首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotational diffusion of the total cytochrome P-450 (P-450scc plus P-45011 beta) in bovine adrenocortical mitochondria was examined by observing the decay of absorption anisotropy, r(t), after photolysis of the hemo.CO complex by a vertically polarized laser flash. Analysis of r(t) was based on a "rotation-about-membrane normal" model. The measurements were used to investigate intermolecular interactions of cytochrome P-450 with other membrane proteins. The absorption anisotropy decayed within 1 ms to a time-independent value. Rotational diffusion of cytochrome P-450 was dependent on the presence and absence of deoxycorticosterone (DOC), a substrate for cytochrome P-45011 beta. The observed value for the normalized time-independent anisotropy r(infinity)/r(0) and the average rotational relaxation time phi are r(infinity)/r(0) = 0.88 and phi = 233 microseconds when DOC is absent, and r(infinity)/r(0) = 0.65 and phi = 350 microseconds when DOC is present. Judging from the phi value, rotating P-450 is not a monomeric molecule, but would be a small microaggregate with an average diameter of about 120 A. A significantly high value of r(infinity)/r(0) implies co-existence immobile populations of cytochrome P-450. Based on the assumption that the heme angle tilts 55 degrees from the membrane plane (Gut et al. (1983) J. Biol. Chem. 258, 8588-8594), 65% (when DOC is present) or 88% (when DOC is absent) of cytochrome P-450 in mitochondria is immobilized within the experimental time range of 2 ms due to the presence of immobile protein microaggregates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The rotational mobility of the phosphate translocator from the chloroplast envelope and of lipid molecules in the membrane of unilamellar azolectin liposomes has been investigated. The rotational dynamics of the liposome membrane were investigated by measuring the rotational diffusion of eosin-5-isothiocyanate(EITC)-labeled L-alpha-dipalmitoylglycerophosphoethanolamine (Pam2 GroPEtn) in the lipid phase of the vesicles, either in the presence or absence of the reconstituted phosphate translocator. The temperature dependence of the anisotropy decay showed that above 25 degrees C the main contribution to the anisotropy decay was caused by uniaxial anisotropic rotation of the labelled lipid molecules around the axis normal to the membrane plane. The rate of rotation of the labelled lipid molecules was strongly dependent on the viscosity of the medium (eta 1). Extrapolation to eta 1 = 0 Pa.s yielded a correlation time of phi = 20 +/- 5 ns, t = 30 degrees C, for lipid rotation with respect to the membrane normal. The rotational diffusion coefficient of the lipid molecules was calculated to be Dr = 2.0 x 10(9) rad2.s-1 and the apparent microviscosity in the vesicle membrane, as derived from the rotational correlation time, was eta 2 approximately 12 mPa.s. The rotational correlation time of the phosphate translocator in the membrane was only slightly dependent on the viscosity of the medium. The temperature dependence of the protein rotation also indicated that the rotation of the protein in the membrane was largely restricted and occurred mainly about the axis normal to the membrane plane. Measurements at a medium viscosity of eta 1 = 1 mPa.s yielded a value of phi r approximately 450 ns corresponding to Dr = 8.8 x 10(7) rad2.s-1 for protein rotation with respect to the membrane normal. From this value and the data of the lipid rotation, the cross-sectional area of the protein part embedded in the membrane was calculated to be approximately 9 nm2. This cross-sectional area is large enough to include at most 14 membrane-spanning helices. Our results also indicated that at lipid/protein molar ratios greater than or equal to 1.5 x 10(4): 1 aggregation occurred in the model membranes below 30 degrees C. However, above 30 degrees C and at a high dilution of the protein in the membrane it appeared that the membrane viscosity monitored by lipid and protein rotational diffusion were identical.  相似文献   

