首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The T-DNA structure and organization in tissues obtained via transformation of tobacco protoplasts with Ti-plasmid DNA was found to be completely different from the T-DNA introduced via Agrobacterium tumefaciens. It is often fragmented. Overlapping copies of T-DNA, having various sizes, as well as separated fragments of T-DNA were detected. The border sequences of 23 basepairs (bp), flanking the T-region in the Ti-plasmid as direct repeats are not used as preferred sequences for integration. Similar results were obtained with a T-region clone lacking one of the TL-borders. This clone, which carried the cytokinin locus and only the right border sequence of TL and the left border sequence of TR, still had the capacity to transform protoplasts. Also the Vir-region of the Ti-plasmid is not required for integration of foreign DNA via DNA transformation. This is demonstrated by the results with the T-region clone mentioned and by the transforming capacity of a Ti-plasmid carrying a mutated Vir-region. Nevertheless, in a number of Ti-plasmid DNA transformants Vir-region fragments were found to be stably integrated. Furthermore, it has been established that co-transformation can occur with plant cells. Besides the detection of Ti-plasmid fragments from outside the T-region also DNA sequences originating from two DNA sources, which were both independently present in transformation experiments, have been found in some DNA transformants, e.g. calf thymus DNA, which was used as carrier DNA. No expression of the co-transferred DNA was observed. In total three phenotypical classes of DNA transformants were isolated. Although the T-DNA was often scrambled, polyA+ mRNA studies indicated that the different phenotypes studied can be explained by the presence of active T-DNA genes with known functions.  相似文献   

2.
We analyzed 29 T-DNA inserts in transgenicArabidopsis thaliana plants for the junction of the right border sequences and the flanking plant DNA. DNA sequencing showed that in most lines the right border sequences transferred had been preserved during integration, corroborating literature data. Surprisingly, in four independent transgenic lines a complete right border repeat was present followed by binary vector sequences. Cloning of two of these T-DNA inserts by plasmid rescue showed that in these lines the transferred DNA consisted of the complete binary vector sequences in addition to the T-region. On the basis of the structure of the transferred DNA we propose that in these lines T-DNA transfer started at the left-border repeat, continued through the vector part, passed the right border repeat, and ended only after reaching again this left-border repeat.  相似文献   

3.
T-region transfer from wild-type Agrobacterium strains is thought to be an orientated process, starting at the right border repeat and terminating at the left border repeat of the T-region. Here we demonstrate that a right border repeat in the inverted orientation relative to the onc-genes can also mediate transfer of the T-region to the plant cell, although with lower efficiency as a border repeat in the native orientation. Transfer mediated by an inverted right border repeat is stimulated by the presence of the T-region transfer enhancer. Similar single stranded molecules, comprising the bottom strand of the T-DNA, were isolated from acetosyringone induced bacteria, irrespective of the orientation of the right border. These findings show that border repeats work bidirectionally to some extent.  相似文献   

4.
T-DNA integration: a mode of illegitimate recombination in plants.   总被引:47,自引:4,他引:47       下载免费PDF全文
Transferred DNA (T-DNA) insertions of Agrobacterium gene fusion vectors and corresponding insertional target sites were isolated from transgenic and wild type Arabidopsis thaliana plants. Nucleotide sequence comparison of wild type and T-DNA-tagged genomic loci showed that T-DNA integration resulted in target site deletions of 29-73 bp. In those cases where integrated T-DNA segments turned out to be smaller than canonical ones, the break-points of target deletions and T-DNA insertions overlapped and consisted of 5-7 identical nucleotides. Formation of precise junctions at the right T-DNA border, and DNA sequence homology between the left termini of T-DNA segments and break-points of target deletions were observed in those cases where full-length canonical T-DNA inserts were very precisely replacing plant target DNA sequences. Aberrant junctions were observed in those transformants where termini of T-DNA segments showed no homology to break-points of target sequence deletions. Homology between short segments within target sites and T-DNA, as well as conversion and duplication of DNA sequences at junctions, suggests that T-DNA integration results from illegitimate recombination. The data suggest that while the left T-DNA terminus and both target termini participate in partial pairing and DNA repair, the right T-DNA terminus plays an essential role in the recognition of the target and in the formation of a primary synapsis during integration.  相似文献   

