We have found that in adipocytes AS250 exists as a complex with a novel protein of 1484 amino acids known as KIAA1219. The complex of AS250 with KIAA1219 is notably similar to the important regulatory complex of the protein tuberin with hamartin (the tuberous sclerosis complex), in the size of its subunits, the location of the GAP domain, and its phosphorylation by Akt. In an effort to detect the cellular role of the AS250/KIAA1219 complex, we generated 3T3-L1 adipocytes that largely lack AS250 by shRNA knockdown and examined several insulin-dependent effects. The knockdown of AS250 had no effect on insulin activation of the kinases, Akt, 70 kDa S6 kinase, or ERK1/2, or on insulin-stimulated actin bundling, and it had only a slight effect on insulin-stimulated GLUT4 translocation.  相似文献   

9.
Insulin stimulates glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3K) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt, a downstream target of PI3K in regulation of GLUT4 translocation, has been controversial. Here we report that microinjection of a PKB substrate peptide or an antibody to PKB inhibited insulin-stimulated GLUT4 translocation to the plasma membrane by 66 or 56%, respectively. We further examined the activation of PKB isoforms following treatment of cells with insulin or platelet-derived growth factor (PDGF) and found that PKBbeta is preferentially expressed in both rat and 3T3-L1 adipocytes, whereas PKBalpha expression is down-regulated in 3T3-L1 adipocytes. A switch in growth factor response was also observed when 3T3-L1 fibroblasts were differentiated into adipocytes. While PDGF was more efficacious than insulin in stimulating PKB phosphorylation in fibroblasts, PDGF did not stimulate PKBbeta phosphorylation to any significant extent in adipocytes, as assessed by several methods. Moreover, insulin, but not PDGF, stimulated the translocation of PKBbeta to the plasma membrane and high-density microsome fractions of 3T3-L1 adipocytes. These results support a role for PKBbeta in insulin-stimulated glucose transport in adipocytes.  相似文献   

10.
In order to identify novel substrates involved in insulin receptor signaling, a yeast two-hybrid 3T3-L1 adipocyte cDNA library was screened with the cytoplasmic domain of the human insulin receptor as bait. Here we describe the isolation and characterization of an interacting protein, APS, which contains pleckstrin homology and Src homology 2 domains and several potential tyrosine phosphorylation sites. APS mRNA and protein are expressed primarily in skeletal muscle, heart, and adipose tissue, and in differentiated 3T3-L1 adipocytes. We show that APS associates with phosphotyrosines situated within the activation loop of the insulin receptor via the APS Src homology 2 domain. Insulin stimulation of 3T3-L1 adipocytes resulted in rapid tyrosine phosphorylation of endogenous APS on tyrosine 618, whereas platelet-derived growth factor treatment resulted in no APS phosphorylation. In summary, we have identified a new insulin receptor substrate that is primarily expressed in insulin-responsive tissues and in 3T3-L1 adipocytes whose phosphorylation shows insulin receptor specificity. These findings suggest a potential role for APS in insulin-regulated metabolic signaling pathways.  相似文献   

11.
12.
13.
In previous studies in intact 3T3-L1 fibroblasts and adipocytes, we demonstrated that the phosphorylation state of an acidic, multicomponent Mr 80,000 protein appeared to be a specific and useful marker for the activation state of protein kinase C (Blackshear, P.J., Witters, L.A., Girard, P.R., Kuo, J.F., and Quamo, S.N. (1985) J. Biol. Chem. 260, 13304-13315). In the present studies, we demonstrate that the Mr 80,000 protein from rat adipose tissue was a substrate for protein kinase C in vitro, and co-migrated on two-dimensional gels with the analogous protein from murine 3T3-L1 adipocytes labeled by exposure of intact cells to 32Pi and phorbol 12-myristate 13-acetate. Partial proteolytic maps of the two 32P-proteins were nearly identical, supporting the postulate that the sites phosphorylated by protein kinase C in vitro, and in response to phorbol 12-myristate 13-acetate in vivo, were similar or identical. Despite their similar apparent molecular weights, we were able to distinguish between the Mr 80,000 protein and protein kinase C by several physical criteria. The Mr 80,000 protein kinase C substrate was found in fractions of all rat tissues examined, but was most prominent in rat brain. Phorbol 12-myristate 13-acetate also stimulated phosphorylation of the Mr 80,000 protein in several types of cultured neuronal cells, suggesting a possible role for this protein in cholinergic neurotransmission. The Mr 80,000 protein appears to be a useful marker for protein kinase C activation in a variety of cell types.  相似文献   

