首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer's disease (AD) is characterized by progressive cognitive impairment associated with accumulation of amyloid beta-peptide, synaptic degeneration and the death of neurons in the hippocampus, and temporal, parietal and frontal lobes of the cerebral cortex. Analysis of postmortem brain tissue from AD patients can provide information on molecular alterations present at the end of the disease process, but cannot discriminate between changes that are specifically involved in AD versus those that are simply a consequence of neuronal degeneration. Animal models of AD provide the opportunity to elucidate the molecular changes that occur in brain cells as the disease process is initiated and progresses. To this end, we used the 3xTgAD mouse model of AD to gain insight into the complex alterations in proteins that occur in the hippocampus and cortex in AD. The 3xTgAD mice express mutant presenilin-1, amyloid precursor protein and tau, and exhibit AD-like amyloid and tau pathology in the hippocampus and cortex, and associated cognitive impairment. Using the iTRAQ stable-isotope-based quantitative proteomic technique, we performed an in-depth proteomic analysis of hippocampal and cortical tissue from 16 month old 3xTgAD and non-transgenic control mice. We found that the most important groups of significantly altered proteins included those involved in synaptic plasticity, neurite outgrowth and microtubule dynamics. Our findings have elucidated some of the complex proteome changes that occur in a mouse model of AD, which could potentially illuminate novel therapeutic avenues for the treatment of AD and other neurodegenerative disorders.  相似文献   

2.
Synaptosomes prepared from frozen postmortem human brain accumulated the neurotransmitter gamma-aminobutyric acid (GABA) and the conformationally restricted GABA analogue cis-3-aminocyclohexanecarboxylic acid (ACHC) by a sodium-dependent, temperature-sensitive, high-affinity transport process into an osmotically sensitive compartment. This transport process could be inhibited by GABA analogues (ACHC, 2,4-diaminobutyric acid, nipecotic acid, arecaidine, guvacine) that have been shown in studies on other species to be relatively selective for neuronal rather than glial uptake systems, whereas the glial uptake inhibitor beta-alanine was ineffective. Synaptosomes prepared from frozen post-mortem human medulla and spinal cord, but not cerebral cortex, took up the neurotransmitter glycine by a sodium-dependent high-affinity transport process. The kinetic parameters for the high-affinity uptake of GABA, ACHC, and glycine were Km = 10 +/- 3, 49 +/- 19, and 35 +/- 19 microM; and Vmax = 98 +/- 15, 84 +/- 25, and 5.5 +/- 2.5 nmol/min/100 mg protein, respectively. These results demonstrate the feasibility of using human CNS preparations for studying GABA and glycine uptake, and suggest that such studies may be useful neurochemical markers for transmitter-specific presynaptic terminals in health and disease.  相似文献   

3.
The syntheses of prostaglandin (PG) F2 alpha, E2 and D2, and thromboxane (TX) B2 from [14C]arachidonic acid were studied in frontal cortex of human control and Alzheimer's disease (AD) brains using the microsomal fractions. Under the assay conditions employed, it was found that the major metabolite of [14C]arachidonic acid was PGE2 accounting for 63% of total prostanoid production; PGF2 alpha accounted for 21.5%, TXB2 for 9%, and PGD2 for 6.5%. When AD samples were compared to control samples, microsomal PG synthesis was significantly decreased, with reduced production of PGE2, PGF2 alpha and PGD2. Such decreases in AD brain seem unrelated to age, sex, postmortem delay and, as far as could be determined, antemortem state. In both control and Alzheimer groups, a history of anti-inflammatory therapy seemed to correlate with increased PG synthesis.  相似文献   