5.
For genetic transformation of plants, floral dip with Agrobacterium often results in integration of multiple T-DNA copies at a single locus and frequently in low and unstable transgene expression. To obtain efficient single-copy T-DNA transformants, two CRE/ loxP recombinase-based simplifying strategies for complex T-DNA loci were compared. A T-DNA vector with oppositely oriented loxP sites was transformed into CRE -expressing and wild-type control Arabidopsis thaliana plants. Of the primary CRE -expressing transformants, 55% harboured a single copy of the introduced T-DNA, but only 15% in the wild-type plants. However, 73% of the single-copy transformants in the CRE background showed continuous somatic inversion of the DNA segment between the two loxP sites. To avoid inversion of the loxP -flanked T-DNA segment, two T-DNA vectors harbouring only one loxP site were investigated for their suitability for CRE/ loxP recombinase-mediated resolution upon floral-dip transformation into CRE -expressing plants. On average, 70% of the transformants in the CRE background were single-copy transformants, whereas the single-copy T-DNA frequency was only 11% for both vectors in the wild-type background. Both resolution strategies yielded mostly Cre transformants in which the 35S-driven transgene expression was stable and uniform in the progeny and remarkably, also in Cre transformants with multiple T-DNA copies. Therefore, a role is proposed for the CRE recombinase in preventing inverted T-DNA repeat formation or modifying the locus chromatin structure, resulting in a reduced sensitivity for silencing.  相似文献   

6.
Two rapid and simple in planta transformation methods have been developed for the model legume Medicago truncatula. The first approach is based on a method developed for transformation of Arabidopsis thaliana and involves infiltration of flowering plants with a suspension of Agrobacterium. The second method involves infiltration of young seedlings with Agrobacterium. In both cases a proportion of the progeny of the infiltrated plants is transformed. The transformation frequency ranges from 4.7 to 76% for the flower infiltration method, and from 2.9 to 27.6% for the seedling infiltration method. Both procedures resulted in a mixture of independent transformants and sibling transformants. The transformants were genetically stable, and analysis of the T2 generation indicates that the transgenes are inherited in a Mendelian fashion. These transformation systems will increase the utility of M. truncatula as a model system and enable large-scale insertional mutagenesis. T-DNA tagging and the many adaptations of this approach provide a wide range of opportunities for the analysis of the unique aspects of legumes.  相似文献   

7.
Genetic and molecular analysis of a mutant of Arabidopsis thaliana with bended hypocotyl from a previously obtained collection of insertion mutants is presented. The examined mutation was shown to be recessive and based on a single insertion of pLD3 vector T-region into the A. thaliana genome. Computer-aided analysis of a DNA region adjacent to the left border of the insertion revealed a putative site of T-DNA insertion, the At1g15760 gene from 609-bp chromosome 1 represented by a single exon.  相似文献   

8.
We investigated whether complex T-DNA loci, often resulting in low transgene expression, can be resolved efficiently into single copies by CRE/loxP-mediated recombination. An SB-loxP T-DNA, containing two invertedly oriented loxP sequences located inside and immediately adjacent to the T-DNA border ends, was constructed. Regardless of the orientation and number of SB-loxP-derived T-DNAs integrated at one locus, recombination between the outermost loxP sequences in direct orientation should resolve multiple copies into a single T-DNA copy. Seven transformants with a complex SB-loxP locus were crossed with a CRE-expressing plant. In three hybrids, the complex T-DNA locus was reduced efficiently to a single-copy locus. Upon segregation of the CRE recombinase gene, only the simplified T-DNA locus was found in the progeny, demonstrating DNA had been excised efficiently in the progenitor cells of the gametes. In the two transformants with an inverted T-DNA repeat, the T-DNA resolution was accompanied by at least a 10-fold enhanced transgene expression. Therefore, the resolution of complex loci to a single-copy T-DNA insert by the CRE/loxP recombination system can become a valuable method for the production of elite transgenic Arabidopsis thaliana plants that are less prone to gene silencing.  相似文献   