14.
Insulin increases glucose transport by stimulating the trafficking of intracellular GLUT4 to the cell surface, a process known as GLUT4 translocation. A key protein in signaling this process is AS160, a Rab GTPase-activating protein (GAP) whose activity appears to be suppressed by Akt phosphorylation. Tbc1d1 is a Rab GAP with a sequence highly similar to that of AS160 and with the same Rab specificity as that of AS160. The role of Tbc1d1 in regulating GLUT4 trafficking has been unclear. Our previous study showed that overexpressed Tbc1d1 inhibited insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes, even though insulin caused phosphorylation on its single canonical Akt motif. In the present study, we show in 3T3-L1 adipocytes that Tbc1d1 is only 1/20 as abundant as AS160, that knockdown of Tbc1d1 has no effect on insulin-stimulated GLUT4 translocation, and that overexpressed Tbc1d1 also inhibits GLUT4 translocation elicited by activated Akt expression. These results indicate that endogenous Tbc1d1 does not participate in insulin-regulated GLUT4 translocation in adipocytes and suggest that the GAP activity of Tbc1d1 is not suppressed by Akt phosphorylation. In addition, we discovered that Tbc1d1 is much more highly expressed in skeletal muscle than fat and that the AMP-activated protein kinase (AMPK) activator 5'-aminoimidazole-4-carboxamide ribonucleoside partially reversed the inhibition of insulin-stimulated GLUT4 translocation by overexpressed Tbc1d1 in 3T3-L1 adipocytes. 5'-Aminoimidazole-4-carboxamide ribonucleoside activation of the kinase AMPK is known to cause GLUT4 translocation in muscle. The above findings strongly suggest that Tbc1d1 is a component in the signal transduction pathway leading to AMPK-stimulated GLUT4 translocation in muscle.  相似文献   

15.
The APS adapter protein plays a pivotal role in coupling the insulin receptor to CAP and c-Cbl in the phosphatidylinositol 3-kinase-independent pathway of insulin-stimulated glucose transport. Yeast two-hybrid screening of a 3T3-L1 adipocyte library using APS as a bait identified a 418-amino acid ankyrin and SOCS (suppressor of cytokine signaling) box protein Asb6 as an interactor. Asb6 is an orphan member of a larger family of Asb proteins that are ubiquitously expressed. However, Asb6 expression appears to be restricted to adipose tissue. Asb6 was specifically expressed in 3T3-L1 adipocytes as a 50-kDa protein but not in fibroblasts. In Chinese hamster ovary-insulin receptor (CHO-IR) cells Myc epitope-tagged APS interacted constitutively with FLAG-tagged Asb6 in the presence or absence of insulin stimulation and insulin stimulation did not alter the interaction. In 3T3-L1 adipocytes, insulin receptor activation was accompanied by the APS-dependent recruitment of Asb6. Asb6 did not appear to undergo tyrosine phosphorylation. Immunofluorescence and confocal microscopy studies revealed that Asb6 colocalized with APS in CHO cells and in 3T3-L1 adipocytes. In immunoprecipitation studies in CHO cells or 3T3-L1 adipocytes, the Elongin BC complex was found to be bound to Asb6, and activation of the insulin receptor was required to facilitate Asb6 recruitment along with Elongins B/C. Prolonged insulin stimulation resulted in the degradation of APS when Asb6 was co-expressed but not in the absence of Asb6. We conclude that Asb6 functions to regulate components of the insulin signaling pathway in adipocytes by facilitating degradation by the APS-dependent recruitment of Asb6 and Elongins BC.  相似文献   

16.
Chemerin--a new adipokine that modulates adipogenesis via its own receptor   总被引:5,自引:0,他引:5  
Chemerin, an 18 kDa protein secreted by adipose tissue, was reported to modulate immune system function through its binding to the chemerin receptor (chemerinR). We herein demonstrate that chemerin also influences adipose cell function. Our data showed that chemerin and chemerinR mRNA expressions were highly expressed in adipose tissues, and that their expression levels were up-regulated in mice fed a high-fat diet. Both chemerin and chemerinR mRNA expression dramatically increased during the differentiation of 3T3-L1 cells and human preadipocytes into adipocytes. Furthermore, recombinant chemerin induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK 1/2) and lipolysis in differentiated 3T3-L1 adipocytes. Thus, the adipokine chemerin likely regulates adipocyte function by autocrine/paracrine mechanisms.  相似文献   