4.
Abstract: Systematic review of antemortem clinical information on randomly selected Alzheimer disease (AD) patients revealed that ∼40% of the patients had a recorded fever of ≥39.2°C at or near death. Using isolation and quantitation techniques appropriate for analysis of human brain mRNAs, we found that low levels of inducible heat-shock protein 70 (hsp70) mRNAs were present in cerebellum of afebrile AD patients and that mRNA levels were usually lower in two brain regions affected in AD, i.e., hippocampus and temporal cortex. Levels of hsp70 mRNAs were increased three- to 33-fold in cerebellum of febrile patients compared with levels in patients whose recorded temperatures were ≤37.5°C. Levels of hsp70 mRNAs were also increased in hippocampus and cortex of these febrile patients, but to a lesser extent than cerebellum. Heat-shock cognate 70 (hsc70) mRNAs were present at highest levels in afebrile cerebellum and were also present in the other brain regions. In cerebellum of patients with the highest temperatures, hsc70 mRNAs were induced severalfold over basal levels. Although there was a low and variable induction of hsc70 mRNAs in temporal cortex of these patients, there was no evidence for any induction in hippocampus. Increased heat-shock 70 mRNA levels did not correlate with hypoxia, coma, hypertension, hypoglycemia, seizures, or medication. These results indicate that a specific agonal stress, namely fever, can increase the levels of heat shock 70 mRNAs in AD brain; however, there is no evidence to suggest that affected regions of AD brain have higher overall levels of these mRNAs. Failure to obtain adequate agonal state information could result in inaccurately identifying short-term stress-related changes in postmortem brain as neuropathology characteristic of a chronic disease state.  相似文献   

5.
The effect of a number of antemortem and postmortem factors on [3H]MK-801 binding was investigated under equilibrium conditions in the frontal cortex of human brains of 38 controls. Binding values transiently increased during the early postnatal period reaching a maximum at the age of about 2 years. After age 10 years [3H]MK-801 binding sites disappeared at 5.7% per decade. The storage time of brain tissue had a reducing effect on these binding sites. There was no effect of gender, brain weight or postmortem time interval and the binding sites were bilaterally symmetrically distributed in the frontal cortex.  相似文献   

6.
Fatty acids play a critical role in brain function but their specific role in the pathophysiology of Parkinson disease (PD) and levodopa-induced motor complications is still unknown. From a therapeutic standpoint, it is important to determine the relation between brain fatty acids and PD because the brain fatty acid content depends on nutritional intake, a readily manipulable environmental factor. Here, we report a postmortem analysis of fatty acid profile by gas chromatography in the brain cortex of human patients (12 PD patients and nine Controls) as well as in the brain cortex of monkeys (four controls, five drug-naive MPTP monkeys and seven levodopa-treated MPTP monkeys). Brain fatty acid profile of cerebral cortex tissue was similar between PD patients and Controls and was not correlated with age of death, delay to autopsy or brain pH. Levodopa administration in MPTP monkeys increased arachidonic acid content (+7%; P < 0 .05) but decreased docosahexaenoic acid concentration (-15%; P < 0.05) and total n-3:n-6 polyunsaturated fatty acids ratio (-27%; P < 0.01) compared to drug-naive MPTP animals. Interestingly, PD patients who experienced motor complications to levodopa had higher arachidonic acid concentrations in the cortex compared to Controls (+13.6%; P < 0.05) and to levodopa-treated PD patients devoid of motor complications (+14.4%; P < 0.05). Furthermore, PD patients who took an above-median cumulative dose of levodopa had a higher relative amount of saturated fatty acids but lower monounsaturated fatty acids in their brain cortex (P < 0.01). These results suggest that changes in brain fatty acid relative concentrations are associated with levodopa treatment in PD patients and in a non-human primate model of parkinsonism.  相似文献   

7.
Mass spectrometry of purified amyloid beta protein in Alzheimer's disease.   总被引:7,自引:0,他引:7  
The amyloid beta-protein (A beta) that is progressively deposited in Alzheimer's disease (AD) arises from proteolysis of the integral membrane protein, beta-amyloid precursor protein (beta APP). Although A beta formation appears to play a seminal role in AD, only a few studies have examined the chemical structure of A beta purified from brain, and there are discrepancies among the findings. We describe a new method for the rapid extraction and purification of A beta that minimizes artifactual proteolysis. A beta purified by two-dimensional reverse-phase HPLC was analyzed by combined amino acid sequencing and mass spectrometry after digestion with a lysylendopeptidase. The major A beta peptide in the cerebral cortex of all five AD brains examined was aspartic acid 1 to valine 40. A minor species beginning at glutamic acid 3 but blocked by conversion to pyroglutamate was also found in all cases. A species ending at threonine 43 was detected, varying from approximately 5 to 25% of total A beta COOH-terminal fragments. Peptides ending with valine 39, isoleucine 41, or alanine 42 were not detected, except for one brain with a minor peptide ending at valine 39. Our findings suggest that A beta 1-40 is the major species of beta-protein in AD cerebral cortex. A beta 1-40 and A beta 1-43 peptides could arise independently from beta APP, or A beta 1-43 could be the initial excised fragment, followed by digestion to yield A beta 1-40. These analyses of native A beta in AD brain recommend the use of synthetic A beta 1-40 peptide to model amyloid fibrillogenesis and toxicity in vitro.  相似文献   

