首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data are presented which indicate that the serum factor required for cell adhesion and spreading is very similar to cold insoluble globulin. Clotting of plasma under conditions that remove cold insoluble globulin also remove the adhesion and spreading factor. The activity of the adhesion and spreading factor co-chromatographs with cold insoluble globulin antigenicity on DEAE-cellulose and the mobilities of adhesion and spreading factor and cold insoluble globulin are the same in disc gel electrophoresis. Finally, antibody which is directed against cold insoluble globulin cross-reacts with a single component in the adhesion and spreading factor and inhibits its activity. The close similarity of the cell adhesion and spreading factor with cold insoluble globulin suggests that, in vivo, cold insoluble globulin which is adsorbed to collagen or part of a fibrin clot may constitute the normal substratum for fibroblast adhesion and migration.  相似文献   

2.
We have investigated the morphology and migratory behavior of quail neural crest cells on isolated embryonic basal laminae or substrata coated with fibronectin or tenascin. Each of these substrata have been implicated in directing neural crest cell migration in situ. We also observed the altered behavior of cells in response to the addition of tenascin to the culture medium independent of its effect as a migratory substratum. On tenascin-coated substrata, the rate of neural crest cell migration from neural tube explants was significantly greater than on uncoated tissue culture plastic, on fibronectin-coated plastic, or on basal lamina isolated from embryonic chick retinae. Neural crest cells on tenascin were rounded and lacked lamellipodia, in contrast to the flattened cells seen on basal lamina and fibronectin-coated plastic. In contrast, when tenascin was added to the culture medium of neural crest cells migrating on isolated basal lamina, a significant reduction in the rate of cell migration was observed. To study the nature of this effect, we used human melanoma cells, which have a number of characteristics in common with quail neural crest cells though they would be expected to have a distinct family of integrin receptors. A dose-dependent reduction in the rate of translocation was observed when tenascin was added to the culture medium of the human melanoma cell line plated on isolated basal laminae, indicating that the inhibitory effect of tenascin bound to the quail neural crest surface is probably not solely the result of competitive inhibition by tenascin for the integrin receptor. Our results show that tenascin can be used as a migratory substratum by avian neural crest cells and that tenascin as a substratum can stimulate neural crest cell migration, probably by permitting rapid detachment. Tenascin in the medium, on the other hand, inhibits both the migration rates and spreading of motile cells on basal lamina because it binds only the cell surface and not the underlying basal lamina. Cell surface-bound tenascin may decrease cell-substratum interactions and thus weaken the tractional forces generated by migrating cells. This is in contrast to the action of fibronectin, which when added to the medium stimulates cell migration by binding both to neural crest cells and the basal lamina, thus providing a bridge between the motile cells and the substratum.  相似文献   

