首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recA mutant was constructed of a soil isolate of Burkholderia cepacia, strain ATCC 17616. Prior to mutagenesis, the recA gene was cloned from this strain by its ability to complement the methyl methanesulfonate sensitivity of an Escherichia coli recA mutant. Sequence analysis of the strain showed high sequence similarity (94% nucleic acid and 99% amino acid identity) with the recA gene previously cloned from a clinical isolate of B. cepacia, strain JN25. The subcloned recA gene from B. cepacia ATCC 17616 restored UV resistance and recombination proficiency to recA mutants of E. coli and Pseudomonas aeruginosa, as well as restoring the ability of D3 prophages to be induced to lytic growth from a RecA strain of P. aeruginosa. The recA mutant of B. cepacia ATCC 17616 was constructed by λ-mediated Tn5 mutagenesis of the cloned recA gene in E. coli, followed by replacement of the Tn5-interrupted gene for the wild-type allele in the chromosome of B. cepacia by marker exchange. The RecA phenotype of the mutant was demonstrated by the loss of UV resistance as compared to the parental strain. Southern hybridization analysis of chromosomal DNA from the mutant indicated the presence of Tn5 in the recA gene, and the location of the Tn5 insertion in the recA allele was identified by nucleotide sequence analysis. A test using the recA mutant to see if acquired resistance to d-serine toxicity in B. cepacia might be a result of RecA-mediated activities proved negative; nevertheless, RecA activity potentially contributes to the overall genomic plasticity of B. cepacia and a recA mutant will be useful in bioengineering of this species. Received: 24 January / Received revision: 11 July 1997 / Accepted: 25 August 1997  相似文献   

2.
Cytochrome P450 genes can be induced by xenobiotics, which may contribute to insect's adaptability to the environments and resistance to insecticides. Previous studies indicated that cytochrome P450 CYP6B7 played a vital role in the resistance of Helicoverpa armigera to fenvalerate. However, effects of different insecticides on the expression of CYP6B7 in H. armigera are still unclear. In this study, resistance level of H. armigera to six insecticides was determined by topical application method, and effects of fenvalerate, phoxim and indoxacarb on the expression of CYP6B7 in susceptible (HDS) and fenvalerate-resistant (BJR) strains of H. armigera were evaluated by RT-qPCR. The results showed that BJR strain had an extremely high level of resistance to fenvalerate (1990.57-fold), and the induction of CYP6B7 in different tissues of BJR strain was significantly higher than that of HDS strain after exposure to fenvalerate for 24 and 48 hr. The highest induction level by fenvalerate was observed in the midgut, which were 13.7-fold in HDS strain and 127.9-fold in BJR strain at 24 and 48 hr, respectively. After exposure to phoxim, the expression level of CYP6B7 in HDS and BJR strains was induced by 2.3- and 316.8-fold at 24 hr, respectively. It is worth to note that CYP6B7 could be induced by phoxim at different time points in BJR strain, but only induced at 24 and 72 hr in HDS strain. After indoxacarb exposure, the expression of CYP6B7 was induced by 1.6-fold at 72 hr in BJR strain, whereas it was induced at 24 and 48 hr in HDS strain. These results demonstrated that the expression level of CYP6B7 could be induced by fenvalerate, phoxim and indoxacarb, but the induction time and levels varied; moreover, the induction in BJR strain was markedly higher than that in HDS strain after exposure to fenvalerate and phoxim.  相似文献   

3.
The rhizobacterium Serratia marcescens strain 90–166 was previously reported to promote plant growth and induce resistance in Arabidopsis thaliana. In this study, the influence of strain 90-166 on root development was studied in vitro. We observed inhibition of primary root elongation, enhanced lateral root emergence, and early emergence of second order lateral roots after inoculation with strain 90–166 at a certain distance from the root. Using the DR5::GUS transgenic A. thaliana plant and an auxin transport inhibitor, N-1-naphthylphthalamic acid, the altered root development was still elicited by strain 90–166, indicating that this was not a result of changes in plant auxin levels. Intriguingly, indole-3-acetic acid, a major auxin chemical, was only identified just above the detection limit in liquid culture of strain 90–166 using liquid chromatography-mass spectrometry. Focusing on bacterial determinants of the root alterations, we found that primary root elongation was inhibited in seedlings treated with cell supernatant (secreted compounds), while lateral root formation was induced in seedlings treated with lysate supernatant (intracellular compounds). Further study revealed that the alteration of root development elicited by strain 90–166 involved the jasmonate, ethylene, and salicylic acid signaling pathways. Collectively, our results suggest that strain 90–166 can contribute to plant root development via multiple signaling pathways.  相似文献   

