首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from P. aeruginosa is required for the biosynthesis of two bacterial exopolysaccharides: alginate and lipopolysaccharide (LPS). Both of these molecules play a role in the virulence of P. aeruginosa, an important human pathogen known for its ability to develop antibiotic resistance and cause chronic lung infections in cystic fibrosis patients. The crystal structure of PMM/PGM shows that the enzyme has four domains, three of which have a similar three-dimensional fold. Residues from all four domains of the protein contribute to the formation of a large active site cleft in the center of the molecule. Detailed information on the active site of PMM/PGM lays the foundation for structure-based inhibitor design. Inhibitors of sufficient potency and specificity should impair the biosynthesis of alginate and LPS, and may facilitate clearance of the bacteria by the host immune system and increase the efficacy of conventional antibiotic treatment against chronic P. aeruginosa infections.  相似文献   

2.
The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa catalyzes the reversible conversion of 1-phospho to 6-phospho-sugars. The reaction entails two phosphoryl transfers, with an intervening 180 degrees reorientation of the reaction intermediate (e.g. glucose 1,6-bisphosphate) during catalysis. Reorientation of the intermediate occurs without dissociation from the active site of the enzyme and is, thus, a simple example of processivity, as defined by multiple rounds of catalysis without release of substrate. Structural characterization of two PMM/PGM-intermediate complexes with glucose 1,6-bisphosphate provides new insights into the reaction catalyzed by the enzyme, including the reorientation of the intermediate. Kinetic analyses of site-directed mutants prompted by the structural studies reveal active site residues critical for maintaining association with glucose 1,6-bisphosphate during its unique dynamic reorientation in the active site of PMM/PGM.  相似文献   

3.
The phosphomannomutase/phosphoglucomutase (PMM/PGM) enzyme catalyzes reversibly the intra-molecular phosphoryl interconverting reaction of mannose-6-phosphate and mannose-1-phosphate or glucose-6-phosphate and glucose-1-phosphate. Glucose-6-phosphate and glucose-1-phosphate are known to be utilized for energy metabolism and cell surface construction, respectively. PMM/PGM has been isolated from many microorganisms. By performing similarity searches using existing PMM/PGM sequences, the homologous ORFs PH0923 and PH1210 were identified from the genomic data of Pyrococcus horikoshii OT3. Since PH0923 appears to be part of an operon consisting of four carbohydrate metabolic enzymes, PH0923 was selected as the first target for the investigation of PMM/PGM activity in P. horikoshii OT3. The coding region of PH0923 was cloned and the purified recombinant protein was utilized for an examination of its biochemical properties. The enzyme retained half its initial activity after treatment at 95 degrees C for 90 min. Detailed analyses of activities showed that this protein is capable of utilizing a variety of metal ions that are not utilized by previously characterized PMM/PGM proteins. A mutated protein with an alanine residue replacing the active site serine residue indicated that this residue plays an important but non-essential role in PMM/PGM activity.  相似文献   

4.
The algC gene from Pseudomonas aeruginosa has been shown to encode phosphomannomutase (PMM), an essential enzyme for biosynthesis of alginate and lipopolysaccharide (LPS). This gene was overexpressed under control of the tac promoter, and the enzyme was purified and its substrate specificity and metal ion effects were characterized. The enzyme was determined to be a monomer with a molecular mass of 50 kDa. The enzyme catalyzed the interconversion of mannose 1-phosphate (M1P) and mannose 6-phosphate, as well as that of glucose 1-phosphate (G1P) and glucose 6-phosphate. The apparent Km values for M1P and G1P were 17 and 22 microM, respectively. On the basis of Kcat/Km ratio, the catalytic efficiency for G1P was about twofold higher than that for M1P. PMM also catalyzed the conversion of ribose 1-phosphate and 2-deoxyglucose 6-phosphate to their corresponding isomers, although activities were much lower. Purified PMM/phosphoglucomutase (PGM) required Mg2+ for maximum activity; Mn2+ was the only other divalent metal that showed some activation. The presence of other divalent metals in addition to Mg2+ in the reaction inhibited the enzymatic activity. PMM and PGM activities could not be detected in nonmucoid algC mutant strain 8858 and in LPS-rough algC mutant strain AK1012, while they were present in the wild-type strains as well as in algC-complemented mutant strains. This evidence suggests that AlgC functions as PMM and PGM in vivo, converting phosphomannose and phosphoglucose in the biosynthesis of both alginate and LPS.  相似文献   