3.
《The Journal of cell biology》1983,97(4):1179-1190
Serum-free, hormonally defined media have been developed for optimal growth of a rat hepatoma cell line. The cells' hormonal requirements for growth are dramatically altered both qualitatively and quantitatively by whether they were plated onto tissue culture plastic or collagenous substrata. On collagenous substrata, the cells required insulin, glucagon, growth hormone, prolactin, and linoleic acid (bound to BSA), and zinc, copper, and selenium. For growth on tissue culture plastic, the cells required the above factors at higher concentrations plus several additional factors: transferrin, hydrocortisone, and triiodothyronine. To ascertain the relative influence of hormones versus substratum on the growth and differentiation of rat hepatoma cells, various parameters of growth and of liver-specific and housekeeping functions were compared in cells grown in serum-free, hormonally supplemented, or serum-supplemented medium and on either tissue culture plastic or type I collagen gels. The substratum was found to be the primary determinant of attachment and survival of the cells. Even in serum-free media, the cells showed attachment and survival efficiencies of 40-50% at low seeding densities and even higher efficiencies at high seeding densities when the cells were plated onto collagenous substrata. However, optimal attachment and survival efficiencies of the cells on collagenous substrata still required either serum or hormonal supplements. On tissue culture plastic, there was no survival of the cells at any seeding density without either serum or hormonal supplements added to the medium. A defined medium designed for cells plated on tissue culture plastic, containing increased levels of hormones plus additional factors over those in the defined medium designed for cells on collagenous substrata, was found to permit attachment and survival of the cells plated into serum-free medium and onto tissue culture plastic. Growth of the cells was influenced by both substrata and hormones. When plated onto collagen gel substrata as compared with tissue culture plastic, the cells required fewer hormones and growth factors in the serum-free, hormone-supplemented media to achieve optimal growth rates. Growth rates of the cells at low and high seeding densities were equivalent in the hormonally and serum-supplemented media as long as comparisons were made on the same substratum and the hormonally supplemented medium used was the one designed for that substratum. For a given medium, either serum or hormonally supplemented, the saturation densities were highest for tissue culture plastic as compared with collagen gels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We have tested the effect of dithiothreitol (DTT) treatment on the initial spreading of human fibroblasts in serum-free medium in tissue culture dishes. Cell spreading was inhibited following treatment of these cells with 10 mM DTT. Inhibition occurred when the cells were treated at 37°C but not at 4° and was reversible metabolically but not by the addition of sulfhydryl oxidizing reagents. The inhibition was overcome when DTT-treated human fibroblasts were plated on cold insoluble globulin (plasma fibronectin)—coated dishes. Under these conditions spreading appeared to be completely normal, including the formation of focal adhesions. Analysis of the fibronectin concentrations in the human fibroblasts following DTT treatment indicated that there was little decrease in the absolute level of activity as determined in a biological assay for BHK cell spreading on culture dishes. Analysis of the fibronectin distribution on the DTT-treated human fibroblasts by indirect immunofluorescence using a specific anti-CIG antiserum revealed that fibronectin was no longer deposited onto the culture dish surfaces. Even when the DTT-treated human fibroblasts spread in the presence of fetal calf serum, the cell fibronectin remained for the most part in a perinuclear location. These results indicate that DTT treatment of human fibroblasts prevents the normal translocation of fibronectin from a perinuclear location to the surface of the culture dish. This study further supports our hypothesis that the initial spreading in serum-free medium of fibroblasts from cell strains depends upon secretion of fibronectin onto the culture dish surface.  相似文献   

5.
Summary In this report we compare attachment, morphology, and growth of retinal pigmented epithelial (RPE) cells isolated by either EDTA or dispase digestion and plated onto either uncoated substrata (plastic or glass) or substrata derivatized by covalent conjugation of proteins of reconstituted basement membrane gel. We show that the derivatized substrata promote better initial attachment and subsequent cell growth than the uncoated substrata. These effects are independent of the method of dissociation of cells from the tissue. Cell morphology, however, is strongly affected by the method used for tissue dispersion. The dispase-dissociated cells are very flat, display a circumferential arrangement of microfilaments and elaborate extensive arrays of vinculin-containing cell-to-cell junctions. In contrast, EDTA-dissociated cells are much less spread, display straight microfilament bundles criss-crossing the cytoplasm and have less extensive cell-to-cell junctions. The protein-derivatized substrata also promote maintenance of differentiated traits such as pigmentation, by the RPE cells. Supported by Medical Research Council grant MA-9713 and by a grant from the R P Eye Research Foundation.  相似文献   

6.
Rat hepatocytes, freshly isolated with a collagenase perfusion technique, were found to attach within 1 h on collagen substrates and on culture dishes coated with cold insoluble globulin (CIG) or asialoceruloplasmin (AC). Spreading was observed on collagen and CIG but not on AC. Both attachment and spreading occurred in a simple balanced salt solution in the absence of serum. In the absence of serum no attachment was observed on plain plastic dishes or on dishes coated with serum albumin or other plasma proteins, unless divalent manganese ions were present. In the presence of manganese the hepatocytes attached to all surfaces tested, but no spreading occurred. Attachment to collagen occurred equally well to collagens type I or type III both in the native, fibrillar state and in the denatured state. Collagen attachment required magnesium ions but did not appear to involve the collagen-linked carbohydrates. Different mechanisms were found to operate in hepatocyte attachment to collagen and to AC; the latter is most likely mediated by the hepatocyte surface receptor involved in recognition and uptake of asialoglycoproteins. The role of CIG in hepatocyte attachment to collagen was investigated. Data are presented suggesting that this glycoprotein, which mediates the adhesion of fibroblasts to collagen, is not required for hepatocyte attachment to collagen.  相似文献   