4.
Summary A formaldehyde resistant (R) phenotype ofPseudomonas aeruginosa was isolated from a formaldehydesensitive (S) parent by sequential treatment with 1,3,5-tris-(ethyl)hexahydro-s-triazine (ET). The resistance of the (R) strain to treatment with ET was approximately 3-fold higher than the parental (S) strain. Two modes of resistance to ET, and simultaneous resistance to formaldehyde, are demonstrated: (1) transient or induced resistance is expressed during shor-term exposure to ET, and this resistance is gradually lost during subsequent growth in the absence of ET, and (2) resistance that results from a stable phenotypic change in the (S) strain following sequential treatment with ET ((R) strain phenotype). The observed activities of three forms of the formaldehyde oxidizing enzyme, formaldehyde dehydrogenase, are strongly correlated with the relative response of the (S) and (R) strains to treatment with ET. The observed resistance of the (R) strain appears to be due to high levels of an NAD+-linked, glutathione-dependent form of formaldehyde dehydrogenase as well as a dye-linked formaldehyde dehydrogenase. The transient or induced response of the (R) strain involves an increase in activity of the dye-linked formaldehyde dehydrogenase. The induced response of the (S) strain and an ATCC strain ofP. aeruginosa, however, is correlated with the two forms of the NAD+-linked enzyme (glutathione-dependent (EC 1.2.1.1) and independent (EC 1.2.1.46)) with no contribution from the dye-linked enzyme.  相似文献   

5.
A toluene-resistant variant of Pseudomonas putida KT2442, strain TOL, was isolated after liquid cultivation under xylene followed by toluene for 1 month in each condition. Almost all the populations of the variant strain formed small but readily visible colonies under toluene within 24 h at 30°C. The toluene-resistant strain also showed an increase in resistance to some unrelated antibiotics. Several toluene-sensitive Tn5 mutants have been isolated from the toluene-resistant strain and showed various levels of sensitivity. Most of these mutations did not cause significant changes in antibiotic resistance; however, one of the mutants (TOL-4) was highly susceptible to both organic solvents and various antibiotics, especially β-lactams. Sequencing analysis revealed that the mutation in TOL-4 had been introduced into a gene that may encode a transporter protein of an efflux system. This efflux system is very similar to one of the multidrug efflux systems of Pseudomonas aeruginosa. These observations indicate that a multidrug efflux system plays a major role in the organic solvent resistance of P. putida TOL. However, several other genes may also be involved. Received: December 18, 1997 / Accepted: March 16, 1998  相似文献   

6.
Antimicrobial susceptibility of 25 Helicobacter pylori strains isolated from patients with acid peptic diseases were tested for in vitro sensitivity to commonly used antibiotics using disk-diffusion and E-test, methods. All strains tested were susceptible to tetracycline by E-test, with the minimum inhibitory concentration (MIC) values being <0.125 μg/ml for all strains except for 6 (<0.023 μg/ml). However 1 strain was resistant by disk-diffusion method. One strain was resistant to clarithromycin both by disk diffusion and E-test (MIC <48 μg/ml), and 1 strain was resistant only by disk diffusion. Only one strain was resistant to amoxicillin by disk diffusion and E-test (MIC >256 μg/ml). For ciprofloxacin, three strains were resistant by disk diffusion and two by E-test (MIC <32 μg/ml). Sixteen strains were resistant to metronidazole by disk diffusion and E-test (MIC ≥ 8 μg/ml), and 1 was resistant only by E-test (MIC <48 μg/ml). Overall, 64% of the strains were resistant to metronidazole. The MIC for metronidazole was also tested by agar-dilution method, and metronidazole resistant strains had an, MIC >8 μg/ml. The disk-diffusion method showed excellent correlation with E-test results; there was 100% agreement for amoxicillin a other antibiotics showed 90% to 95% accuracy. Disk diffusion is cheaper than E-test (approximately 2.6 cents vs. US$2.60), is easy to perform, and is a reliable method for testing H. pylori susceptibility to antimicrobial agents in the clinical microbiology laboratory.  相似文献   

