首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The proapoptotic protein, prostate apoptosis response-4 (Par-4), acts as a tumor suppressor in prostate cancer cells. The serine/threonine kinase casein kinase 2 (CK2) has a well-reported role in prostate cancer resistance to apoptotic agents or anticancer drugs. However, the mechanistic understanding on how CK2 supports survival is far from complete. In this work, we demonstrate both in rat and humans that (i) Par-4 is a new substrate of the survival kinase CK2 and (ii) phosphorylation by CK2 impairs Par-4 proapoptotic functions. We also unravel different levels of CK2-dependent regulation of Par-4 between species. In rats, the phosphorylation by CK2 at the major site, S124, prevents caspase-mediated Par-4 cleavage (D123) and consequently impairs the proapoptotic function of Par-4. In humans, CK2 strongly impairs the apoptotic properties of Par-4, independently of the caspase-mediated cleavage of Par-4 (D131), by triggering the phosphorylation at residue S231. Furthermore, we show that human Par-4 residue S231 is highly phosphorylated in prostate cancer cells as compared with their normal counterparts. Finally, the sensitivity of prostate cancer cells to apoptosis by CK2 knockdown is significantly reversed by parallel knockdown of Par-4. Thus, Par-4 seems a critical target of CK2 that could be exploited for the development of new anticancer drugs.  相似文献   

2.
Prostate apoptosis response-4 (Par-4) is a 38-kDa protein originally identified as a gene product upregulated in prostate cancer cells undergoing apoptosis. Cell death mediated by Par-4 and its interaction partner DAP like kinase (Dlk) is characterized by dramatic changes of the cytoskeleton. To uncover the role of the cytoskeleton in Par-4/Dlk-mediated apoptosis, we analyzed Par-4 for a direct association with cytoskeletal structures. Confocal fluorescence microscopy revealed that endogenous Par-4 is specifically associated with stress fibers in rat fibroblasts. In vitro cosedimentation analyses and in vivo FRET analyses showed that Par-4 directly binds to F-actin. Actin binding is mediated by the N-terminal 266 amino acids, but does not require the C-terminal region of Par-4 containing the leucine zipper and the death domain. Furthermore, the interaction of Par-4 with actin filaments leads to the formation of actin bundles in vitro and in vivo. In rat fibroblasts, this microfilament association is essential for the pro-apoptotic function of Par-4, since both disruption of the actin cytoskeleton by cytochalasin D treatment and overexpression of Par-4 constructs impaired in actin binding result in a significant decrease of apoptosis induction by Par-4 and Dlk. We propose a model, in which Par-4 recruits Dlk to stress fibers, leading to enhanced phosphorylation of the regulatory light chain of myosin II (MLC) and to the induction of apoptosis.  相似文献   

3.
Par-4 inducible apoptosis in prostate cancer cells   总被引:4,自引:0,他引:4  
Prostate cancer is associated with the inability of prostatic epithelial cells to undergo apoptosis rather than with increased cell proliferation. Prostate apoptosis response-4 (Par-4) is a unique pro-apoptotic molecule that is capable of selectively inducing apoptosis in cancer cells when over-expressed, sensitizing the cells to diverse apoptotic stimuli and causing regression of tumors in animal models. This review discusses the salient functions of Par-4 that can be harnessed to prostate cancer therapy.  相似文献   

4.
Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm and is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis.  相似文献   

5.
Par-4 (prostate apoptosis response 4) is a pro-apoptotic protein and tumour suppressor that was originally identified as a gene product up-regulated during apoptosis in prostate cancer cells. Here, we show, for the first time, that Par-4 is expressed and co-localizes with the actin filament bundles in vascular smooth muscle. Furthermore, we demonstrate that targeting of ZIPK to the actin filaments, as observed upon PGF-2α stimulation, is inhibited by the presence of a cell permeant Par-4 decoy peptide. The same decoy peptide also significantly inhibits PGF-2α induced contractions of smooth muscle tissue. Moreover, knockdown of Par-4 using antisense morpholino nucleotides results in significantly reduced contractility, and myosin light chain and myosin phosphatase target subunit phosphorylation. These results indicate that Par-4 facilitates contraction by targeting ZIPK to the vicinity of its substrates, myosin light chain and MYPT, which are located on the actin filaments. These results identify Par-4 as a novel regulator of myosin light chain phosphorylation in differentiated, contractile vascular smooth muscle.  相似文献   

6.
7.
Apoptosis by Par-4 in cancer and neurodegenerative diseases   总被引:12,自引:0,他引:12  
  相似文献   