5.
The enzymes phosphoglucomutase (PGM) and phosphomannomutase (PMM) play an important role in the synthesis of extracellular polysaccharide. By colony hybridization of the fosmid library of Sphingomonas chungbukensis DJ77, an open reading frame (ORF-1) of 1,626 nucleotides, whose predicted product is highly homologous with other PGM proteins from several bacterial species, was identified. An additional open reading frame (ORF-2) of 1,437 nucleotides was identified, and its encoded protein shows a high level of similarity with the PGM/PMM protein family. The two genes were cloned into a bacterial expression vector pET-15b (+) and expressed in Escherichia coli as fusion proteins with (His)(6)-tag. Both recombinant proteins (designated as SP-1 and SP-2 for ORF-1 and ORF-2, respectively) exhibited PGM and PMM activities. The molecular masses of subunits of SP-1 and SP-2 were estimated to be around 58 and 51 kDa from SDS-PAGE, respectively. However, molecular masses of SP-1 and SP-2 in their native condition were determined to be approximately 59.5 and 105.4 kDa, according to non-denaturing PAGE, respectively. The SP-1 protein has a preference for glucose-1-phosphate rather than mannose-1-phosphate, while the preferred substrate of SP-2 is mannose-1-phosphate. Thus, the existence of two proteins with bifunctional PGM/PMM activities was first found S. chungbukensis DJ77.  相似文献   

6.
Glucose 1,6-bisphosphate (Glc-1,6-P(2)) concentration in brain is much higher than what is required for the functioning of phosphoglucomutase, suggesting that this compound has a role other than as a cofactor of phosphomutases. In cell-free systems, Glc-1,6-P(2) is formed from 1,3-bisphosphoglycerate and Glc-6-P by two related enzymes: PGM2L1 (phosphoglucomutase 2-like 1) and, to a lesser extent, PGM2 (phosphoglucomutase 2). It is hydrolyzed by the IMP-stimulated brain Glc-1,6-bisphosphatase of still unknown identity. Our aim was to test whether Glc-1,6-bisphosphatase corresponds to the phosphomannomutase PMM1, an enzyme of mysterious physiological function sharing several properties with Glc-1,6-bisphosphatase. We show that IMP, but not other nucleotides, stimulated by >100-fold (K(a) approximately 20 mum) the intrinsic Glc-1,6-bisphosphatase activity of recombinant PMM1 while inhibiting its phosphoglucomutase activity. No such effects were observed with PMM2, an enzyme paralogous to PMM1 that physiologically acts as a phosphomannomutase in mammals. Transfection of HEK293T cells with PGM2L1, but not the related enzyme PGM2, caused an approximately 20-fold increase in the concentration of Glc-1,6-P(2). Transfection with PMM1 caused a profound decrease (>5-fold) in Glc-1,6-P(2) in cells that were or were not cotransfected with PGM2L1. Furthermore, the concentration of Glc-1,6-P(2) in wild-type mouse brain decreased with time after ischemia, whereas it did not change in PMM1-deficient mouse brain. Taken together, these data show that PMM1 corresponds to the IMP-stimulated Glc-1,6-bisphosphatase and that this enzyme is responsible for the degradation of Glc-1,6-P(2) in brain. In addition, the role of PGM2L1 as the enzyme responsible for the synthesis of the elevated concentrations of Glc-1,6-P(2) in brain is established.  相似文献   

7.
8.
Chen Y  Jakoncic J  Wang J  Zheng X  Carpino N  Nassar N 《Biochemistry》2008,47(46):12135-12145
Here, we present the crystal structure of the ecdysone phosphate phosphatase (EPPase) phosphoglycerate mutase (PGM) homology domain, the first structure of a steroid phosphate phosphatase. The structure reveals an alpha/beta-fold common to members of the two histidine (2H)-phosphatase superfamily with strong homology to the Suppressor of T-cell receptor signaling-1 (Sts-1 PGM) protein. The putative EPPase PGM active site contains signature residues shared by 2H-phosphatase enzymes, including a conserved histidine (His80) that acts as a nucleophile during catalysis. The physiological substrate ecdysone 22-phosphate was modeled in a hydrophobic cavity close to the phosphate-binding site. EPPase PGM shows limited substrate specificity with an ability to hydrolyze steroid phosphates, the phospho-tyrosine (pTyr) substrate analogue para-nitrophenylphosphate ( pNPP) and pTyr-containing peptides and proteins. Altogether, our data demonstrate a new protein tyrosine phosphatase (PTP) activity for EPPase. They suggest that EPPase and its closest homologues can be grouped into a distinct subfamily in the large 2H-phosphatase superfamily of proteins.  相似文献   