7.
The growth adaptability to increasing concentration of the biocide 2-phenoxyethanol (PE) was determined in Pseudomonas aeruginosa PAO1 (P.a.) as part of efforts to understand and control the biocide tolerance and its effect on cross-resistance to other biocides and resistance to antibiotics. After repeated subculturing in media containing increasing sub-minimum-inhibitory PE concentration, P.a. exhibited an adaptive resistance indicated by two-fold increase in MIC at the 10th passage. The resistance was stable and remained after passaging the strain in further 7 successive passages in PE-free growth media. The strain showed cross-resistance towards dissimilar biocides and displayed increased susceptibility to antibiotics, which was not influenced by the presence of the efflux inhibitor ‘carbonyl cyanide m-chlorophenyl hydrazone’. Outer membranes of adapted strain showed altered protein profile when examined by SDS-PAGE.  相似文献   

8.
Methyl ester of jasmonic acid (Me-JA) influences the induced resistance of potato tubers to late blight caused byPhytophthora infestans. Treatment of potato tuber disk surfaces with Me-JA solution or exposure to an atmosphere containing Me-JA vapors (10−6–10−5 M) increased the rate of rishitin biosynthesis induced by arachidonic acid orP. infestans. Methyl jasmonate increased the sensitivity of potato tissue to arachidonic acid. As a result, in the presence of Me-JA, the protective properties of arachidonic acid were observed at lower concentrations than in the absence of Me-JA. In addition, Me-JA reduced the adverse effects of lipoxygenase inhibitors (salicylhydroxamic acid and esculetin) on the induced resistance of potato tubers to late blight. Therefore, the synergistic interaction of Me-JA and biogenic elicitors can be regarded as part of a mechanism of potato defense against diseases.  相似文献   

9.
The aim of this study was to evaluate the MPK1 (SLT2) gene deletion upon filamentous growth induced by isoamyl alcohol (IAA) in two haploid industrial strains of Saccharomyces cerevisiae using oligonucleotides especially designed for a laboratory S. cerevisiae strain. The gene deletion was performed by replacing part of the open reading frames from the target gene with the KanMX gene. The recombinant strains were selected by their resistance to G418, and after deletion confirmation by polymerase chain reaction, they were cultivated in a yeast extract peptone dextrose medium + 0.5% IAA to evaluate the filamentous growth in comparison to wild strains. Mpk1 derivatives were obtained for both industrial yeasts showing the feasibility of the oligonucleotides especially designed for a laboratory strain (Σ1278b) by Martinez-Anaya et al. (In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint. J Cell Sci 116:3423–3431, 2003). The filamentation rate in these derivatives was significantly lower for both strains, as induced by IAA. This drastic reduction in the filamentation ability in the deleted strains suggests that the gene MPK1 is required for IAA-induced filamentation response. The growth curves of wild and derivative strains did not differ substantially. It is not known yet whether the switch to filamentous growth affects the fermentative characteristics of the yeast or other physiological traits. A genetically modified strain for nonfilamentous growth would be useful for these studies, and the gene MPK1 could be a target gene. The feasibility of designed oligonucleotides for this deletion in industrial yeast strains is shown.  相似文献   