8.
9.
The elevated expression of prostate apoptosis response-4 (PAR-4) induces apoptosis in differentiating mouse embryonic stem (ES) cells. In embryoid body (EB) cells and the E15.5 stage of embryonic mouse brain, PAR-4 is expressed as two isoforms (38 and 33 kDa). Using mouse EB-derived RNA as a template we have cloned and characterized a novel isoform of PAR-4 (PAR-4/p33) that lacks exon 3 and shows a bona fide splice junction of exons 2 and 4. The molecular mass for PAR-4/p33 is estimated to be 33 kDa, corresponding to the short form found in the EB cells and E15.5 mouse brain. The fluorescent fusion protein of PAR-4/p33 is mainly found in the cytosol and is co-distributed with F-actin filaments, while that of the 38 kDa full length PAR-4/p38 is predominantly translocated to the nucleus. In contrast to the full length PAR-4 (PAR-4/p38), ectopic expression of PAR-4/p33 does not result in the activation of caspase 3 and the induction of apoptosis. PAR-4/p33 forms a complex with PAR-4/p38, which inhibits its nuclear translocation and the induction of apoptosis. PAR-4/p33 is suggested to be a dominant negative isoform of PAR-4/p38 and may regulate PAR-4-dependent apoptosis.  相似文献   

10.
Choi J  Lee B  Lee E  Yoon BK  Bae D  Choi D 《Cryobiology》2008,56(1):36-42
Cryopreservation of ovarian tissue has been reported to delay the development of preantral follicles during in vitro culture, but the mechanism causing this impairment has not been brought to light. In order to elucidate the underlying mechanism of delayed follicular development, we evaluated the effects of cryopreservation on the proliferation of granulosa cells during culture of mouse preantral follicles, as a sufficient population of granulosa cells is critical for normal follicular development. Additionally the initial cell death of granulosa cells was estimated immediately after cryopreservation. The ovarian tissues obtained from 12-day-old female mice were cryopreservation by vitrification. The granulosa cell proliferation was evaluated by measuring the PCNA expression and the expression of cell cycle regulators such as cyclin D2, CDK4, cyclin E and CDK2 in preantral follicles isolated from fresh and cryopreserved ovarian tissues that were cultured for 48 h. The viability of granulosa cells was evaluated by measuring the proportion of necrotic areas. The granulosa cell proliferation of the cryopreserved preantral follicles was decreased significantly compared to that of the fresh controls at 0 and 24 h after culture (P < 0.05), and this was increased to the control levels after 48 h of culture. The expressions of cyclin D2, Cdk 4, cyclin E and Cdk2 were also decreased in the cryopreserved ovarian tissues at 0 and 24 h after culture (P < 0.05), but they were increased to the control levels after 48 h of culture. The proportion of the necrotic area was significantly higher in cryopreserved preantral follicles compared to that of the fresh preantral follicles (P < 0.05). This suggests that cryopreservation of ovarian tissues may delay the preantral follicle development by temporary suppressing the granulosa cell proliferation through the cell cycle regulators (cyclin D2, Cdk4, cyclin E and Cdk2) and by granulosa cell death immediately after warming.  相似文献   

11.
Summary The structure of follicular layer of growing and atretic follicles in the ovary of the domestic goose, was studied by electron microscopy. In small follicles, the wall is lined with a narrow layer of tightly packed small, cuboidal cells separated from the thecal tissue by the basal lamina. During growth, they transform into tall, columnar cells arranged in a single row. The cells display several peculiar ultrastructural features. First, annulate lamellae are commonly observed. Second, cytoplasmic dense-cored granules accumulate in close association with fenestrated cisternae and networks of tubuli derived from the RER. They consist of spheres and strands of amorphous substance of unknown origin. Third, the cells contain many transosomes, a unique organelle of the avian follicle cell consisting of a dense plaque associated with ribosome-like particles. The mature forms of transosomes are located at the tips of lateral and apical cell projections, while bodies thought to be their precursors, are found in the apical cytoplasm. In follicles larger than 8 mm in diameter, most of the transosomes and their precursors have disappeared. Follicular atresia occurs in all of the size-classes of follicles investigated. A loss of transosomes (in follicles up to 8 mm in diameter) and an accumulation of lipid droplets are the first atretic events detectable by electron microscopy. Morphologic features, including deep nuclear indentations, accumulation of lipid droplets frequently encireled by membrane whorls, dilation and disintegration of RER cisterns, swelling of mitochondria and accumulation of dense irregular masses of unknown origin in the cytoplasm, are taken as evidence for advanced degradation. We conclude that necrosis is the dominant type of cell death of the follicular cells during atresia. However, a small fraction of cells, characterized by dark condensed cytoplasm, seems to die by apoptosis.  相似文献   

