首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Branching morphogenesis is a molecularly conserved mechanism that is adopted by several organs, such as the lung, kidney, mammary gland and salivary gland, to maximize the surface area of a tissue within a small volume. Branching occurs through repetitive clefting and elongation of spherical epithelial structures, called endbuds, which invade the surrounding mesenchyme. In the salivary gland, lumen formation takes place alongside branching morphogenesis, but in a controlled manner, so that branching is active at the distal ends of epithelial branches while lumen formation initiates at the proximal ends, and spreads distally. We present here data showing that interaction between FGF signaling and the canonical (β-catenin dependent) and non-canonical branches of Wnt signaling coordinates these two processes. Using the Axin2lacZ reporter mice, we find Wnt/β-catenin signaling activity first in the mesenchyme and later, at the time of lumen formation, in the ductal epithelium. Gain and loss of function experiments reveal that this pathway exerts an inhibitory effect on salivary gland branching morphogenesis. We have found that endbuds remain devoid of Wnt/β-catenin signaling activity, a hallmark of ductal structures, through FGF-mediated inhibition of this pathway. Our data also show that FGF signaling has a major role in the control of lumen formation by preventing premature hollowing of epithelial endbuds and slowing down the canalization of presumptive ducts. Concomitantly, FGF signaling strongly represses the ductal marker Cp2l1, most likely via repression of Wnt5b and non-canonical Wnt signaling. Inhibition of canonical and non-canonical Wnt signaling in endbuds by FGF signaling occurs at least in part through sFRP1, a secreted inhibitor of Wnt signaling and downstream target of FGF signaling. Altogether, these findings point to a key function of FGF signaling in the maintenance of an undifferentiated state in endbud cells by inhibition of a ductal fate.  相似文献   

2.
Branching morphogenesis in the lung serves as a model for the complex patterning that is reiterated in multiple organs throughout development. Beta-catenin and Wnt signaling mediate critical functions in cell fate specification and differentiation, but specific functions during branching morphogenesis have remained unclear. Here, we show that Wnt/beta-catenin signaling regulates proximal-distal differentiation of airway epithelium. Inhibition of Wnt/beta-catenin signaling, either by expression of Dkk1 or by tissue-specific deletion of beta-catenin, results in disruption of distal airway development and expansion of proximal airways. Wnt/beta-catenin functions upstream of BMP4, FGF signaling, and N-myc. Moreover, we show that beta-catenin and LEF/TCF activate the promoters of BMP4 and N-myc. Thus, Wnt/beta-catenin signaling is a critical upstream regulator of proximal-distal patterning in the lung, in part, through regulation of N-myc, BMP4, and FGF signaling.  相似文献   

3.
4.
Analyses of gene expression profiles at five different stages of mouse submandibular salivary gland development provide insight into gland organogenesis and identify genes that may be critical at different stages. Genes with similar expression profiles were clustered, and RT-PCR was used to confirm the developmental changes. We focused on fibroblast growth factor receptor 1 (FGFR1), as its expression is highest early in gland development. We extended our array results and analyzed the developmental expression patterns of other FGFR and FGF isoforms. The functional significance of FGFR1 was confirmed by submandibular gland organ culture. Antisense oligonucleotides decreased expression of FGFR1 and reduced branching morphogenesis of the glands. Inhibiting FGFR1 signaling with SU5402, a FGFR1 tyrosine kinase inhibitor, reduced branching morphogenesis. SU5402 treatment decreased cell proliferation but did not increase apoptosis. Fgfr, Fgf and Bmp gene expression was localized to either the mesenchyme or the epithelium by PCR, and then measured over time by real time PCR after SU5402 treatment. FGFR1 signaling regulates Fgfr1, Fgf1, Fgf3 and Bmp7 expression and indirectly regulates Fgf7, Fgf10 and Bmp4. Exogenous FGFs and BMPs added to glands in culture reveal distinct effects on gland morphology. Glands cultured with SU5402 were then rescued with exogenous BMP7, FGF7 or FGF10. Taken together, our results suggest specific FGFs and BMPs play reciprocal roles in regulating branching morphogenesis and FGFR1 signaling plays a central role by regulating both FGF and BMP expression.  相似文献   

5.
6.
7.
Mammalian nephrons form as a result of a complex morphogenesis and patterning of a simple epithelial precursor, the renal vesicle. Renal vesicles are established from a mesenchymal progenitor population in response to inductive signals. Several lines of evidence support the sequential roles of two Wnt family members, Wnt9b and Wnt4, in renal vesicle induction. Using genetic approaches to specifically manipulate the activity of beta-catenin within the mesenchymal progenitor pool in mice, we investigated the potential role of the canonical Wnt pathway in these inductive events. Progenitor-cell-specific removal of beta-catenin activity completely blocked both the formation of renal vesicles and the expected molecular signature of an earlier inductive response. By contrast, activation of stabilized beta-catenin in the same cell population causes ectopic expression of mesenchymal induction markers in vitro and functionally replaces the requirement for Wnt9b and Wnt4 in their inductive roles in vivo. Thus, canonical Wnt signaling is both necessary and sufficient for initiating and maintaining inductive pathways mediated by Wnt9b and Wnt4. However, the failure of induced mesenchyme with high levels of beta-catenin activity to form epithelial structures suggests that modulating canonical signaling may be crucial for the cellular transition to the renal vesicle.  相似文献   