7.
The effect of collagen tripeptide fragment GER on the adhesion and spreading of mouse embryonic fibroblasts STO to different substrates (polystyrene plastic, poly-L-lysine, fibronectin, gelatin) has been studied. It was found that tripeptide GER was involved in fibroblast adhesion and spreading. The cell response depended both on the mode of tripeptide addition to culture medium and the substrate type. Coincubation of fibroblasts with tripeptide stimulated the cell attachment and spreading to untreated plastic and plastic coated with fibronectin or gelatin but did not change cell adhesion to immobilized poly-L-lysine. Preincubation of cells with tripeptide resulted in partial inhibition of fibroblast adhesion and spreading on fibronectin- and gelatin-coated substrata. It was shown that activation and inhibition of adhesive processes after tripeptide treating was higher on fibronectin than gelatin. The data obtained support the assumption about concerted action of tripeptide GER (activity was dependent both on the used concentration of the tripeptide and the mode of tripeptide addition to culture medium) and chemical characteristics of substrate (polymers of styrene and L-lysine, ECM proteins in native (fibronectin) or partly denatured (gelatin) form) on the cell adhesion and spreading. The main targets that GER peptide may affect during the formation of cell-substrate interactions are discussed.  相似文献   

8.
The stromal-vascular fraction of human adipose was subjected to in vitro adipogenesis on different extracellular matrix substrata. Adipose tissue was harvested from the breast of 25 to 45 year-old female patients undergoing elective surgery. After 24 d, less than 5% of stromal-vascular cells had converted to adipocytes on fibronectin, 13% to 28% on tissue culture plastic and collagen I; and 59% +/- 7% on Matrigel. Lipid volume surpassed 4.5 x 10(3) microm3 cell(-1) for Matrigel and was 30% lower for the other substrata. Cell proliferation was evident for Matrigel and fibronectin, and cell spreading was most pronounced for fibronectin with a projected area exceeding 3 x 10(3) microm2 cell(-1). These results are relevant to the design of an adipose implant, providing insight into its feasibility and scaffold composition.  相似文献   

9.
In manganese-containing medium, tissue cells can spread on albumin and other substrata typically nonadhesive for cells in calcium/magnesium-containing medium. To learn whether integrin receptors play a role in Mn-dependent adhesion, we tested the effects of RGD peptides and polyclonal anti-fibronectin receptor antibodies on BHK cell spreading on fibronectin and albumin-coated substrata. In Ca/Mg-containing medium on fibronectin substrata, the RGD-related peptides GRG-DSP and GRGDS but not RGDS inhibited cell spreading. In Mn-containing medium, spreading on albumin was inhibited by GRGDSP and GRGDS and also by RGDS. GRGESP, on the other hand, did not inhibit cell spreading under any condition tested. Antibodies directed against fibronectin receptors also inhibited Mn-dependent cell spreading on albumin substrata, but higher levels of antibody were required than were necessary to inhibit Ca/Mg-dependent spreading on fibronectin. On the basis of these results, we suggest that integrin receptors, but probably not fibronectin receptors, mediate Mn-dependent BHK cell spreading on albumin.  相似文献   

10.
The purified fetal calf serum factor that promotes cell adhesion and spreading of baby hamster kidney cells on tissue culture substrata has been subjected to a variety of chemical modifications and then tested for activity. These studies have shown that modification of the carbohydrate portions of the factor by glycosidic enzymes or by periodate oxidation did not alter its ability to promote cell spreading. On the other hand, modification of some protein portions of the factor by proteolytic enzymes or by specific modification of —COOH groups, tyrosine residues, or tryptophan residues resulted in a marked inhibition of factor activity. Modification of protein —SH groups, —NH2 groups, or methionine residues did not affect factor activity. Control experiments indicate that the various modifications were directed at the activity of the factor and not its adsorption onto the substrata.  相似文献   

11.
Variant clones of Chinese hamster ovary (CHO) cells were selected for reduced adhesion to serum-coated tissue culture plates. These clones also displayed reduced adhesion to substrata composed of collagen layers coated with bovine serum or with fibronectin (cold-insoluble globulin). Wild-type (WT) and adhesion variant (ADv) cells grew at comparable rates in suspension culture, but the adhesion variants could not be grown in monolayer culture because of their inability to attach to the substratum. The adhesion deficit in these cells was not corrected by raising the concentration of divalent cations or of serum to levels 10-fold greater than those normally utilized in cell culture. However, both WT and ADv clones could adhere, spread, and attain a normal CHO morphology on substrata coated with concanavalin A or poly-L- lysine. In addition, the adhesion variants could attach to substrata coated with "footpad" material (substratum-attached material) derived from monolayers of human diploid fibroblasts or WT CHO cells. These observations suggest that the variant clones may have a cell surface defect that prevents them from utilizing exogeneous fibronectin as an adhesion-promoting ligand; however the variants seem to have normal cytoskeletal and metabolic capacities that allow them to attach and spread on substrata coated with alternative ligands. These variants should be extremely useful in studying the molecular basis of cell adhesion.  相似文献   