8.
Brain Cytochrome Oxidase in Alzheimer''s Disease   总被引:5,自引:0,他引:5  
A recent demonstration of markedly reduced (-50%) activity of cytochrome oxidase (CO; complex 4), the terminal enzyme of the mitochondrial enzyme transport chain, in platelets of patients with Alzheimer's disease (AD) suggested the possibility of a systemic and etiologically fundamental CO defect in AD. To determine whether a CO deficiency occurs in AD brain, we measured the activity of CO in homogenates of autopsied brain regions of 19 patients with AD and 30 controls matched with respect to age, postmortem time, sex, and, as indices of agonal status, brain pH and lactic acid concentration. Mean CO activity in AD brain was reduced in frontal (-26%: p less than 0.01), temporal (-17%; p less than 0.05), and parietal (-16%; not significant, p = 0.055) cortices. In occipital cortex and putamen, mean CO levels were normal, whereas in hippocampus, CO activity, on average, was nonsignificantly elevated (20%). The reduction of CO activity, which is tightly coupled to neuronal metabolic activity, could be explained by hypofunction of neurons, neuronal or mitochondrial loss, or possibly by a more primary, but region-specific, defect in the enzyme itself. The absence of a CO activity reduction in all of the examined brain areas does not support the notion of a generalized brain CO abnormality. Although the functional significance of a 16-26% cerebral cortical CO deficit in human brain is not known, a deficiency of this key energy-metabolizing enzyme could reduce energy stores and thereby contribute to the brain dysfunction and neurodegenerative processes in AD.  相似文献   

9.
ABSTRACT: BACKGROUND: The multifunctional glycoprotein clusterin has been associated with late-onset Alzheimer's disease (AD). Further investigation to define the role of clusterin in AD phenotypes would be aided by the development of techniques to quantify level, potential post-translational modifications, and isoforms of clusterin. We have developed a quantitative technique based on multiple reaction monitoring (MRM) mass spectrometry to measure clusterin in human postmortem brain tissues. RESULTS: A stable isotope-labeled concatenated peptide (QconCAT) bearing selected peptides from clusterin was expressed with an in vitro translation system and purified. This clusterin QconCAT was validated for use as an internal standard for clusterin quantification using MRM mass spectrometry. Measurements were performed on the human postmortem frontal and temporal cortex from control and severe AD cases. During brain tissues processing, 1% SDS was used in the homogenization buffer to preserve potential post-translational modifications of clusterin. However, MRM quantifications in the brain did not suggest phosphorylation of Thr393, Ser394, and Ser396 residues reported for clusterin in serum. MRM quantifications in the frontal cortex demonstrated significantly higher (P < 0.01) level of clusterin in severe AD group (39.1 +/- 9.1 pmol/mg tissue protein) in comparison to control group (25.4 +/- 4.4 pmol/mg tissue protein). In the temporal cortex, the clusterin levels were not significantly different, 29.0 +/- 7.9 pmol/mg tissue protein and 28.0 +/- 8.4 pmol/mg tissue protein in control and severe AD groups, respectively. CONCLUSIONS: The proposed protocol is a universal quantitative technique to assess expression level of clusterin. It is expected that application of this protocol to quantification of various clusterin isoforms and potential post-translational modifications will be helpful in addressing the role of clusterin in AD.  相似文献   