3.
S Kawato  K Kinosita  A Ikegami 《Biochemistry》1977,16(11):2319-2324
Molecular motions in liposomes of dipalmitoyl-phosphatidylcholine (DPPC) were studied by nanosecond fluorescence techniques. As a fluorescent probe for the hydrocarbon region, 1,6-diphenyl-1,3,5-hexatriene (DPH) was used. Time courses of fluorescence intensity IT(t) and emission anisotropy r(t) of DPH embedded in DPPC liposomes were measured at various temperatures. The value of the fluorescence lifetime tau obtained froma single exponential decay of IT(t) was somewhat higher than that in liquid paraffin below the transition temperature Tt and decreased above Tt. Higher values of tau below Tt indicate the almost complete hydrophobic environment. The decay curves of r(t) were separated into two phases: an initial fast decreasing phase of the order of one nanosecond and a second almost constant phase. This indicates that the orientational motion of DPH in the hydrocarbon region is described by a wobbling diffusion restricted by a certain anisotropic potential. The results were analyzed on the model that the wobbling diffusion is confined in a cone with a uniform diffusion constant. Though temperature dependence of the cone angle was sigmoidal, that of the wobbling diffusion constant was like the exponential function. The change in the cone angle at Tt was sharper than that in the wobbling diffusion constant at Tt. Estimated values of the viscosity in the cone were an order of magnitude smaller than the values of "microviscosity" which were estimated from the steady-state emission anisotropy without considering the restrictions on the rotational motion.  相似文献   

4.
The theory of fluorescent emission anisotropy [r(t)] of a cylindrical probe in a membrane suspension is developed. It is shown, independent of any model, that the limiting anisotropy [r(infinity)] is proportional to the square to the order parameter of the probe. The order parameter determines the first nontrivial term in the expansion of the equilibrium orientational distribution function of the probe in a series of Legendre polynomials. Following Kinosita, Kawato, and Ikegami, the motion of the probe is described as diffusion ("wobbling") within a cone of semiangle theta 0. Within the framework of this model, an accurate single-exponential approximation for r(t) is considered. An analytic expression relating the effective relaxation time, which appears in the above approximation, to theta 0 and the diffusion coefficient for wobbling is derived. The model is generalized to the situation where the probe is attached to a macromolecule whose motion cannot be neglected on the time scale of the fluorescence experiment. Finally, by exploiting the formal similarity between the theory of fluorescence depolarization and 13C-NMR dipolar relaxation, expressions for T1, T2, and the nuclear Overhauser enhancement are derived for a protonated carbon which is nonrigidly attached to a macromolecule and undergoes librational motion described as diffusion on a spherical "cap" of semiangle theta 0.  相似文献   

5.
Effect of drug-induction on the rotation of cytochrome P-450 and on lipid fluidity in rat liver microsomes was examined. Rotational diffusion of cytochrome P-450 was examined by observing the decay of absorption anisotropy, r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. Analysis of r(t) was based on a "rotation-about-membrane normal" model. Microsomal lipid fluidity was measured by observing fluorescence anisotropy of DPH incorporated in the lipid bilayer. The absorption anisotropy decayed within 2 ms to a time-independent value. Rotational diffusion of cytochrome P-450 was dependent on the drug-induction with PB, MC, and PCB when compared with non-induced CON-microsomes. The observed values for the normalized time-independent anisotropy r(infinity)/r(0) are r(infinity)/r(0) = 0.41 (CON-microsomes), 0.54 (PB-microsomes), 0.52 (MC-microsomes), and 0.57 (PCB-microsomes). The average rotational relaxation time phi = 580-690 microseconds was almost unchanged over all microsomes presently examined. A significantly high value of r(infinity)/r(0) = 0.41-0.57 implies the co-existence of mobile and immobile populations of cytochrome P-450. Based on the assumption that the heme tilts about 55 degrees from the membrane plane for all species of P-450s besides P-450PB, 59% (CON-microsomes), 46% (PB-microsomes), 48% (MC-microsomes), and 43% (PCB-microsomes), respectively, of the cytochrome P-450 in microsomes is calculated to be mobile. Upon drug-induction the microsomal membrane was fluidized to some extent as judged by the steady-state fluorescence anisotropy of 0.156 for CON-microsomes and 0.139-0.148 for drug-induced microsomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
K Dornmair  A F Corin  J K Wright    F Jhnig 《The EMBO journal》1985,4(13A):3633-3638
The lactose permease of Escherichia coli was labeled with eosinyl-maleimide, reconstituted into vesicles of dimyristoylphosphatidylcholine and subjected to time-dependent phosphorescence anisotropy measurements in order to determine the rotational diffusion coefficient. By comparison with bacteriorhodopsin, the diffusion coefficient is evaluated in terms of an effective radius of the lactose permease in the plane of the membrane. This radius amounts to 20 +/- 2 A which implies that the lactose permease is a monomer. The monomeric state is maintained in the presence of a membrane potential.  相似文献   