12.
We have investigated the influence of culture substrata upon glycosaminoglycans produced in primary cultures of mouse mammary epithelial cells isolated from the glands of late pregnant mice. Three substrata have been used for experiments: tissue culture plastic, collagen (type I) gels attached to culture dishes, and collagen (type I) gels that have been floated in the culture medium after cell attachment. These latter gels contract significantly. Cells cultured on all three substrata produce hyaluronic acid, heparan sulfate, chondroitin sulfates and dermatan sulfate but the relative quantities accumulated and their distribution among cellular and extracellular compartments differ according to the nature of the culture substratum. Notably most of the glycosaminoglycans accumulated by cells on plastic are secreted into the culture medium, while cells on floating gels incorporate almost all their glycosaminoglycans into an extracellular matrix fraction. Cells on attached collagen gels secrete approx. 30% of their glycosaminoglycans and assemble most of the remainder into an extracellular matrix. Hyaluronic acid is produced in significant quantities by cells on plastic and attached gels but in relatively reduced quantity by cells on floating gels. In contrast, iduronyl-rich dermatan sulfate is accumulated by cells on floating gels, where it is primarily associated with the extracellular matrix fraction, but is proportionally reduced in cells on plastic and attached gels. The results are discussed in terms of polarized assembly of a morphologically distinct basal lamina, a process that occurs primarily when cells are on floating gels. In addition, as these cultures secrete certain milk proteins only when cultured on floating gels, we discuss the possibility that cell synthesized glycosaminoglycans and proteoglycans may play a role in the maintenance of a differentiated phenotype.  相似文献   

13.
We have examined conditions under which aggregates of embryonic chick neural retina will extend neurities in vitro. Trypsin-dispersed cells from 7-day embryonic chick neural retina were aggregated in rotation culture for 8 hr and maintained in serum-free medium on a variety of standard culture substrate. Aggregates extend few neurites on untreated plastic, glass, or collagen substrata. However, pretreatment of these substrata with human plasma fibronectin enhances their capacity to support retinal neurite outgrowth. Aggregates cultured on fibronectin-treated substrata extend long, radially oriented neurites within 36 hr in vitro. The morphology of these neurites is distinct from that seen when aggregates are cultured on polylysine-treated substrata. In the latter case, neurites are highly branched and grow concentrically around the aggregate perimeter. Addition of fibronectin to polylysine-treated substrata stimulates radial neurite outgrowth. Promotion of neurite outgrowth is dependent on the amount of fibronectin bound to the culture substratum and on the pH at which binding occurs. The requirements for fibronectin-mediated neurite outgrowth are more stringent than those previously reported for fibroblast attachment and spreading.  相似文献   

14.
The mitogenic response of human lymphocytes was found to be markedly reduced in weightlessness conditions as compared to normal gravity. One possible explanation is that due to the non-existent sedimentation in space the lymphocytes could not adhere and spread on a substratum. Thus, we investigated the effect of substratum adhesiveness on lymphocyte responsiveness by reducing and blocking cell adhesion with poly-HEMA in a simple on-ground system. Lymphocyte adhesiveness was assessed by measuring the proportion of non-adhesive, slightly, and strongly adhesive 51Cr-radiolabelled cells on uncoated and poly-HEMA coated plastic. The amount of cell spreading on surfaces with varying adhesiveness was determined by measuring the area of cells. Cells grown on medium and thick poly-HEMA films were rounded in shape. By contrast, on tissue culture plastic, they showed clear signs of spreading. The mitogenic response of lymphocytes grown on thick poly-HEMA films was reduced by up to 68% of the control (tissue culture plastic). Interferon-gamma production was virtually nil when the cells were grown on the least adhesive substratum. These results show that activated lymphocytes need to anchor and spread prior to achieving an optimal proliferation response. We conclude that decreased lymphocyte adhesion could contribute to the depressed in vitro lymphocyte responsiveness found in the microgravity conditions of space flight.  相似文献   