9.
The enzymes phosphomannomutase (PMM), phospho‐N‐acetylglucosamine mutase (PAGM) and phosphoglucomutase (PGM) reversibly catalyse the transfer of phosphate between the C6 and C1 hydroxyl groups of mannose, N‐acetylglucosamine and glucose respectively. Although genes for a candidate PMM and a PAGM enzymes have been found in the Trypanosoma brucei genome, there is, surprisingly, no candidate gene for PGM. The TbPMM and TbPAGM genes were cloned and expressed in Escherichia coli and the TbPMM enzyme was crystallized and its structure solved at 1.85 Å resolution. Antibodies to the recombinant proteins localized endogenous TbPMM to glycosomes in the bloodstream form of the parasite, while TbPAGM localized to both the cytosol and glycosomes. Both recombinant enzymes were able to interconvert glucose‐phosphates, as well as acting on their own definitive substrates. Analysis of sugar nucleotide levels in parasites with TbPMM or TbPAGM knocked down by RNA interference (RNAi) suggests that, in vivo, PGM activity is catalysed by both enzymes. This is the first example in any organism of PGM activity being completely replaced in this way and it explains why, uniquely, T. brucei has been able to lose its PGM gene. The RNAi data for TbPMM also showed that this is an essential gene for parasite growth.  相似文献   

10.
Enzyme-substrate complexes of phosphomannomutase/phosphoglucomutase (PMM/PGM) reveal the structural basis of the enzyme's ability to use four different substrates in catalysis. High-resolution structures with glucose 1-phosphate, glucose 6-phosphate, mannose 1-phosphate, and mannose 6-phosphate show that the position of the phosphate group of each substrate is held constant by a conserved network of hydrogen bonds. This produces two distinct, and mutually exclusive, binding orientations for the sugar rings of the 1-phospho and 6-phospho sugars. Specific binding of both orientations is accomplished by key contacts with the O3 and O4 hydroxyls of the sugar, which must occupy equatorial positions. Dual recognition of glucose and mannose phosphosugars uses a combination of specific protein contacts and nonspecific solvent contacts. The ability of PMM/PGM to accommodate these four diverse substrates in a single active site is consistent with its highly reversible phosphoryl transfer reaction and allows it to function in multiple biosynthetic pathways in P. aeruginosa.  相似文献   

11.
Fragment complementation has been used to investigate the role of chain connectivity in the catalytic reaction of phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa, a human pathogen. A heterodimer of PMM/PGM, created from fragments corresponding to its first three and fourth domains, was constructed and enzyme activity reconstituted. NMR spectra demonstrate that the fragment corresponding to the fourth (C‐terminal) domain exists as a highly structured, independent folding domain, consistent with its varied conformation observed in enzyme–substrate complexes. Steady‐state kinetics and thermodynamics studies reported here show that complete conformational freedom of Domain 4, because of the break in the polypeptide chain, is deleterious to catalytic efficiency primarily as a consequence of increased entropy. This extends observations from studies of the intact enzyme, which showed that the degree of flexibility of a hinge region is controlled by the precise sequence of amino acids optimized through evolutionary constraints. This work also sheds light on the functional advantage gained by combining separate folding domains into a single polypeptide chain.  相似文献   

12.
Lee Y  Mick J  Furdui C  Beamer LJ 《PloS one》2012,7(6):e38114
Coevolution analyses identify residues that co-vary with each other during evolution, revealing sequence relationships unobservable from traditional multiple sequence alignments. Here we describe a coevolutionary analysis of phosphomannomutase/phosphoglucomutase (PMM/PGM), a widespread and diverse enzyme family involved in carbohydrate biosynthesis. Mutual information and graph theory were utilized to identify a network of highly connected residues with high significance. An examination of the most tightly connected regions of the coevolutionary network reveals that most of the involved residues are localized near an interdomain interface of this enzyme, known to be the site of a functionally important conformational change. The roles of four interface residues found in this network were examined via site-directed mutagenesis and kinetic characterization. For three of these residues, mutation to alanine reduces enzyme specificity to ~10% or less of wild-type, while the other has ~45% activity of wild-type enzyme. An additional mutant of an interface residue that is not densely connected in the coevolutionary network was also characterized, and shows no change in activity relative to wild-type enzyme. The results of these studies are interpreted in the context of structural and functional data on PMM/PGM. Together, they demonstrate that a network of coevolving residues links the highly conserved active site with the interdomain conformational change necessary for the multi-step catalytic reaction. This work adds to our understanding of the functional roles of coevolving residue networks, and has implications for the definition of catalytically important residues.  相似文献   