12.
13.
Direct production of gonadal steroids from sulfated adrenal androgens may be an important alternative or complementary pathway for ovarian steroidogenesis. The conversion of sulfated adrenal androgens, present in serum at micromolar concentrations in adult women, into unconjugated androgens or estrogens requires steroid sulfatase (STS) activity. STS activity has not been characterized in the rat ovary. Substantial STS activity was present in homogenates of rat ovaries, primary cultures of rat granulosa cells, and a granulosa cell line, as determined by conversion of radiolabeled estrone sulfate (E1S) to unconjugated estrone. The potent inhibitor estrone sulfamate eliminated the STS activity. Using E1S as a substrate with microsomes prepared from a granulosa cell line, the Km of STS activity was approximately 72 μM, a value in agreement with previously published data for rat STS. Therefore, ovarian cells possess STS and can remove the sulfate from adrenal androgens such as dehydroepiandrosterone sulfate (DHEA-S). Using DHEA-S as a steroidogenic substrate represents an alternative model for the production of ovarian steroids versus the “two cell, two gonadotropin” model of ovarian estrogen synthesis, whereby thecal cells produce androgens from substrate cholesterol and granulosa cells convert the androgens into estrogens. The relative contribution of STS activity to ovarian steroidogenesis remains unclear but may have important physiological and pathophysiological implications.  相似文献   

14.
Summary The granulosa cells of the ovarian follicle of the rat and the domestic fowl have been studied with the light and electron microscope. The nuclei of the granulosa cells were irregular with indentations and large in proportion to the cytoplasm of the cell. The mitochondria had a dense, dark matrix with only few cristac. The Golgi apparatus was moderately developed, located towards the oocyte in a juxtanuclear position. The endoplasmic reticulum was rather sparse. Lipid droplets were only occasionally encountered. Microtubules were regularly observed. The functions of the granulosa cells are discussed. Compared with the steroid-producing cells of the theca interna of the same follicles, the granulosa cells primarily are the nursing cells for the growing oocyte and mainly have the characteristics of protein forming cells.  相似文献   

15.
In the present paper, we have studied the expression of the Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) and its putative biological role in the sheep ovary. We found by Northern-blot, immunohistochemistry and immunoblot that PTEN is highly expressed in granulosa cells from large differentiated follicles (LF) in comparison with small proliferating follicles (SF) (P < 0.001), with no clear effect of follicle quality. Moreover, the PTEN lipid phosphatase activity is also higher in LF than in SF (P < 0.01). In contrast, levels of the phosphorylated form of AKT (pAKT) are lower in LF than in SF (P < 0.0001). IGF-I and insulin but not FSH, LH or forskolin are able to stimulate the expression of PTEN mRNA (P < 0.001) and protein by ovine granulosa cells after 48 h of culture in vitro. An IGF-1 time course analysis showed that expression of PTEN protein appeared after 12h of culture, concomitant with the fall of the pAKT levels, which peaked after 6h of stimulation with IGF-I. Moreover, transfection experiments showed that overexpression of PTEN in ovine granulosa cells induced a decrease and an increase in E2F and p27 promoter activity, respectively (P < 0.05). Overall, our present data show for the first time that the expression of PTEN increases during terminal follicular growth. This increase, that might be induced by IGF-I but not FSH, would participate in the proliferation/differentiation transition of ovine granulosa cells in differentiating follicles.  相似文献   

16.
Prostate apoptosis response 4 (Par-4) is a ubiquitously expressed proapoptotic tumor suppressor protein. Here, we show for the first time, that Par-4 is a novel substrate of caspase-3 during apoptosis. We found that Par-4 is cleaved during cisplatin-induced apoptosis in human normal and cancer cell lines. Par-4 cleavage generates a C-terminal fragment of ~25 kDa, and the cleavage of Par-4 is completely inhibited by a caspase-3 inhibitor, suggesting that caspase-3 is directly involved in the cleavage of Par-4. Caspase-3-deficient MCF-7 cells do not show Par-4 cleavage in response to cisplatin treatment, and restoration of caspase-3 in MCF-7 cells produces a decrease in Par-4 levels, with the appearance of a cleaved fragment. Additionally, knockdown of Par-4 reduces caspase-3 activation and apoptosis induction. Site-directed mutagenesis reveals that Par-4 cleavage by caspase-3 occurs at an unconventional site, EEPD(131)↓G. Interestingly, overexpression of wild-type Par-4 but not the Par-4 D131A mutant sensitizes cells to cisplatin-induced apoptosis. Upon caspase-3 cleavage, the cleaved fragment of Par-4 accumulates in the nucleus and displays increased apoptotic activity. Overexpression of the cleaved fragment of Par-4 inhibits IκBα phosphorylation and blocks NF-κB nuclear translocation. We have identified a novel specific caspase-3 cleavage site in Par-4, and the cleaved fragment of Par-4 retains proapoptotic activity.  相似文献   