15.
Summary Previous culture systems for melanocytes have employed serum-supplemented medium and uncoated plastic dishes, prohibiting examination of possible substrate influences on cellular morphology and function. We now report, using a sensitive serum-free system and a quantitative procedure for evaluating cellular morphology, that modification of the plating surface affects human epidermal melanocyte attachment rate and subsequent morphology in vitro. Melanocytes attach and spread more rapidly on surfaces coated with fibronectin or Type I/III collagen or on surfaces previously conditioned by human keratinocytes, dermal fibroblasts, melanocytes, or melanoma cells than do melanocytes on untreated control surfaces. Type IV collagen and laminin, although minimally beneficial for cell attachment, do support a characteristics melanocyte morphology that differs from that seen either on the other coated surfaces or on uncoated plastic controls. Addition of fetal bovine serum at the time of inoculation has no appreciable effect on attachment but markedly improves cell spreading on untreated surfaces, while addition of nerve growth factor with or without serum to this system fails to affect cell attachment or spreading. Our data establish that human epidermal melanocytes are indeed capable of responding morphologically to substrate signals. The ability of several biochemically unrelated surfaces to enhance melanocyte attachment rate and spreading suggests that melanocytes have surface receptors with a variety of specificities. This work is relevant to the development of improved culture systems for melanocytes in vitro and to understanding melanocyte behavior in vivo. This work was supported by the USDA Agricultural Research Service, by a grant from Cheesebrough-Ponds, Inc., and by a Dermatology Foundation Fellowship (Dr. Yaar).  相似文献   

16.
The attachment and detachment behavior of three mouse fibroblast cell lines adhering to plastic tissue culture substrata coated with the serum protein cold-insoluble globulin (CIg) resembles that seen on the usual serumcoated substrata. The transformed cell line SVT2 spreads more extensively on the CIg-coated than on the serum-coated substratum, while the nontransformed Balb/c 3T3 line and concanavalin A-selected “revertant” of SVT2 are equally well spread on both substrata. In all three cases, immunofluorescence microscopy using antibodies to CIg suggests that the cells are more tightly apposed to the CIg-coated substratum than to the serum-coated substratum. Substrate-attached material (SAM), which contains cell-substratum adhesion sites and which is left after EGTA-mediated detachment of cells, is enriched for cell surface fibronectin and glycosaminoglycans (GAG). When cells are seeded onto CIg-coated substrata rather than serum-coated substrata, there is an increased deposition of GAG but a comparable deposition of cellular proteins. The protein distribution of the two types of SAM are identical as analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, including fibronectin content. This indicates that substratum-bound CIg cannot functionally substitute for cell surface fibronectin in these adhesion sites. Analysis of the GAG deposited on CIg-coated substrata reveals that hyaluronate and the chondroitins are increased to a much greater extent than heparan sulfate; however, the ratio of hyaluronate to the various chondroitin species is invariant. These data provide further evidence that hyaluronate and the chondroitins are deposited in adhesion sites in well-defined stoichiometric proportions, possibly as supramolecular complexes, and that CIg may mediate adhesion of cells in the serum layer by binding to GAG-containing proteoglycans.  相似文献   

17.
We have examined the relationship between tension, an intrinsic stimulator of axonal elongation, and the culture substrate, an extrinsic regulator of axonal elongation. Chick sensory neurons were cultured on three substrata: (a) plain tissue culture plastic; (b) plastic treated with collagen type IV; and (c) plastic treated with laminin. Calibrated glass needles were used to increase the tension loads on growing neurites. We found that growth cones on all substrata failed to detach when subjected to two to threefold and in some cases 5-10-fold greater tensions than their self-imposed rest tension. We conclude that adhesion to the substrate does not limit the tension exerted by growth cones. These data argue against a "tug-of-war" model for substrate-mediated guidance of growth cones. Neurite elongation was experimentally induced by towing neurites with a force-calibrated glass needle. On all substrata, towed elongation rate was proportional to applied tension above a threshold tension. The proportionality between elongation rate and tension can be regarded as the growth sensitivity of the neurite to tension, i.e., its growth rate per unit tension. On this basis, towed growth on all substrata can be described by the simple linear equation: elongation rate = sensitivity x (applied tension - tension threshold) The numerical values of tension thresholds and neurite sensitivities varied widely among different neurites. On all substrata, thresholds varied from near zero to greater than 200 mudynes, with some tendency for thresholds to cluster between 100 and 150 mudynes. Similarly, the tension sensitivity of neurites varied between 0.5 and 5.0 microns/h/mudyne. The lack of significant differences among sensitivity or threshold values on the various substrata suggest to use that the substratum does not affect the internal "set points" of the neurite for its response to tension. The growth cone of chick sensory neurons is known to pull on its neurite. The simplest cytomechanical model would assume that both growth cone-mediated elongation and towed growth are identical as far as tension input and elongation rate are concerned. We used the equation above and mean values for thresholds and sensitivity from towing experiments to predict the mean growth cone-mediated elongation rate based on mean rest tensions. These predictions are consistent with the observed mean values.  相似文献   