10.
In the last decade an important role for the progression of neuronal cell death in Alzheimer's disease (AD) has been ascribed to oxidative stress. trans-4-Hydroxy-2-nonenal, a product of lipid peroxidation, forms conjugates with a variety of nucleophilic groups such as thiols or amino moieties. Here we report for the first time the quantitation of glutathione conjugates of trans-4-hydroxy-2-nonenal (HNEGSH) in the human postmortem brain using the specific and very sensitive method of electrospray ionization triple quadrupole mass spectrometry (ESI-MS-MS). Levels of HNEGSH conjugates calculated as the sum of three chromatographically separated diastereomers were determined in hippocampus, entorhinal cortex, substantia innominata, frontal and temporal cortex, as well as cerebellum from patients with AD and controls matched for age, gender, postmortem delay and storage time. Neither age, nor postmortem delay, nor storage time did correlate with levels of HNEGSH conjugates which ranged between 1 and 500 pmol/g fresh weight in the brain areas examined. The brain specimen from patients with clinically and neuropathologically probable AD diagnosed according to criteria of the consortium to establish a registry for AD (CERAD) show increased levels of HNEGSH in the temporal and frontal cortex, as well as in the substantia innominata. Classification of disease severity according to Braak and Braak, which takes into consideration the amount of neurofibrillary tangles and neuritic plaques, revealed highest levels of HNEGSH in the substantia innominata and the hippocampus, two brain regions known to be preferentially affected in AD. These results substantiate the link between conjugates of glutathione with a product of lipid peroxidation and Alzheimer's disease and justify further studies to evaluate the role of HNE metabolites as potential biomarkers for disease progression in AD.  相似文献   

11.
Kynurenic acid is a broad-spectrum excitatory amino acid (EAA) receptor antagonist which is present in the mammalian central nervous system. We describe a method for the measurement of kynurenic acid using isocratic reverse-phase high-performance liquid chromatography (HPLC) with fluorometric detection enhanced by Zn2+ as a postcolumn reagent. The method requires no prior sample preparation procedures other than extraction with 0.1 M HClO4. The reliability of the primary fluorometric method was verified by comparing measurements of tissue concentrations of kynurenic acid in human cerebral cortex and putamen using three different methods of separation with fluorometric detection, as well as four methods utilizing HPLC with coulometric electrode array system (CEAS) detection. All seven methods produced comparable results. The concentration of kynurenic acid in human cerebral cortex was 2.07 +/- 0.61 pmol/mg protein, and in human putamen, 3.38 +/- 0.81 pmol/mg protein. Kynurenic acid was also found to be present in human cerebrospinal fluid (CSF) at a concentration of 5.09 +/- 1.04 nM. The regional distribution of kynurenic acid in the rat brain was examined. Kynurenic acid concentrations were highest in brainstem (149.6 fmol/mg protein) and olfactory bulb (103.9 fmol/mg protein) and lowest in thalamus (26.0 fmol/mg protein). There were no significant postmortem changes in kynurenic acid concentrations in cerebral cortex, hippocampus, and striatum at intervals ranging from 0 to 24 h. Perfusion of the cerebral vasculature with normal saline prior to sacrifice did not significantly alter kynurenic acid content in rat hippocampus, cerebral cortex, or striatum. The analytical methods described are the most sensitive (10-30 fmol injection-1) and specific (utilizing both excitation and emissions properties and electrochemical reaction potentials, respectively) methods for determining kynurenic acid in brain tissue extracts and CSF. These methods should prove useful in examining whether kynurenic acid modulates EAA-mediated neurotransmission under physiologic conditions, as well as in determining the role of kynurenic acid in excitotoxic neuronal death.  相似文献   

12.
Aging is a risk factor for Alzheimer's disease (AD) and is associated with cognitive decline. However, underlying molecular mechanisms of brain aging are not clear. Recent studies suggest epigenetic influences on gene expression in AD, as DNA methylation levels influence protein and mRNA expression in postmortem AD brain. We hypothesized that some of these changes occur with normal aging. To test this hypothesis, we measured markers of the arachidonic acid (AA) cascade, neuroinflammation, pro‐ and anti‐apoptosis factors, and gene specific epigenetic modifications in postmortem frontal cortex from nine middle‐aged [41 ± 1 (SEM) years] and 10 aged subjects (70 ± 3 years). The aged compared with middle‐aged brain showed elevated levels of neuroinflammatory and AA cascade markers, altered pro and anti‐apoptosis factors and loss of synaptophysin. Some of these changes correlated with promoter hypermethylation of brain derived neurotrophic factor (BDNF), cyclic AMP responsive element binding protein (CREB), and synaptophysin and hypomethylation of BCL‐2 associated X protein (BAX). These molecular alterations in aging are different from or more subtle than changes associated with AD pathology. The degree to which they are related to changes in cognition or behavior during normal aging remains to be evaluated.  相似文献   