10.
Rhizobium huakuii bv. renge B3, a native symbiont of Astragalus sinicus, outcompeted Rhizobium sp. strain ACMP18, which was isolated from Astragalus cicer nodules, in the formation of root nodules on A.␣sinicus when plants were co-inoculated with these strains. The strains occupying the nodules were identified by antibiotic resistance and phage sensitivity markers and also by polymerase chain reaction (PCR) genomic fingerprintings, which were performed by using enterobacterial repetitive intergenic consensus sequences. In PCR genomic fingerprintings, the total genomic DNA isolated from pure bacterial culture and from squashed root nodules showed identical profiles, indicating that this technique can be a useful tool for identification of rhizobia in ecological studies. When Rhizobium sp. strain ACMP18 outnumbered R. huakuii bv. renge strain B3 by a factor of ten, and even when strain ACMP18 was added to plants 1 week before bacterization with strain B3, the strain B3 occupied most nodules. Dually infected nodules were not observed, although Rhizobium sp. ACMP18 formed active nodules on A. sinicus when the bacterial strain was inoculated alone. Received: 5 February 1998 / Received revision: 23 March 1998 / Accepted: 27 April 1998  相似文献   

11.
Abstract Two resistant strains of diamond back moth Plutella xylostella L. were treated with dimehy-po and cartap in succession, The susceptible strain had never contacted with any insecticieds since reared in the in sectary. The rearing method by using vermiculite and radish seedling was discribed by Chen et al. (1990) and Liuet al. (1993). Comparison between reared strains and field strain did not display any difference in biological characteristics. The resistance reached 178 fold in dimehypo resistant strain in F85, and 87 fold in cartap resistant strain in F80, Two high level resistant strains had formed. After termination of selection, the resistance declined from 167 to 57 fold in dimehypo resistant strain and from 74 to 16 fold in cartap resistant strain within five generations. The resistance of diamond back moth to the two insecticides was unstable at high level, but could be steady at quite lower degree for a long time. It seemed impossible to regain the same sensitivity as before selection for the two resistant strains after resistance declining.  相似文献   

12.
Summary Mutants of an aminopeterin-resistant strain of pneumococcus possessing four different suppressor genes have been isolated after mutagenesis with 5-BUdR. The suppressed strains exhibit a partial revertant phenotype since the parental aminopterin resistance remained unchanged but the associated sensitivity to an excess concentration of the branched chain amino acids L-isoleucine, L-valine and L-leucine was diminished almost to the level of the wild-type strain C13. The suppressor mutations had therefore dissociated the two properties associated with a mutation in the amiA cistron, namely aminopterin resistance and isoleucine sensitivity. The suppressor genes reduced the sensitivity to isoleucine of a number of amiA mutants, but had no effect on the level of resistance to a number of unrelated genes conferring resistance to other antibacterial substances. The suppressor mutations themselves did not confer resistance to aminopterin. Mapping of the suppressor mutations by recombination analysis and by clonal analysis showed them to be intragenic lying in the region near to the amiA-r19, amiA-423, amiA-r17 loci.  相似文献   

13.
Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible ‘Earl’s Favourite (Harukei 3)’. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R 2 = 22–28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41–46%) than that on LG IIA (12–13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.  相似文献   

14.
Summary A gram negative, motile, short rod-shaped, and nickel resistant (tolerating 6.5 mM Ni2+) bacterium, strain BB1A, was isolated from the waters of the River Torsa in Hashimara, Jalpaiguri district, West Bengal, India. The isolate BB1A was identified as a strain of Acinetobacter junii following detailed analysis of morphological, physio-biochemical and 16S rRNA gene sequence. The expression of nickel resistance in BB1A was inducible by exposure to nickel chloride at a concentration as low as 50 μM Ni2+. The other metal ions, Cu2+, Zn2+, or Pb2+ at a concentration range of 20–30 μM, also induced the nickel resistance system in this bacterium. Southern hybridizations of BB1A genomic DNA with digoxigenin-dUTP labeled DNA probes specific for well known nickel resistance determinants, cnr, ncc or nre, resulted in no detectable signal, but nir specific probe yielded weak hybridization signal with restricted genomic DNA of BB1A. The isolate BB1A, therefore, carries out a novel induction phenomenon of nickel resistance and presumably with a nickel resistance genetic system different from that previously characterized in other bacteria.  相似文献   