9.
Binary Agrobacterium vectors for plant transformation.   总被引:197,自引:14,他引:183       下载免费PDF全文
M Bevan 《Nucleic acids research》1984,12(22):8711-8721
A vector molecule for the efficient transformation of higher plants has been constructed with several features that make it efficient to use. It utilizes the trans acting functions of the vir region of a co-resident Ti plasmid in Agrobacterium tumefaciens to transfer sequences bordered by left and right T-DNA border sequences into the nuclear genome of plants. The T-region contains a dominant selectable marker gene that confers high levels of resistance to kanamycin, and a lac alpha-complementing region from M13mp19 that contains several unique restriction sites for the positive selection of inserted DNA.  相似文献   

10.
A two-component cloning system to transfer foreign DNA into plants was derived from the octopine Ti plasmid pTiB6S3. pGV2260 is a non-oncogenic Ti plasmid from which the T-region is deleted and substituted by pBR322. pGV831 is a streptomycin-resistant pBR325 derivative that contains a kanamycin resistance marker gene for plant cells and a site for cloning foreign genes between the 25-bp border sequences of the octopine T-region. Conjugative transfer of pGV831 derivatives to Agrobacterium and cointegration by homologous recombination between the pBR322 sequences present on pGV831 and pGV2260, can be obtained in a single step. Strains carrying the resulting cointegrated plasmids transfer and integrate T-DNA into the genome of tobacco protoplasts, and transformed tobacco calli are readily selected as resistant to kanamycin. Intact plants containing the entire DNA region between the T-DNA borders have been regenerated from such clones. In view of these properties we present pGV831 and its derivatives as vectors for efficient integration of foreign genes into plants.  相似文献   

11.
Agrobacterium tumefaciens Chry5, which is particularly virulent on soybeans, induces tumors that produce a family of Amadori-type opines that includes deoxyfructosyl glutamine (Dfg) and its lactone, chrysopine (Chy). Cosmid clones mapping to the right of the known oncogenic T-region of pTiChry5 conferred Amadori opine production on tumors induced by the nopaline strain C58. Sequence analysis of DNA held in common among these cosmids identified two 25-bp, direct repeats flanking an 8.5-kb segment of pTiChry5. These probable border sequences are closely related to those of other known T-regions and define a second T-region of pTiChry5, called T-right (TR), that confers production of the Amadoriopines. The oncogenic T-left region (TL) was located precisely by identifying and sequencing the likely border repeats defining this segment. The two T-regions are separated by approximately 15 kb of plasmid DNA. Based on these results, we predicted that pKYRT1, a vir helper plasmid derived from pTiChry5, still contains all of TR and the leftmost 9 kb of TL. Consistent with this hypothesis, transgenic Arabidopsis thaliana plants selected for with a marker encoded by a binary plasmid following transformation with KYRT1 co-inherited production of the Amadori opines at high frequency. All opine-positive transgenic plants also contained TR-DNA, while those plants that lacked TR-DNA failed to produce the opines. Moreover, A. thaliana infected with KYRT1 in which an nptII gene driven by the 35S promoter of Cauliflower mosaic virus was inserted directly into the vir helper plasmid yielded kanamycin-resistant transformants at a low but detectable frequency. These results demonstrate that pKYRT1 is not disarmed, and can transfer Ti plasmid DNA to plants. A new vir helper plasmid was constructed from pTiChry5 by two rounds of sacB-mediated selection for deletion events. This plasmid, called pKPSF2, lacks both of the known T-regions and their borders. pKPSF2 failed to transfer Ti plasmid DNA to plants, but mobilized the T-region of a binary plasmid at an efficiency indistinguishable from those of pKYRT1 and the nopaline-type vir helper plasmid pMP90.  相似文献   