13.
The soluble tubulin of human cerebral cortex, as assessed by [3H]colchicine binding of the 100,000g supernatant fraction, decreases drastically with age, 75 percent from age 0 to age 90. There is also a considerably lower concentration of high molecular weight proteins in the soluble fraction of postmortem human cerebral cortex than in that of nonhuman species. Human brain tubulin can be polymerized into microtubules with DEAE-dextran. The DEAE-dextran induced microtubules are stable to cold temperature (4°) and calcium. However, in the presence of 1 M glutamate, the microtubules become cold labile and depolymerize at 4°. Thus we have developed a novel method for purifying polymerization competent tubulin from fresh or frozen human cerebral cortex. Human brain tubulin purified by our novel method is very similar to tubulin from the brains of other mammals in molecular weight, amino acid composition, polymerization-depolymerization parameters, and structural dimensions of the microtubules formed.Some aspects of this work have been published as an abstract in 1981. Fed. Proc. 40:1548.  相似文献   

14.
1. Concentrations of the neurotransmitter amines noradrenaline (NA), dopamine (DA), and 5-hydroxytryptamine (5-HT) and the acid metabolites homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were determined in four regions of postmortem brains of demented patients with or without Alzheimer's disease (AD). 2. NA was deficient in the temporal cortex (BA 21) of AD, but not of non-AD, patients. 3. Caudate, in particular, had an impaired dopaminergic system in AD patients, with low HVA levels. 4. In all regions investigated [amygdala, caudate, putamen, temporal cortex (BA 21)] 5-HT was significantly depleted in AD patients, and 5-HIAA was also depleted in amygdala and caudate. 5. These results indicate that neurotransmitter systems other than cholinergic systems are also widely affected in AD and suggest that these deficits may also play an important role in determining the symptomatology of AD.  相似文献   

15.
Quantitative autoradiography was used to examine the distribution of [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding to protein kinase C in the middle frontal and temporal cortices and the hippocampal region of nine control and nine elderly subjects with Alzheimer's disease (AD). AD patients had a clinical diagnosis of the disease that was confirmed neuropathologically by the presence of numerous plaques in the hippocampus and cerebral cortex. Choline acetyltransferase (ChAT) activity was significantly reduced in the middle frontal and temporal cortex and in the hippocampus of AD subjects, with the deficit being greater than 60% of control values. Quantitative autoradiographic analysis of [3H]PDBu binding to protein kinase C revealed a heterogeneous pattern in control brain, being particularly high in superficial layers of the cortex and CA1 of the hippocampus. There were no significant differences between control and AD sections in all areas examined within the middle frontal cortex; e.g., layers I-II control, 491 +/- 46 versus AD, 537 +/- 39 pmol/g of tissue; middle temporal cortex, e.g., layers I-II control, 565 +/- 68 versus AD, 465 +/- 72 pmol/g of tissue; and hippocampal formation, e.g., CA1 control, 511 +/- 28 versus AD, 498 +/- 25 pmol/g of tissue. In a parallel study, [3H]PDBu binding to homogenate preparations of control and AD brain confirmed that there was no significant difference in [3H]PDBu binding in either the particulate or the cytosolic fraction. We have demonstrated in a well-defined population of AD patients that [3H]PDBu binding to protein kinase C remains preserved in brain regions that are severely affected by the neuropathological and neurochemical correlates of AD.  相似文献   

16.
Summary 1. Altered mRNA levels in postmortem brain tissue from persons with Alzheimer's disease (AD) or other neurological diseases are usually presumed to be characteristic of the disease state, even though both agonal state (the physiological state immediately premortem) and postmortem interval (PMI) (the time between death and harvesting the tissue) have the potential to affect levels of mRNAs measured in postmortem tissue. Although the possible effect of postmortem interval on mRNA levels has been more carefully evaluated than that of agonal state, many studies assume that all mRNAs have similar rates of degradation postmortem.2. To determine the postmortem stability of inducible heat shock protein 70 (hsp70) mRNAs, themselves unstablein vivo at normal body temperature, rats were heat shocked in order to induce synthesis of the hsp70 mRNAs. hsp70 mRNA levels in cerebellum and cortex were then compared to those of their heat shock cognate 70 (hsc70) mRNAs, as well as to levels of 18S rRNAs, at 0 and at 24 hr postmortem.3. Quantiation of northern blots after hybridization with an hsp70 mRNA-specific oligo probe indicated a massive loss of hsp70 mRNA signal in RNAs isolated from 24-hr postmortem brains; quantitation by slot-blot hybridization was 5- to 15-fold more efficient. Even using the latter technique, hsp70 mRNA levels were reduced by 59% in 24-hr-postmortem cerebellum and by 78% in cortex compared to mRNA levels in the same region of 0-hr-postmortem brain. There was little reduction postmortem in levels of the hsp70 mRNAs or of 18S rRNAs in either brain region.4.In situ hybridization analysis indicated that hsp70 mRNAs were less abundant in all major classes of cerebellar cells after 24 hr postmortem and mRNAs had degraded severalfold more rapidly in neurons than in glia. There was no corresponding loss of intracellular 18S rRNA in any cell type.5. We conclude from these results that the effect of postmortem interval on mRNA degradation must be carefully evaluated when analyzing levels of inducible hsp70 mRNAs, and perhaps other short-lived mRNAs, in human brain.  相似文献   