17.
18.
Summary We have previously demonstrated that estrogen can exert inhibitory or atretogenic effects on the ovaries of both rats and rhesus monkeys in vivo. This study was designed to test whether the hamster (Mesocricetus auratus) is an appropriate model in which to test the effects of estrogens (diethylstilbestrol and estradiol-17) on steroid accumulation by ovarian granulosa cells in vitro, and whether the effects are similar to those demonstrated for other species in vivo. Immature female hamsters were injected with pregnant mare's serum gonadotropin at 28 to 30 days of age. Animals were sacrificed and follicular contents aspirated three days later. Granulosa cells were either left untreated or treated with diethylstilbestrol or estradiol (1×10-7 M) in vitro for 72 h in the presence of androstenedione (1×10-7 M), and in the presence or absence of serum (10%) or human follicle-stimulating hormone (20 ng/ml), and long-term accumulation of estrogen and progesterone was determined. Diethylstilbestrol inhibited accumulation of estrogen regardless of the presence or absence of follicle-stimulating hormone. In contrast, only estradiol plus follicle-stimulating hormone augmented accumulation of progesterone by granulosa cells. These findings that estrogen can be non-stimulatory or inhibitory to function of granulosa cells in vitro parallel those shown in vivo. Our experimental approach may therefore represent an appropriate model for study of the direct effects of estradiol on the function of granulosa cells.  相似文献   

19.
Progesterone is a survival factor in rat periovulatory granulosa cells. The mechanisms involved are unclear but progesterone receptor (PGR) antagonists have been shown to inhibit cholesterol synthesis and induce apoptosis. Furthermore, reports suggest that statins induce apoptosis by inhibition of protein isoprenylation. Statins inhibit the rate-limiting step of the cholesterol synthesis, thereby reducing availability of intermediates used for the post-translational isoprenylation process. It has been suggested that PGR antagonists in a similar manner induce apoptosis by decreasing cholesterol synthesis and thereby protein isoprenylation. In this study we hypothesized that the mechanism by which the nuclear PGR antagonist Org 31,710 induces apoptosis in rat periovulatory granulosa cells, is by decreasing cholesterol synthesis and thereby general cell protein isoprenylation. Incubation of isolated granulosa cells with Org 31,710 or simvastatin for 22 hr resulted in increased apoptosis and reduced cholesterol synthesis. However, simvastatin caused a substantial inhibition of cholesterol synthesis after 6 hr in culture without inducing apoptosis. In contrast, Org 31,710 had only a modest effect on cholesterol synthesis after 6 hr while it significantly induced apoptosis. Addition of isoprenylation substrates partially reversed apoptosis induced by simvastatin and to a lesser extent apoptosis induced by Org 31,710. In addition, and in contrast to Org 31,710, simvastatin caused a decrease in isoprenylation of a selected isoprenylation marker protein, the Ras-related protein RAB11. In conclusion, we demonstrate that the PGR antagonist inhibits cholesterol synthesis in granulosa cells but reduced protein isoprenylation is not the mediating mechanism of increased apoptosis as previously hypothesized.  相似文献   

20.
The prostate apoptosis response-4 (par-4) gene was identified by differential screening for genes that are upregulated when prostate cancer cells are induced to undergo apoptosis. The par-4 gene is induced by apoptotic signals but not by growth-arresting, necrotic, or growth-stimulatory signals. The deduced amino acid sequence of par-4 predicts a protein with a leucine zipper domain at its carboxy terminus. We have recently shown that the Par-4 protein binds, via its leucine zipper domain, to the zinc finger domain of Wilms' tumor protein WT1 (R. W. Johnstone et al., Mol. Cell. Biol. 16:6945-6956, 1996). In experiments aimed at determining the functional role of par-4 in apoptosis, an antisense par-4 oligomer abrogated par-4 expression and activator-driven apoptosis in rat prostate cancer cell line AT-3, suggesting that par-4 is required for apoptosis in these cells. Consistent with a functional role for par-4 in apoptosis, ectopic overexpression of par-4 in prostate cancer cell line PC-3 and melanoma cell line A375-C6 conferred supersensitivity to apoptotic stimuli. Transfection studies with deletion mutants of Par-4 revealed that full-length Par-4, but not mutants that lacked the leucine zipper domain of Par-4, conferred enhanced sensitivity to apoptotic stimuli. Most importantly, ectopic coexpression of the leucine zipper domain of Par-4 inhibited the ability of Par-4 to enhance apoptosis. Finally, ectopic expression of WT1 attenuated apoptosis, and coexpression of Par-4 but not a leucine zipperless mutant of Par-4 rescued the cells from the antiapoptotic effect of WT1. These findings suggest that the leucine zipper domain is required for the Par-4 protein to function in apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号