12.
Studies in several plants have shown that Agrobacterium tumefaciens T-DNA can integrate into plant chromosomal DNA by different mechanisms involving single-stranded (ss) or double-stranded (ds) forms. One mechanism requires sequence homology between plant target and ssT-DNA border sequences and another double-strand-break repair in which preexisting chromosomal DSBs “capture” dsT-DNAs. To learn more about T-DNA integration in Solanum lycopersicum we characterised 98 T-DNA/plant DNA junction sequences and show that T-DNA left border (LB) and right border transfer is much more variable than previously reported in Arabidopsis thaliana and Populus tremula. The analysis of seven plant target sequences showed that regions of homology between the T-DNA LB and plant chromosomal DNA plays an important role in T-DNA integration. One T-DNA insertion generated a target sequence duplication that resulted from nucleolytic processing of a LB/plant DNA heteroduplex that generated a DSB in plant chromosomal DNA. One broken end contained a captured T-DNA that served as a template for DNA repair synthesis. We propose that most T-DNA integrations in tomato require sequence homology between the ssT-DNA LB and plant target DNA which results in the generation of DSBs in plant chromosomal DNA.  相似文献   

13.
14.
Plant transformation via Agrobacterium frequently results in formation of multiple copy T-DNA arrays at one target site of the chromosome. The T-DNA copies are arranged in repeats, direct or inverted around one of the T-DNA borders. A Ti plasmid-derived transformation vector has been constructed enabling direct selection of transformants carrying at least two linked copies of T-DNA in the same orientation. The selection is based on expression of a promoterless neomycin phosphotransferase gene on one T-DNA copy from a promoter located on the other T-DNA copy. After co-cultivation of tobacco protoplasts with Agrobacterium, as many as 30% of regenerated transformed plants carried directly repeated T-DNA copies. The junction regions between two T-DNAs were amplified and 13 amplified fragments were cloned and sequenced. The involvement of T-DNA left and right border sequences in direct repeat junctions was determined. In some junctions, additional filler DNA was detected. The length of filler DNA varied from a few up to almost 300 bp. The longer filler DNAs from two clones were found to be T-DNA fragments in direct or reverse orientation. We discuss the recently suggested models for T-DNA integration and propose that the formation of direct repeats in genomes does not necessarily result from ligation of intermediates (i.e. T-strands), but more likely from the co-integration of several intermediates into one target site.  相似文献   

15.
Eight lines of nopaline crown gall tumours were analysed by Southern (1975) blot hybridization to determine the size, internal organization, boundaries, possible plant DNA integration and accuracy of transfer of the Ti-plasmid DNA segment (T-DNA) transferred from Agrobacterium tumefaciens to crown gall plant cells. The conservation of this T-DNA in tumour tissues and tissues derived from plants regenerated from crown gall teratomas was also studied.A defined plasmid segment (the T-region) of about 15 × 106Mr is accurately transferred and integrated into nuclear plant DNA without any major internal rearrangements. Furthermore, common composite fragments covalently linking the left and the right boundary of the T-region were observed, thus indicating either tandem duplications of integrated T-DNA segments or polymeric circles of T-DNA segments. The length of the transferred segment is not determined by size, since insertions in the T-region were found to be co-transferred with the T-DNA. The results indicate that sequences at the boundaries of the region may play a role in the transfer mechanism, although the right boundary could be replaced by a Tn1 insertion. Cells from plants regenerated from crown gall teratomas were shown to contain T-DNA without internal rearrangements but with minor modifications of the boundary fragments. In plants obtained from meiotic products of teratomaderived regenerated plants no T-DNA was observed.  相似文献   