13.
Derived from an ancient ATP-hydrolyzing Rossmann-like fold protein, members of the PP-loop ATP pyrophosphatase family feature an absolutely conserved P-loop-like “SxGxDS/T” motif used for binding and presenting ATP for substrate adenylylation (AMPylation). Since the first family member was reported more than 20 years ago, numerous representatives catalyzing very diverse reactions have been characterized both functionally and structurally. The availability of more than 100 high quality structures in the protein data bank provides an excellent opportunity to gain structural insights into the generally conserved catalytic mechanism and the uniqueness of the reactions catalyzed by family members. In this work, we conducted a thorough database search for the PP-loop ATP pyrophosphatase family members, resulting in the most comprehensive and up-to-date collection that includes 18 enzyme families. Structure comparison of representative family members allowed us to identify common structure features in the core catalytic domain, as well as four highly variable regions that define the unique chemistry for each enzyme family. The newly identified enzymes, particularly those from pathogens, warrant further research to enlarge the scope of this ever-expanding and highly diverse enzyme superfamily for use in potential bioengineering and biomedical applications.  相似文献   

14.
The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa catalyzes an intramolecular phosphoryl transfer across its phosphosugar substrates, which are precursors in the synthesis of exoproducts involved in bacterial virulence. Previous structural studies of PMM/PGM have established a key role for conformational change in its multistep reaction, which requires a dramatic 180° reorientation of the intermediate within the active site. Here hydrogen-deuterium exchange by mass spectrometry and small angle x-ray scattering were used to probe the conformational flexibility of different forms of PMM/PGM in solution, including its active, phosphorylated state and the unphosphorylated state that occurs transiently during the catalytic cycle. In addition, the effects of ligand binding were assessed through use of a substrate analog. We found that both phosphorylation and binding of ligand produce significant effects on deuterium incorporation. Phosphorylation of the conserved catalytic serine has broad effects on residues in multiple domains and is supported by small angle x-ray scattering data showing that the unphosphorylated enzyme is less compact in solution. The effects of ligand binding are generally manifested near the active site cleft and at a domain interface that is a site of conformational change. These results suggest that dephosphorylation of the enzyme may play two critical functional roles: a direct role in the chemical step of phosphoryl transfer and secondly through propagation of structural flexibility. We propose a model whereby increased enzyme flexibility facilitates the reorientation of the reaction intermediate, coupling changes in structural dynamics with the unique catalytic mechanism of this enzyme.  相似文献   

15.
16.
Mycobacterium tuberculosis (M. tb) pathogenesis involves the interaction between the mycobacterial cell envelope and host macrophage, a process mediated, in part, by binding of the mannose caps of M. tb lipoarabinomannan (ManLAM) to the macrophage mannose receptor (MR). A presumed critical step in the biosynthesis of ManLAM, and other mannose-containing glycoconjugates, is the conversion of mannose-6-phosphate to mannose-1-phosphate, by a phosphomannomutase (PMM), to produce GDP-mannose, the primary mannose-donor in mycobacteria. We have identified four M. tb H37Rv genes with similarity to known PMMs. Using in vivo complementation of PMM and phosphoglucomutase (PGM) deficient strains of Pseudomonas aeruginosa, and an in vitro enzyme assay, we have identified both PMM and PGM activity from one of these genes, Rv3257c (MtmanB). MtmanB overexpression in M. smegmatis produced increased levels of LAM, lipomannan, and phosphatidylinositol mannosides (PIMs) compared with control strains and led to a 13.3 +/- 3.9-fold greater association of mycobacteria with human macrophages, in a mannan-inhibitable fashion. This increased association was mediated by the overproduction of higher order PIMs that possess mannose cap structures. We conclude that MtmanB encodes a functional PMM involved in the biosynthesis of mannosylated lipoglycans that participate in the association of mycobacteria with macrophage phagocytic receptors.  相似文献   