7.
Y Ohta  S Kawato  H Tagashira  S Takemori  S Kominami 《Biochemistry》1992,31(50):12680-12687
Purified adrenocortical microsomal cytochromes P-45017 alpha,lyase and P-450C21 were reconstituted with and without NADPH-cytochrome P-450 reductase in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles at a lipid to P-450 ratio of 35 (w/w) by cholate dialysis procedures. Trypsinolysis revealed that a considerable part of each P-450 molecule is deeply embedded in the lipid bilayer, on the basis of the observation of no detectable digestion for P-45017 alpha,lyase and the proteolysis-resistant membrane-bound heavy fragments for P-450C21. Rotational diffusion was measured in proteoliposomes and adrenocortical microsomes by observing the decay of absorption anisotropy, r(t), after photolysis of the heme-CO complex. Analysis of r(t) was based on a "rotation-about-membrane normal" model. The absorption anisotropy decayed within 1-2 ms to a time-independent value r3. Coexistence of a mobile population with an average rotational relaxation time phi of 138-577 microseconds and immobile (phi > or = 20 ms) populations of cytochrome P-450 was observed in both phospholipid vesicles and microsomes. Different tilt angles of the heme plane from the membrane plane were determined in proteoliposomes to be either 47 degrees or 63 degrees for P-45017 alpha,lyase from [r3/r(0)]min = 0.04 and either 38 degrees or 78 degrees for P-450C21 from [r3/r(0)]min = 0.19, when these P-450s were completely mobilized by incubation with 730 mM NaCl. Very different interactions with the reductase have been observed for the two P-450s in proteoliposomes. In the presence of the reductase, the mobile population of cytochrome P-450C21 was increased significantly from 79% to 96% due to dissociation of P-450 oligomers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
M Yamada  Y Ohta  T Sakaki  Y Yabusaki  H Ohkawa  S Kawato 《Biochemistry》1999,38(29):9465-9470
A fusion protein of rat liver CYP1A1 with NADPH-cytochrome P450 reductase was expressed genetically in yeast microsomal membranes. This flavo-cytochrome is active in 6-hydroxylation of zoxazolamine. Rotational diffusion of the fusion protein was examined by observing the flash-induced absorption anisotropy r(t) of the P450.CO complex. Theoretical analysis of r(t) was performed based on a "rotation-about-membrane normal" model. The absorption anisotropy decayed within 2 ms to a time-independent value r(3). Forty percent of the fusion protein rotated with a rotational relaxation time phi of 1.35 ms. Treatment with high salt increased the mobile population of the fusion protein to 62% with phi = 0.96 ms. The mobile population of the fusion protein is close to that of CYP1A1 coexpressed with the P450 reductase and greater than that of CYP1A1 alone [Iwase et al. (1991) Biochemistry 30, 8347-8351]. The large mobile population of the fusion protein provides evidence that CYP1A1 is mobilized by forming associations with P450 reductase in microsomal membranes.  相似文献   