16.
17.
During crown gall tumorigenesis a specific segment of the Agrobacterium tumefaciens tumour-inducing (Ti) plasmid, the T-DNA, integrates into plant nuclear DNA. Similar 23-bp direct repeats at each end of the T region signal T-DNA borders, and T-DNA transmission (transfer and integration) requires the right-hand direct repeat. A chemically synthesized right border repeat in its wild-type orientation promotes T-DNA transmission at a low frequency; Ti plasmid sequences which normally flank the right repeat greatly stimulate the process. To identify flanking sequences required for full right border activity, we tested the activity of a border repeat surrounded by different amounts of normal flanking sequences. Efficient T-DNA transmission required a conserved sequence (5' TAAPuTPy-CTGTPuT-TGTTTGTTTG 3') which lies to the right of the two known right border repeats. In either orientation, a synthetic oligonucleotide containing this conserved sequence greatly stimulated the activity of a right border repeat, and a deletion removing 15 bp from the right end of this sequence destroyed it stimulatory effect. Thus, wild-type T-DNA transmission required both the 23-bp right border repeat and a conserved flanking sequence which we call overdrive.  相似文献   

18.
During crown gall tumorigenesis, part of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid, the T-DNA, integrates into plant DNA. Direct repeats define the left and right ends of the T-DNA, but tumorigenesis requires only the right-hand repeat. Virulence (vir) genes act in trans to mobilize the T-DNA into plant cells. Transfer of T-DNA begins when the VirD endonuclease cleaves within the right-hand border repeat. Although the T-DNA right-border repeat promotes T-DNA transmission best in its normal orientation, an inverted right border exhibits reduced but significant activity. Two models may account for this diminished tumorigenesis. The right border may function bidirectionally, with strong activity only in its wild-type orientation, or it may promote T-DNA transfer in a unidirectional manner such that, with an inverted right border, transfer proceeds around the entire Ti plasmid before reaching the T-DNA. To determine whether a substantial portion of the Ti plasmid is transferred to plant cells, as predicted by the unidirectional-transfer hypothesis, we examined T-DNAs in tumors induced by strains containing a Ti plasmid with a right border inverted with respect to the T-DNA oncogenes. These tumors contained extremely long T-DNAs corresponding to most or all of the Ti plasmid. To test whether the right border can function bidirectionally, we inserted T-DNAs with either a properly oriented or an inverted right border into a specific site in the A. tumefaciens chromosome. A border situated to transfer the oncogenes first directed T-DNA transfer even from the bacterial chromosome, whereas a border in the opposite (inverted) orientation did not transfer the oncogenes to plant cells. Our results indicate that the right-border repeat functions in a unidirectional manner.  相似文献   

19.
An efficient procedure of transforming Arabidopsis thaliana germinating seeds was elaborated on the basis of the method of Feldmann and Marks. The procedure involves microdamaging T1 seeds by sonication before culturing with a vector Agrobacterium strain and yields more than 1% T2 transformants. Germinating seeds were transformed with Agrobacterium timefaciens hypervirulent strain A281 carrying plasmid pLD3 derived from pBI121. A collection of 54 A. thaliana T2 transformants was obtained; some of them showed marked morphological alterations. The transgenic nature of plants that acquired resistance to a marker antibiotic was confirmed histochemically and by PCR amplification of a T-DNA region.  相似文献   

20.
Introduction of a left or right synthetic border repeat together with the overdrive sequence in an octopine Ti-plasmid deletion mutant, lacking the right border, resulted in the complete restoration of the oncogenicity of the mutant strain. However introduction of a border repeat without the overdrive, only restored oncogenicity partially. The overdrive sequence turned out to be able to stimulate the synthetic border mediated T-region transfer, independent of its orientation and position relative to the border repeat. Furthermore the distance between border repeat and overdrive could be enlarged, without a loss of overdrive activity. Here we enlarged the distance between the two sequences up to 6714bp. These results were confirmed by estimating the amount of single stranded T-DNA molecules from induced agrobacteria, containing the various border constructs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号