8.
Wnt5a participates in distal lung morphogenesis   总被引:11,自引:0,他引:11  
Operational parallels in overall mechanisms of three-dimensional patterning of vertebrate organs are becoming increasingly apparent. Many key mediators, such as FGFs, BMPs, and sonic hedgehog, participate in organization of a number of organs, including the lungs, which exhibit a defined proximodistal (P-D) polarity. Recently, Wnt5a a member of the wingless family of signaling molecules involved in cell proliferation, differentiation, and organogenesis, was shown to underlie the outgrowth and P-D morphogenesis of the vertebrate limb. In the current study, we show that Wnt5a is expressed in the mouse lung and plays an important role in lung distal morphogenesis. Analysis of the mutant phenotype in mice carrying a targeted disruption of the Wnt5a locus shows distinct abnormalities in distal lung morphogenesis as manifested by distinct truncation of the trachea and overexpansion of the distal respiratory airways. In the face of deleted WNT5a activity, both epithelial and mesenchymal cell compartments of the Wnt5a(-/-) lungs exhibit increased cell proliferation. The overall architecture of the mutant lungs is characterized by overexpansion of the distal airways and inhibition of lung maturation as reflected by persistence of thickened intersaccular interstitium. Absence of WNT5a activity in the mutant lungs leads to increased expression of Fgf-10, Bmp4, Shh, and its receptor Ptc, raising the possibility that WNT5a, FGF-10, BMP4, and SHH signaling pathways are functionally interactive.  相似文献   

9.
beta-Catenin plays a key role in cadherin-mediated cell adhesion as well as in canonical Wnt signaling. To study the role of beta-catenin during eye development, we used conditional Cre/loxP system in mouse to inactivate beta-catenin in developing lens and retina. Inactivation of beta-catenin does not suppress lens fate, but instead results in abnormal morphogenesis of the lens. Using BAT-gal reporter mice, we show that beta-catenin-mediated Wnt signaling is notably absent from lens and neuroretina throughout eye development. The observed defect is therefore likely due to the cytoskeletal role of beta-catenin, and is accompanied by impaired epithelial cell adhesion. In contrast, inactivation of beta-catenin in the nasal ectoderm, an area with active Wnt signaling, results in formation of crystallin-positive ectopic lentoid bodies. These data suggest that, outside of the normal lens, beta-catenin functions as a coactivator of canonical Wnt signaling to suppress lens fate.  相似文献   

10.
11.
During embryonic and postnatal development, Wnt/beta-catenin signaling is involved in several stages of hair morphogenesis from placode formation to hair shaft differentiation. Using a transgenic approach, we have investigated further the role of beta-catenin signaling in embryonic hair development. Forced epithelial stabilization of beta-catenin resulted in precocious and excessive induction of hair follicles even in the absence of Eda/Edar signaling, a pathway essential for primary hair placode formation. In addition, the spacing and size of the placodes was randomized. Surprisingly, the down-growth of follicles was suppressed and hair shaft production was severely impaired. Gene and reporter expression analyses revealed elevated mesenchymal Wnt activity, as well as increased BMP signaling, throughout the skin that was accompanied by upregulation of Sostdc1 (Wise, ectodin) expression. Our data suggest that BMPs are downstream of Wnt/beta-catenin and that their interplay may be a critical component in establishing correct patterning of hair follicles through the reaction-diffusion mechanism.  相似文献   

12.
13.
14.
Wnt signaling control of bone cell apoptosis   总被引:3,自引:0,他引:3  
Bodine PV 《Cell research》2008,18(2):248-253
Wnts are a large family of growth factors that mediate essential biological processes like embryogenesis, morpho- genesis and organogenesis. These proteins also play a role in oncogenesis, and they regulate apoptosis in many tissues. Wnts bind to a membrane receptor complex comprised of a frizzled (FZD) G-protein-coupled receptor and a low-density lipoprotein (LDL) receptor-related protein (LRP). The formation of this ligand-receptor complex initiates a number of signaling cascades that include the canonical/beta-catenin pathway as well as several noncanonical pathways. In recent years, canonical Wnt signaling has been reported to play a significant role in the control of bone formation. Clinical studies have found that mutations in LRP-5 are associated with reduced bone mineral density (BMD) and fractures. Investigations of knockout and transgenic mouse models of Wnt pathway components have shown that canonical Wnt signaling modulates most aspects ofosteoblast physiology including proliferation, differentiation, function and apoptosis. Transgenic mice expressing a gain of function mutant of LRP-5 in bone, or mice lacking the Wnt antagonist secreted frizzled-related protein-l, exhibit elevated BMD and suppressed osteoblast apoptosis. In addition, preclinical studies with pharmacologic compounds such as those that inhibit glycogen synthase kinase-3β support the importance of the canonical Wnt pathway in modulation of bone formation and osteoblast apoptosis.  相似文献   