9.
The dominant motional mode for membrane proteins is uniaxial rotational diffusion about the membrane normal axis, and investigations of their rotational dynamics can yield insight into both the oligomeric state of the protein and its interactions with other proteins such as the cytoskeleton. However, results from the spectroscopic methods used to study these dynamics are dependent on the orientation of the probe relative to the axis of motion. We have employed polarized fluorescence confocal microscopy to measure the orientation of eosin-5-maleimide covalently reacted with Lys-430 of human erythrocyte band 3. Steady-state polarized fluorescence images showed distinct intensity patterns, which were fit to an orientation distribution of the eosin absorption and emission dipoles relative to the membrane normal axis. This orientation was found to be unchanged by trypsin treatment, which cleaves band 3 between the integral membrane domain and the cytoskeleton-attached domain. this result suggests that phosphorescence anisotropy changes observed after trypsin treatment are due to a rotational constraint change rather than a reorientation of eosin. By coupling time-resolved prompt fluorescence anisotropy with confocal microscopy, we calculated the expected amplitudes of the e-Dt and e-4Dt terms from the uniaxial rotational diffusion model and found that the e-4Dt term should dominate the anisotropy decay. Delayed fluorescence and phosphorescence anisotropy decays of control and trypsin-treated band 3 in ghosts, analyzed as multiple uniaxially rotating populations using the amplitudes predicted by confocal microscopy, were consistent with three motional species with uniaxial correlation times ranging from 7 microseconds to 1.4 ms.  相似文献   

10.
The photoinduced linear dichroism of absorption changes resulting from photolysis of the complex between heme a3 of the cytochrome oxidase and CO is studied. The experiments started from isotropic solutions or suspensions of the enzyme both in its isolated form and in mitochondria. The anisotropy responsible for the linear dichroism was induced by excitation with a flash of linearly polarized light. The dichroic ratios observed with various systems; polymerized enzyme in solution, enzyme in mitochondria and in submitochondrial particles (at 20 degrees C as well as at liquid N2-temperature) all approached a value of 4/3 which characterizes a chromophore which is circularly degenerate. Therefrom we conclude that the interaction of heme a3 with its microenvironment within the protein does not break its four-fold symmetry. The experiments with mitochondria and submitochondrial particles suspended in aqueous buffer revealed similarly high dichoric ratios without any dichroic relaxation other than a rather slow one which could be attributed to the rotation of the whole organelle in the suspending medium. Therefrom we conclude that the cytochrome oxidase either is totally immobilized in the membrane, or that it carries out only limited rotational diffusion around a single axis coinciding with the symmetry axis of heme a3. In the light of independent evidence for a transmembrane arrangement of the oxidase and for the general fluidity of the inner mitochondrial membrane we consider anisotropic mobility of the cytochrome oxidase around an axis normal to the plane of the membrane as the most likely interpretation. Then our experimental results imply that the plane of heme a3 is coplanar to the membrane.  相似文献   

11.
Translational and rotational diffusion of fluorescent molecules on the surface of small biological systems such as vesicles, proteins and micelles depolarize the fluorescence. A recent study has treated the case of the translational dynamics of surface probes (M.M.G. Krishna, R. Das, N. Periasamy and R. Nityananda, J. Chem. Phys., 112 (2000) 8502-8514) using Monte Carlo and theoretical methods. Here we extend the application of the methodologies to apply the case of rotational dynamics of surface probes. The corresponding fluorescence anisotropy decays were obtained using the Monte Carlo simulation methods for the two cases: surface probes undergoing rotational dynamics on a plane and on a sphere. The results were consistent with the theoretical equations which show that Monte Carlo methods can be used to simulate the surface diffusion problems. The anisotropy decay for the rotational diffusion of a molecule on a planar surface is single exponential and the residual anisotropy is zero. However, residual anisotropy is finite for the case of rotational diffusion on a sphere because of the spatial averaging of the anisotropy function. The rotational correlation time in both the cases is (4Drot)(-1) with Drot being the rotational diffusion coefficient. Rotational dynamics of a surface bound dye in a single giant liposome and in sonicated vesicles were studied and the results were explained according to the theoretical equations. A fast component of fluorescence depolarization was also observed for sonicated vesicles which was interpreted as wobbling-in-cylinder dynamics of the surface-bound dye.  相似文献   