18.
Laminin glycosyl groups are necessary for the spreading of murine melanoma cells which become attached to this glycoprotein. Laminin has been implicated in myogenesis but the potential role of its glycosyl groups in this process has not been examined. In this study we report the effects of the carbohydrate moieties of laminin on myoblast adhesion, spreading, and differentiation. Unglycosylated laminin from tunicamycin-treated cultures of a mouse cell line, M1536 B3, was used in the experiments. Glycosylated laminin from a murine tumor and from cultures of M1563 B3 cells served as controls. Cell binding experiments with C2C12 mouse myoblasts showed that the cells preferred a laminin-coated surface, compared to the uncoated plastic surface (nontissue culture wells). Myoblasts did not distinguish between glycosylated and unglycosylated laminin substrates. Both glycosylated and unglycosylated forms of laminin promoted myoblast growth and differentiation. In contrast, cells on uncoated plastic surfaces grew very slowly and did not further differentiate. The L6 rat myoblast response to glycosylated and unglycosylated laminin was the same. These results indicate that although rodent myoblasts in culture require a laminin substratum for spreading, growth, and differentiation on a proprietary plastic surface, laminin carbohydrates are not implicated in those cellular responses. In contrast, parallel studies using the lectin, Con A, indicate that cell surface glycoconjugates of myoblasts are implicated in the response of these cells to a laminin substratum.  相似文献   

19.
Summary In the present report we have investigated the role that the physical properties of substrata play in modulating the effects which components of extracellular matrix (ECM) exert on adhesion, spreading, and growth of retinal pigmented epithelial cells. By simple modifications of conditions for protein adsorption on glass we obtained a set of substrata all coated with proteins of ECM (protein carpets) but with different physical properties. Using these protein carpets we have shown that their stability (desorption rate) in tissue culture conditions varies according to the technique with which they were prepared. Both semiremovable and immobilized carpets are stable, whereas removable protein carpets desorb readily. Therefore, the protein concentration or composition or both may change with time in tissue culture depending on the technique used to prepare the carpet. In addition, efficacy of cell attachment to given protein may vary depending on whether a technique used to prepare the protein carpet involves denaturation of the protein. Adherent cells quickly remove (clear) weakly adsorbed protein carpets and it seems that the carpet removal is a mechanical process. During the carpet removal cells are rounded, which indicates that a spread cell phenotype normally associated with stress fibers and focal contacts occurs when the substratum is rigid enough to sustain cell traction. In addition, substrata lacking the rigidity to support the spread phenotype do not support cell proliferation either.  相似文献   

20.
The role of cell-to-substratum adhesion in the initiation, elongation, and branching of axons from embryonic sensory neurons was investigated. Cells from sensory ganglia of 4–8-day-old chicken embryos were cultured on several substrata: including collagen; polyornithine-, polylysine-, and polyglutamate-coated surfaces, and tissue culture dishes. The air-blaster method was used to measure growth cone-substratum adhesion.Growth cones adhere much more strongly to polyornithine- or polylysine-coated surfaces and to the upper surfaces of glial cells than to tissue culture plastic. Axons, too, adhere tightly to these substrata, and are crooked, whereas on tissue culture plastic, axons are not adherent and are straight. The fraction of neurons that form axons and the rates of axonal elongation and branching are markedly increased when cells are cultured on polyornithine-coated dishes as compared to tissue culture dishes.This correlation of strong adhesion and enhanced neuronal morphogenesis suggests that adhesive interactions between the growth cone and the microenvironment in an embryo are crucial parts of the initiation and elongation of neuronal processes. Regulation of neuronal morphogenesis may be expressed through the physicochemical properties of the interacting cell surfaces and extracellular environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号