15.
Wnt ligands bind receptors of the Frizzled (Fz) family to control cell fate, proliferation, and polarity. Canonical Wnt/Fz signaling stabilizes beta-catenin by inactivating GSK3beta, leading to the translocation of beta-catenin to the nucleus and the activation of Wnt target genes. Noncanonical Wnt/Fz signaling activates RhoA and Rac, and the latter triggers the activation of c-Jun N-terminal kinase (JNK). Here, we show that exposure of B-lymphocytes to Wnt3a-conditioned media activates JNK and raises cytosolic beta-catenin levels. Both the Rac guanine nucleotide exchange factor Asef and the mitogen-activated protein kinase kinase kinase kinase germinal center kinase-related enzyme (GCKR) are required for Wnt-mediated JNK activation in B cells. In addition, we show that GCKR positively affects the beta-catenin pathway in B cells. Reduction of GCKR expression inhibits Wnt3a-induced phosphorylation of GSK3beta at serine 9 and decreases the accumulation of cytosolic beta-catenin. Furthermore, Wnt signaling induces an interaction between GCKR and GSK3beta. Our findings demonstrate that GCKR facilitates both canonical and noncanonical Wnt signaling in B lymphocytes.  相似文献   

16.
17.
Wnt glycoproteins play essential roles in the development of metazoan organisms. Many Wnt proteins, such as Wnt1, activate the well-conserved canonical Wnt signaling pathway, which results in accumulation of beta-catenin in the cytosol and nucleus. Other Wnts, such as Wnt5a, activate signaling mechanisms which do not involve beta-catenin and are less well characterized. Dishevelled (Dvl) is a key component of Wnt/beta-catenin signaling and becomes phosphorylated upon activation of this pathway. In addition to Wnt1, we show that several Wnt proteins, including Wnt5a, trigger phosphorylation of mammalian Dvl proteins and that this occurs within 20 to 30 min. Unlike the effects of Wnt1, phosphorylation of Dvl in response to Wnt5a is not concomitant with beta-catenin stabilization, indicating that Dvl phosphorylation is not sufficient to activate canonical Wnt/beta-catenin signaling. Moreover, neither Dickkopf1, which inhibits Wnt/beta-catenin signaling by binding the Wnt coreceptors LRP5 and -6, nor dominant-negative LRP5/6 constructs could block Wnt-mediated Dvl phosphorylation. We conclude that Wnt-induced phosphorylation of Dvl is independent of LRP5/6 receptors and that canonical Wnts can elicit both LRP-dependent (to beta-catenin) and LRP-independent (to Dvl) signals. Our data also present Dvl phosphorylation as a general biochemical assay for Wnt protein function, including those Wnts that do not activate the Wnt/beta-catenin pathway.  相似文献   

18.
Extracellular matrix receptors in branched organs   总被引:1,自引:0,他引:1  
  相似文献   

19.
Herein, we demonstrate that Lrp6-mediated R-spondin 2 signaling through the canonical Wnt pathway is required for normal morphogenesis of the respiratory tract and limbs. We show that the footless insertional mutation creates a severe hypomorphic R-spondin 2 allele (Rspo2(Tg)). The predicted protein encoded by Rspo2(Tg) neither bound the cell surface nor activated the canonical Wnt signaling reporter TOPFLASH. Rspo2 activation of TOPFLASH was dependent upon the second EGF-like repeat of Lrp6. Rspo2(Tg/Tg) mice had severe malformations of laryngeal-tracheal cartilages, limbs and palate, and lung hypoplasia consistent with sites of Rspo2 expression. Rspo2(Tg/Tg) lung defects were associated with reduced branching, a reduction in TOPGAL reporter activity, and reduced expression of the downstream Wnt target Irx3. Interbreeding the Rspo2(Tg) and Lrp6(-) alleles resulted in more severe defects consisting of marked lung hypoplasia and absence of tracheal-bronchial rings, laryngeal structures and all limb skeletal elements.  相似文献   

20.
Wu X  Tu X  Joeng KS  Hilton MJ  Williams DA  Long F 《Cell》2008,133(2):340-353
Canonical Wnt signaling critically regulates cell fate and proliferation in development and disease. Nuclear localization of beta-catenin is indispensable for canonical Wnt signaling; however, the mechanisms governing beta-catenin nuclear localization are not well understood. Here we demonstrate that nuclear accumulation of beta-catenin in response to Wnt requires Rac1 activation. The role of Rac1 depends on phosphorylation of beta-catenin at Ser191 and Ser605, which is mediated by JNK2 kinase. Mutations of these residues significantly affect Wnt-induced beta-catenin nuclear accumulation. Genetic ablation of Rac1 in the mouse embryonic limb bud ectoderm disrupts canonical Wnt signaling and phenocopies deletion of beta-catenin in causing severe truncations of the limb. Finally, Rac1 interacts genetically with beta-catenin and Dkk1 in controlling limb outgrowth. Together these results uncover Rac1 activation and subsequent beta-catenin phosphorylation as a hitherto uncharacterized mechanism controlling canonical Wnt signaling and may provide additional targets for therapeutic intervention of this important pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号