17.
Abstract: Galanin is a peptide that is associated with cholinergic neurons of the basal forebrain and, thus, of interest for the neuropathology of Alzheimer's disease. In the present study, human galanin-like immunoreactivity was measured in postmortem human cerebral cortical tissues by using a homologous radioimmunoassay. In an initial study, six cerebral cortical regions were evaluated from nine elderly controls, 13 neuropathologically verified Alzheimer's disease patients, and 19 elderly schizophrenics. A significant 65% increase in galanin was found in frontal cortex Brodmann area 8 of Alzheimer's disease patients compared with controls. In contrast, cerebral cortical tissues from elderly schizophrenics were not different from those from elderly controls in any region. In a second study, 10 cerebral cortical regions were evaluated from 50 neuropathologically verified Alzheimer's disease patients and nine elderly controls. Concentrations of galanin were increased significantly 26–61% in six of 10 cerebral cortical regions examined (Brodmann areas F8, F44, T20, T21, T36, and P22). Purification of brain extracts by size-exclusion Sephadex G-50 chromatography revealed that human galanin-like immunoreactivity eluted in two peaks of different molecular weights. These studies reveal increased concentrations of galanin in the cerebral cortex of Alzheimer's disease, similar to previous findings in basal forebrain tissue. Because galanin inhibits cholinergic neurotransmission, these findings may have important implications in the understanding of Alzheimer's disease neuropathology and associated cognitive deficits.  相似文献   

18.
19.
Brain Quinolinic Acid in Huntington''s Disease   总被引:6,自引:4,他引:2  
Concentrations of the endogenous neurotoxic tryptophan metabolite, quinolinic acid (QA), were measured in postmortem brain tissue obtained from patients with Huntington's disease (HD) and matched controls, using a gas chromatography/mass spectrometry method. There was no significant difference in either the putamen or the frontal cortex between the HD and control groups. These results do not support the hypothesis that increased QA is responsible for neuronal degeneration in HD.  相似文献   

20.
Deficits of cortical nicotinic acetylcholine receptors (nAChRs) have been observed in Alzheimer's disease (AD) by receptor binding assays. Little is known about the receptor subunit specificity influenced by AD, and it might be of importance for therapeutic strategies. In the present study, the protein levels of nAChR alpha3, alpha4, alpha7, and beta2 subunits were investigated using western blot analysis on postmortem brains of patients with AD and age-matched controls. The results showed that in human postmortem brain samples, bands with molecular masses of 52, 42, and 50 kDa were detected by anti-alpha4, anti-alpha7, and anti-beta2 antibodies, respectively. When anti-alpha3 antibody was used, one major band of 49 kDa and two minor bands of 70 and 38 kDa were detected. In AD patients, as compared with age-matched controls, the alpha4 subunit was reduced significantly by approximately 35 and 47% in the hippocampus and temporal cortex, respectively. A significant reduction of 25% in the alpha3 subunit was also observed in the hippocampus and a 29% reduction in the temporal cortex. For the alpha7 subunit, the protein level was reduced significantly by 36% in the hippocampus of AD patients, but no significant change was detected in the temporal cortex. In neither the hippocampus nor the temporal cortex was a significant difference observed in the beta2 subunit between AD patients and controls. These results reveal brain region-specific changes in the protein levels of the nAChR alpha3, alpha4, and alpha7 subunits in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号