15.
To study the role of different DNA repair genes in the resistance of Deinococcus radiodurans to mono- and polychromatic UV radiation, wild-type strain and knockout mutants in RecA, PprA, and IrrE of D. radiodurans were irradiated with UV-C (254 nm), UV-(A + B) (280–400 nm) and UV-A (315–400 nm) radiation, and survival was monitored. The strain deficient in recA was highly sensitive to UV-C radiation compared to the wild-type, but showed no loss of resistance against irradiation with UV-(A + B) and UV-A, while pprA and irrE-deficient strains exhibited elevated sensitivity to UV-A and UV-(A + B) radiation. These results suggest that the repair of DNA double-strand breaks is essential after treatment with highly energetic UV-C radiation, whereas protection from oxidative stress may play a greater role in resistance to environmentally relevant UV radiation.  相似文献   

16.
Resistance to the organophosphate insecticide tetrachlorvinphos was examined in a house fly (Musca domestica L.) strain with an altered acetylcholinesterase (AChE) of decreased sensitivity to inhibition by the insecticide. Genetic tests showed that both resistance and the altered AChE were controlled by semidominant gene(s) on chromosome II. The gene for resistance was five crossover units from the mutant marker stubby wing (stw). A house fly strain was prepared in which resistance was introduced in to a susceptible stw strain by recombination. Biochemical assays revealed that the altered AChE was introduced along with resistance. Assays of the AChE of resistant and susceptible stw strains by two independent methods showed that the enzyme from resistant flies was 30 times more slowly inhibited by tetrachlorvinphos than the enzyme from susceptible flies.This work was supported in part by NIH Grant ES 00901.Technical Article 13340, Texas Agricultural Experiment Station.  相似文献   

17.
A thalium chloride-resistant (TlClr) mutant strain and a sodium chloride-resistant (NaClr) mutant strain of the diazotrophic cyanobacterium Anabaena variabilis have been isolated by spontaneous and chemical mutagenesis by using TlCl, a potassium (K+) analog, and nitrosoguanidine (NTG), respectively. The TlClr mutant strain was found to be defective in K+ transport and showed resistance against 10 μM TlCl. However, it also showed sensitivity against NaCl (LD50, 50 mM). In contrast, neither wild-type A. variabilis nor its NaClr mutant strain could survive in the presence of 10 μM TlCl and died even at 1 μM TlCl. The TlClr mutant strain exhibited almost negligible K+ uptake, indicating the lack of a K+ uptake system. High K+ uptake was, however, observed in the NaClr mutant strain, reflecting the presence of an active K+ uptake system in this strain. DCMU, an inhibitor of PS II, inhibited the K+ uptake in wild-type A. variabilis and its TlClr and NaClr mutant strains, suggesting that K+ uptake in these strains is an energy-dependent process and that energy is derived from photophosphorylation. This contention is further supported by the inhibition of K+ uptake under dark conditions. Furthermore, the inhibition of K+ uptake by KCN, DNP, and NaN3 also suggests the involvement of oxidative phosphorylation in the regulation of an active K+ uptake system. The whole-cell protein profile of wild-type A. variabilis and its TlClr and NaClr mutant strains growing in the presence of 50 mM KCl was made in the presence and absence of NaCl. Lack of transporter proteins in TlClr mutant strain suggests that these proteins are essentially required for the active transport and accumulation of K+ and make this strain NaCl sensitive. In contrast, strong expression of the transporter proteins in NaClr mutant strain and its weak expression in wild-type A. variabilis is responsible for their resistance and sensitivity to NaCl, respectively. Therefore, it appears that the increased salt tolerance of the NaClr mutant strain was owing to increased K+ uptake and accumulation, whereas the salt sensitivity of the TlClr mutant strain was owing to the lack of K+ uptake and accumulation. Received: 7 March 2002 / Accepted: 8 April 2002  相似文献   