12.
Wu Q  Chen C  Koutalos Y 《Biophysical journal》2006,91(12):4678-4689
The visual pigment protein of vertebrate rod photoreceptors, rhodopsin, contains an 11-cis retinyl moiety that is isomerized to all-trans upon light absorption. Subsequently, all-trans retinal is released from the protein and reduced to all-trans retinol, the first step in the recycling of rhodopsin's chromophore group through the series of reactions that constitute the visual cycle. The concentration of all-trans retinol in photoreceptor outer segments can be monitored from its fluorescence. We have used two-photon excitation (720 nm) of retinol fluorescence and fluorescence recovery after photobleaching to characterize the mobility of all-trans retinol in frog photoreceptor outer segments. Retinol produced after rhodopsin bleaching moved laterally in the disk membrane bilayer with an apparent diffusion coefficient of 2.5 +/- 0.3 micro m(2) s(-1). The diffusion coefficient of exogenously added retinol was 3.2 +/- 0.5 micro m(2) s(-1). These diffusion coefficients are in close agreement with those reported for lipids, suggesting that retinol is not tightly bound to protein sites that would be diffusing much more slowly in the plane of the membrane. In agreement with this interpretation, a fluorescent-labeled C-16 fatty acid diffused laterally with a similar diffusion coefficient, 2.2 +/- 0.2 micro m(2) s(-1). Retinol also moved along the length of the rod outer segment, with an apparent diffusion coefficient of 0.07 +/- 0.01 micro m(2) s(-1), again suggesting that it is not tightly bound to proteins that would confine it to the disks. The axial diffusion coefficient of exogenously added retinol was 0.05 +/- 0.01 micro m(2) s(-1). In agreement with passive diffusion, the rate of axial movement was inversely proportional to the square of the length of the rod outer segment. Diffusion of retinol on the plasma membrane of the outer segment can readily account for the measured value of the axial diffusion coefficient, as the plasma membrane comprises approximately 1% of the total outer-segment membrane. The values of both the lateral and axial diffusion coefficients are consistent with most of the all-trans retinol in the outer segments moving unrestricted and not being bound to carrier proteins. Therefore, and in contrast to other steps of the visual cycle, there does not appear to be any specialized processing for all-trans retinol within the rod outer segment.  相似文献   

13.
Clustering of membrane proteins is a dynamic process which can regulate cellular function and signaling. The size of receptor and other membrane protein clusters can in principle be measured in terms of their rotational diffusion. However, in practice, measuring rotation of membrane proteins of live cells has been difficult, largely because of the difficulty of rigidly attaching reporter groups to the molecules of interest. Here we show that polarized photobleaching recovery can detect rotation of membrane proteins genetically tagged with yellow fluorescent protein, YFP. MHC class I molecules were engineered with a rigid, in-sequence, YFP tag followed at the C-terminus by a pair of crosslinkable domains. When crosslinker was added we could detect changes in rotational anisotropy decay consistent with clustering of the MHC molecules. This result points the way to use of engineered fluorescent fusion proteins to measure rotational diffusion in native cell membranes.  相似文献   