17.
The ammonia-producing arginine succinyltransferase pathway is the major pathway in Escherichia coli and related bacteria for arginine catabolism as a sole nitrogen source. This pathway consists of five steps, each catalyzed by a distinct enzyme. Here we report the crystal structure of N-succinylarginine dihydrolase AstB, the second enzyme of the arginine succinyltransferase pathway, providing the first structural insight into enzymes from this pathway. The enzyme exhibits a pseudo 5-fold symmetric alpha/beta propeller fold of circularly arranged betabetaalphabeta modules enclosing the active site. The crystal structure indicates clearly that this enzyme belongs to the amidinotransferase (AT) superfamily and that the active site contains a Cys-His-Glu triad characteristic of the AT superfamily. Structures of the complexes of AstB with the reaction product and a C365S mutant with bound the N-succinylarginine substrate suggest a catalytic mechanism that consists of two cycles of hydrolysis and ammonia release, with each cycle utilizing a mechanism similar to that proposed for arginine deiminases. Like other members of the AT superfamily of enzymes, AstB possesses a flexible loop that is disordered in the absence of substrate and assumes an ordered conformation upon substrate binding, shielding the ligand from the bulk solvent, thereby controlling substrate access and product release.  相似文献   

18.
NlpC/P60 superfamily papain-like enzymes play important roles in all kingdoms of life. Two members of this superfamily, LRAT-like and YaeF/YiiX-like families, were predicted to contain a catalytic domain that is circularly permuted such that the catalytic cysteine is located near the C-terminus, instead of at the N-terminus. These permuted enzymes are widespread in virus, pathogenic bacteria, and eukaryotes. We determined the crystal structure of a member of the YaeF/YiiX-like family from Bacillus cereus in complex with lysine. The structure, which adopts a ligand-induced, "closed" conformation, confirms the circular permutation of catalytic residues. A comparative analysis of other related protein structures within the NlpC/P60 superfamily is presented. Permutated NlpC/P60 enzymes contain a similar conserved core and arrangement of catalytic residues, including a Cys/His-containing triad and an additional conserved tyrosine. More surprisingly, permuted enzymes have a hydrophobic S1 binding pocket that is distinct from previously characterized enzymes in the family, indicative of novel substrate specificity. Further analysis of a structural homolog, YiiX (PDB 2if6) identified a fatty acid in the conserved hydrophobic pocket, thus providing additional insights into possible function of these novel enzymes.  相似文献   

19.
Plants have evolved secondary metabolite biosynthetic pathways of immense rich diversity. The genes encoding enzymes for secondary metabolite biosynthesis have evolved through gene duplication followed by neofunctionalization, thereby generating functional diversity. Emerging evidence demonstrates that some of those enzymes catalyze reactions entirely different from those usually catalyzed by other members of the same family; e.g. transacylation catalyzed by an enzyme similar to a hydrolytic enzyme. Tuliposide-converting enzyme (TCE), which we recently discovered from tulip, catalyzes the conversion of major defensive secondary metabolites, tuliposides, to antimicrobial tulipalins. The TCEs belong to the carboxylesterase family in the α/β-hydrolase fold superfamily, and specifically catalyze intramolecular transesterification, but not hydrolysis. This non-ester-hydrolyzing carboxylesterase is an example of an enzyme showing catalytic properties that are unpredictable from its primary structure. This review describes the biochemical and physiological aspects of tulipalin biogenesis, and the diverse functions of plant carboxylesterases in the α/β-hydrolase fold superfamily.  相似文献   

20.
The alpha-L-arabinofuranosidase D3 from Thermobacillus xylanilyticus is an arabinoxylan-debranching enzyme which belongs to family 51 of the glycosyl hydrolase classification. Previous studies have indicated that members of this family are retaining enzymes and may form part of the 4/7 superfamily of glycosyl hydrolases. To investigate the active site of alpha-L-arabinofuranosidase D3, we have used sequence alignment, site-directed mutagenesis and kinetic analyses. Likewise, we have shown that Glu(28), Glu(176) and Glu(298) are important for catalytic activity. Kinetic data obtained for the mutant Glu(176)-->Gln, combined with the results of chemical rescue using the mutant Glu(176)-->Ala, have shown that Glu(176) is the acid-base residue. Moreover, NMR analysis of the arabinosyl-azide adduct, which was produced by chemical rescue of the mutant Glu(176)-->Ala, indicated that alpha-L-arabinofuranosidase D3 hydrolyses glycosidic bonds with retention of the anomeric configuration. The results of similar chemical rescue studies using other mutant enzymes suggest that Glu(298) might be the catalytic nucleophile and that Glu(28) is a third member of a catalytic triad which may be responsible for modulating the ionization state of the acid-base and implicated in substrate fixation. Overall, these findings support the hypothesis that alpha-L-arabinofuranosidase D3 belongs to the 4/7 superfamily and provide the first experimental evidence concerning the catalytic apparatus of a family 51 arabinofuranosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号