18.
The response of Saccharomyces cerevisiae to arsenic involves a large ensemble of genes, many of which are associated with glutathione-related metabolism. The role of the glutathione S-transferase (GST) product of the URE2 gene involved in resistance of S. cerevisiae to a broad range of heavy metals was investigated. Glutathione peroxidase activity, previously reported for the Ure2p protein, was unaffected in cell-free extracts of an ure2Δ mutant of S. cerevisiae. Glutathione levels in the ure2Δ mutant were lowered about threefold compared to the isogenic wild-type strain but, as in the wild-type strain, increased 2–2.5-fold upon addition of either arsenate (AsV) or arsenite (AsIII). However, lack of URE2 specifically caused sensitivity to arsenite but not to arsenate. The protective role of URE2 against arsenite depended solely on the GST-encoding 3′-end portion of the gene. The nitrogen source used for growth was suggested to be an important determinant of arsenite toxicity, in keeping with non-enzymatic roles of the URE2 gene product in GATA-type regulation.  相似文献   

19.
The zygospore of Chlamydomonas is a diploid resting stage that provides protection from environmental extremes. The remarkable abiotic stress resistance of the zygospore can be explained, in part, by the presence of a massive wall that includes a sporopollenin‐containing surface layer ( Van Winkle‐Swift and Rickoll 1997 ). A Chlamydomonas monoica Strehlow zygospore‐specific mutant strain (D19) was obtained previously by screening for loss of chloroform resistance in zygospore populations derived from self‐mating of post‐mutagenesis clones. Exposure of D19 zygospores to solar UV radiation or germicidal radiation also resulted in a pronounced decrease in survival of D19 zygospores relative to wildtype zygospore survival. Similarly, resistance to NaCl‐induced osmotic shock was reduced in D19 zygospores, especially when exposed to very high (e.g., 20% w/v) salt concentrations. Mature zygospores of C. monoica exhibit a UV‐induced blue surface autofluorescence that may indicate the presence of phenolic wall components. The intensity of zygospore autofluorescence was significantly reduced in D19 zygospores. As revealed by TEM, the surface layer of mature homozygous D19 zygospores was disrupted, suggesting a defect in wall assembly. Zygospore‐specific chloroform sensitivity, UV sensitivity, and reduced autofluorescence cosegregated in tetrads derived from D19 heterozygotes (i.e., if a progeny clone from a cross involving D19 and a normal strain was found to be chloroform sensitive, it was always also UV sensitive and showed reduced autofluorescence), indicating that all three characteristics were the consequence of the same Mendelian mutation.  相似文献   

20.
Carbapenems such as imipenem are stable to most β-lactamases. Recently, increased numbers of carbapenemase producing Gram-negative bacterial strains have been isolated because of the increased use of cabapenems. In this respect, control of these infectious carbapenemase producing Gram-negative bacteria and understanding their resistance mechanism are becoming more important. These carbapenem-hydrolyzing β-lactamase genes have been reported to exist mostly as gene cassettes in an integron. This implies that antibiotic resistance genes may be transferred to other bacteria via the integron. In the present study, we identified and analyzed an integron containing VIM-2 type metallo-β-lactamase gene in a carbapenemase producing Pseudomonas aeruginosa. In addition, the possibility of resistance spread by integron located in a plasmid was tested. Among glucose non-fermenting Gram-negative bacilli with reduced imipenem susceptibility (MIC≥8 μg/ml) isolated from Korean patients, P. aeruginosa 1082 showed resistance to most β-lactams, cephalosporin, and aminoglycoside. We found that P. aeruginosa 1082 was inhibited by EDTA in EDTA double disk synergy test which means that this strain produces metallo-β-lactamase. Class 1 integron containing bla VIM-2 (carbapenem resistance gene), qacF (quaternary ammonium compound resistance gene), aacA4 (aminoglycoside resistance gene), catB3 (chloramphenicol resistance gene), bla oxa-30 (extended-spectrum β-lactam resistance gene), and aadAl (aminoglycoside resistance gene) gene cassettes was detected in P. aeruginosa 1082. The size of the integron was 5,246 bp and the structure and arrangement of the integron was a novel one in comparison with other integrons found in other P. aeruginosa. The integron could be transferred to Escherichia coli JM109 from P. aeruginosa 1082 possibly via self-transferable plasmid DNA. The integron and a bla VIM-2 gene were detected in the plasmid DNA of the transconjugants whose imipenem resistance was slightly increased as a result of accepting the integron from the donor strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号