14.
It is shown that fluorescence anisotropy from lipidlike probes in the hexagonal HII phase gives information of (a) orientational order parameters, (b) the wobbling diffusion constant, and (c) the hopping diffusion constant of the probe, DH, equals DL/R2, the lateral diffusion constant over the square of the radius of the hexagonal tubes. Here we consider only lipidlike probes having the absorption transition movement and/or the emission transition moment along the long axis of the molecule. Three models are introduced for analysis of time-resolved data: the "WOBHOP," the "reduced WOBHOP," and the "P2P4HOP" model. The fluorescence anisotropy in response to a very short excitation pulse in each of the three models is a constant plus a number of exponentials. The WOBHOP and reduced WOBHOP models have 3 and 2 exponentials, respectively, and both contain four fitting parameters: r0 (the fundamental anisotropy), (P2) (the second rank orientational order parameter), DW (the wobbling diffusion constant), and DH (the hopping diffusion constant). The P2P4HOP model has eight exponentials and five fitting parameters: the four parameters listed above and (P4) (the fourth rank orientational order parameter). Analysis of fluorescence anisotropy data in the hexagonal HII phase using one of these models allows for obtaining the hopping diffusion constant, and, if the lateral diffusion constant is known, the radius of the hexagonal tubes. Substitution of DH = 0 in each of the three models yields an expression for the fluorescence anisotropy that is used in the literature for lamellar (L alpha or L beta) phases. The fluorescence anisotropy in coexisting L alpha/HII phases is discussed.  相似文献   

15.
Rotational diffusion of cholestane spin-label (CSL), a sterol analogue, in various phosphatidylcholine (PC)-cholesterol membranes was systematically studied by computer simulation of steady-state ESR spectra as a function of chain length and unsaturation of alkyl chains, cholesterol mole fraction, and temperature for better understanding of phospholipid-cholesterol and cholesterol-cholesterol interactions. CSL motion in the membrane was treated as Brownian rotational diffusion of a rigid rod within the confines of a cone imposed by the membrane environment. The wobbling rotational diffusion constant of the long axis, its activation energy, and the cone angle of the confines are obtained for various membranes in the liquid-crystalline phase. The wobbling diffusion constant decreases in the order dilauroyl-PC greater than dimyristoyl-PC greater than dioleoyl-PC approximately dipalmitoyl-PC greater than distearoyl-PC greater than dioleoyl-PC/cholesterol = 3/1 greater than dioleoyl-PC/cholesterol = 1/1 membranes. Activation energy for the wobbling diffusion of the long axis of CSL is strongly dependent on alkyl chain length, unsaturation, and cholesterol mole fraction. It decreases with decrease in alkyl chain length and by introduction of unsaturation in the alkyl chains. In dioleoylphosphatidylcholine membranes, activation energy decreases by a factor of approximately 3 in the presence of 50 mol % cholesterol. Activation energy for wobbling diffusion of CSL in phosphatidylcholine membranes is smaller than the activation energy for translational diffusion of a phospholipid. The former is more dependent on alkyl chain length and unsaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Rotation of cytochrome P-450 was examined in bovine adrenocortical mitochondria before and after an enzymatic transformation of cholesterol into pregnenolone by cytochrome P-450scc in the presence of malate. Rotational diffusion was measured by observing the decay of absorption anisotropy, r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. Analysis of r(t) was based on a "rotation-about-membrane normal" model. The measurements were used to investigate substrate-dependent intermolecular interactions of cytochrome P-450 with other redox components. Rotational mobility of cytochrome P-450 was significantly dependent on the decrease in cholesterol content by side chain cleavage reaction catalyzed by cytochrome P-450scc. In a typical experiment, the observed value for the normalized time-independent anisotropy r(infinity)/r(0) was decreased from 0.78 in control mitochondria to 0.60 after conversion of 21% of cholesterol to pregnenolone, while no significant change was observed for the average rotational relaxation time phi of about 700 microseconds. Significantly high values of r(infinity)/r(0) = 0.78 and 0.60 imply co-existence of mobile and immobile populations of cytochrome P-450. Since we observed that the heme angle tilted 55 degrees from membrane plane, 22% (control mitochondria) and 40% (after conversion of cholesterol to pregnenolone) of cytochrome P-450 in mitochondria are calculated to be mobile in the preparation. The significant mobilization of cytochrome P-450scc molecules caused by the conversion of cholesterol to pregnenolone is likely due to changes in protein-protein interactions with its redox partners, since the lipid fluidity was kept unchanged by the cholesterol depletion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Membrane proteins are modelled as cylinders with an elliptic cross-section in the plane of the membrane. The coefficient for rotational diffusion about the cylinder axis is calculated as a function of the axial ratio of the elliptic cross-section.  相似文献   