17.
Kudoh A  Satoh H  Hirai H  Watanabe T 《Life sciences》2011,88(23-24):1055-1062
AimsPioglitazone, a full peroxisome proliferator-activated receptor (PPAR)-γ agonist, improves insulin sensitivity by increasing circulating adiponectin levels. However, the molecular mechanisms by which pioglitazone induces insulin sensitization are not fully understood. In this study, we investigated whether pioglitazone improves insulin resistance via upregulation of either 2 distinct receptors for adiponectin (AdipoR1 or AdipoR2) expression in 3T3-L1 adipocytes.Main methodsGlucose uptake was evaluated by 2-[3H] deoxy-glucose uptake assay in 3T3-L1 adipocytes with pioglitazone treatment. AdipoR1 and AdipoR2 mRNA expressions were analyzed by qRT–PCR.Key findingsWe first confirmed that pioglitazone significantly increased insulin-induced 2-deoxyglucose (2-DOG) uptake in 3T3-L1 adipocytes. Next, we investigated the mRNA expression and regulation of AdipoR1 and AdipoR2 after treatment with pioglitazone. Interestingly, pioglitazone significantly induced AdipoR2 expression but it did not affect AdipoR1 expression. In addition, adenovirus-mediated PPARγ expression significantly enhanced the effects of pioglitazone on insulin-stimulated 2-DOG uptake and AdipoR2 expression in 3T3-L1 adipocytes. These data suggest that pioglitazone enhances adiponectin's autocrine and paracrine actions in 3T3-L1 adipocytes via upregulation of PPARγ-mediated AdipoR2 expression. Furthermore, we found that pioglitazone significantly increased AMP-activated protein kinase (AMPK) phosphorylation in insulin-stimulated 3T3-L1 adipocytes, but it did not lead to the phosphorylation of IRS-1, Akt, or protein kinase Cλ/ζ.SignificanceOur results suggest that pioglitazone increases insulin sensitivity, at least partly, by PPARγ-AdipoR2-mediated AMPK phosphorylation in 3T3-L1 adipocytes. In conclusion, the upregulation of AdipoR2 expression may be one of the mechanisms by which pioglitazone improves insulin resistance in 3T3-L1 adipocytes.  相似文献   

18.
The isoflavone-derivative genistein is commonly applied as an inhibitor of tyrosine kinases. In this report we analyze the effect of genistein on insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In these cells insulin-induced glucose uptake is primarily mediated by the GLUT4 glucose transporter. We observed that pre-treatment with genistein did not affect insulin-induced tyrosine kinase activity of the insulin receptor or activation of protein kinase B. On the other hand, genistein acted as a direct inhibitor of insulin-induced glucose uptake in 3T3-L1 adipocytes with an IC(50) of 20 microM. We conclude that apart from acting as a general tyrosine kinase inhibitor, genistein also affects the function of other proteins such as the GLUT4 transporter. These data suggest that caution must be applied when interpreting data on the involvement of tyrosine kinase activity in glucose uptake in 3T3-L1 adipocytes.  相似文献   

19.
We have undertaken a systematic proteomic approach to purify and identify secreted factors that are differentially expressed in preadipocytes versus adipocytes. Using one-dimensional gel electrophoresis combined with nanoelectrospray tandem mass spectrometry, proteins that were specifically secreted by 3T3-L1 preadipocytes or adipocytes were identified. In addition to a number of previously reported molecules that are up- or down-regulated during this differentiation process (adipsin, adipocyte complement-related protein 30 kDa, complement C3, and fibronectin), we identified four secreted molecules that have not been shown previously to be expressed differentially during the process of adipogenesis. Pigment epithelium-derived factor, a soluble molecule with potent antiangiogenic properties, was found to be highly secreted by preadipocytes but not adipocytes. Conversely, we found hippocampal cholinergic neurostimulating peptide, neutrophil gelatinase-associated lipocalin, and haptoglobin to be expressed highly by mature adipocytes. We also used liquid chromatography-based separation followed by automated tandem mass spectrometry to identify proteins secreted by mature adipocytes. Several additional secreted proteins including resistin, secreted acidic cysteine-rich glycoprotein/osteonectin, stromal cell-derived factor-1, cystatin C, gelsolin, and matrix metalloprotease-2 were identified by this method. To our knowledge, this is the first study to identify several novel secreted proteins by adipocytes by a proteomic approach using mass spectrometry.  相似文献   

20.
Energy homeostasis is regulated by peripheral signals, such as leptin, and by several orexigenic and anorectic neuropeptides. Recently, we reported that the orexigenic neuropeptide melanin-concentrating hormone (MCH) stimulates leptin production by rat adipocytes and that the MCH receptor (MCH-R1) is present on these cells. Here, we show that MCH-R1 is present on murine 3T3-L1 adipocytes. Treatment of 3T3-L1 adipocytes with 1 micromolar MCH for up to 2 h acutely downregulated MCH-R1, indicating a mechanism of ligand-induced receptor downregulation. Potential signaling pathways mediating MCH-R1 action in adipocytes were investigated. Treatment of 3T3-L1 adipocytes with 1 micromolar MCH rapidly induced a threefold and a fivefold increase in p44/42 MAPK and pp70 S6 kinase activities, respectively. In addition, 3T3-L1 adipocytes transiently transfected with a murine leptin-luciferase promoter construct showed a fourfold and a sixfold increase in leptin promoter-reporter gene expression at 1 h and 4 h, respectively, in response to MCH. Activity decreased to basal levels at 8 h. Furthermore, MCH-stimulated leptin promoter-driven luciferase activity was diminished in the presence of the MAP/ERK kinase inhibitor PD-98059 and in the presence of rapamycin, an inhibitor of pp70 S6 kinase activation. These results provide further evidence for a functional MCH signaling pathway in adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号