18.
Wolfgang Junge  Don DeVault 《BBA》1975,408(3):200-214
The photoinduced linear dichroism of absorption changes resulting from photolysis of the complex between heme a3 of the cytochrome oxidase and CO is studied. The experiments started from isotropic solutions or suspensions of the enzyme both in its isolated form and in mitochondria. The anisotropy responsible for the linear dichroism was induced by excitation with a flash of linearly polarized light. The dichroic ratios observed with various systems; polymerized enzyme in solution, enzyme in mitochondria and in submitochondrial particles (at 20 °C as well as at liquid N2-temperature) all approached a value of 4/3 which characterizes a chromophore which is circularly degenerate. Therefrom we conclude that the interaction of heme a3 with its microenvironment within the protein does not break its four-fold symmetry.

The experiments with mitochondria and submitochondrial particles suspended in aqueous buffer revealed similarly high dichroic ratios without any dichroic relaxation other than a rather slow one which could be attributed to the rotation of the whole organelle in the suspending medium. Therefrom we conclude that the cytochrome oxidase either is totally immobilized in the membrane, or that it carries out only limited rotational diffusion around a single axis coinciding with the symmetry axis of heme a3. In the light of independent evidence for a transmembrane arrangement of the oxidase and for the general fluidity of the inner mitochondrial membrane we consider anisotropic mobility of the cytochrome oxidase around an axis normal to the plane of the membrane as the most likely interpretation. Then our experimental results imply that the plane of heme a3 is coplanar to the membrane.  相似文献   


19.
The rotational diffusion of the acetylcholine (ACh) receptor in subsynaptic membrane fragments from Torpedo marmorata electric organ was investigated with a spin-labelled alpha-bungarotoxin. A toxin with two spin labels was first synthesized; the conventional electron spin resonance spectrum (e.s.r.) of this toxin bound to the receptor indicated: (1) a complete immobilization of the probes; and (2) a strong spin-spin interaction that was not, or barely, seen in solution. The modification of the degree of spin-spin interaction is taken as an indication of a toxin conformational change accompanying its binding to the ACh-receptor. To avoid spin-spin interaction a single-labelled toxin was made and used to follow the rotational diffusion of the receptor by saturation transfer e.s.r. (ST-e.s.r.). With native membranes a high immobilization of the ACh-receptor was noticed. Reduction of the membranes by dithiothreitol had little effect on this motion. Only extraction of the 43 000 protein(s) by pH 11 treatment was able to enhance the rotational diffusion of the ACh-receptor protein (rotational correlation time by ST-e.s.r. in the 0.5 - 1 X 10(-4) s range) and to allow its lateral diffusion in the plane of the membrane fragments (observed by electron microscopy after freeze-etching or negative staining).  相似文献   

20.
The viscosity and the order in the interior of human erythrocyte membranes were investigated by the fluorescence depolarization technique in the nanosecond region with 1,6-diphenyl-1,3,5-hexatriene (DPH). After pulsed excitation with a polarized light, the fluorescence anisotropy ratio of DPH in membranes rapidly decreased and gave a final value (r infinity). The rate of initial decrease and the value of r infinity related to the viscosity in the interior of the membranes and a wobbling angle of DPH which reflects a size of range for the phospholipid motion relating to the order of membrane structure. For normal human erythrocyte membranes the viscosity and the wobbling angle were obtained to be 0.82 poise and 42 degrees, at 37 degrees C. Similar values were obtained for spectrin-free membranes. Hardened membranes by the cross-linking of the cytoskeletal proteins with glutaraldehyde showed a small wobbling angle of 37 degrees, but the viscosity of them was unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号