首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Class A scavenger receptors (SR-A) participate in multiple macrophage functions including macrophage adhesion to modified proteins. SR-A-mediated adhesion may therefore contribute to chronic inflammation by promoting macrophage accumulation at sites of protein modification. The mechanisms that couple SR-A binding to modified proteins with increased cell adhesion have not been defined. In this study, SR-A expressing HEK cells and SR-A+/+ or SR-A–/– macrophages were used to delineate the signaling pathways required for SR-A-mediated adhesion to modified protein. Inhibiting Gi/o activation, which decreases initial SR-A-mediated cell attachment, did not prevent the subsequent spreading of attached cells. In contrast, inhibition of Src kinases or PI3-kinase abolished SR-A-dependent cell spreading without affecting SR-A-mediated cell attachment. Consistent with these results, the Src kinase Lyn and PI3-kinase were sequentially activated during SR-A-mediated cell spreading. Furthermore, activation of both Lyn and PI3-kinase was required for enhancing paxillin phosphorylation. Activation of a Src kinase-PI3-kinase-Akt pathway was also observed in cells expressing a truncated SR-A protein that does not internalize indicating that SR-A-mediated activation of intracellular signaling cascades following adhesion to MDA-BSA is independent of receptor internalization. Thus SR-A binding to modified protein activates signaling cascades that have distinct roles in regulating initial cell attachment and subsequent cell spreading. macrophage; inflammation; intracellular signaling  相似文献   

2.
Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2(-/-) macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2(-/-) macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing.  相似文献   

3.
The significance of multiprotein signaling complexes in cell motility is becoming increasingly important. We have previously shown that phospholipase Cgamma1 (PLCgamma1) is critical for integrin-mediated cell spreading and motility (N. Jones et al., J. Cell Sci. 118:2695-2706, 2005). In the current study we show that, on a basement membrane-type matrix, PLCgamma1 associates with the adaptor protein GIT1 and the Rac1/Cdc42 guanine exchange factor beta-Pix; GIT1 and beta-Pix form tight complexes independently of PLCgamma1. The association of PLCgamma1 with the complex requires both GIT1 and beta-Pix and the specific array region (gammaSA) of PLCgamma1. Mutations of PLCgamma1 within the gammaSA region reveal that association with this complex is essential for the phosphorylation of PLCgamma1 and the progression to an elongated morphology after integrin engagement. Short interfering RNA (siRNA) depletion of either beta-Pix or GIT1 inhibited cell spreading in a fashion similar to that seen with siRNA against PLCgamma1. Furthermore, siRNA depletion of PLCgamma1, beta-Pix, or GIT1 inhibited Cdc42 and Rac1 activation, while constitutively active forms of Cdc42 or Rac1, but not RhoA, were able to rescue the elongation of these cells. Signaling of the PLCgamma1/GIT1/beta-Pix complex to Cdc42/Rac1 was found to involve the activation of calpains, calcium-dependent proteases. Therefore, we propose that the association of PLCgamma1 with complexes containing GIT1 and beta-Pix is essential for its role in integrin-mediated cell spreading and motility. As a component of this complex, PLCgamma1 is also involved in the activation of Cdc42 and Rac1.  相似文献   

4.
The small G proteins Cdc42, Rac1, and Rac2 regulate the rearrangements of actin and membrane necessary for Fcgamma receptor-mediated phagocytosis by macrophages. Activated, GTP-bound Cdc42, Rac1, and Rac2 bind to the p21-binding domain (PBD) of PAK1, and this interaction provided a basis for microscopic methods to localize activation of these G proteins inside cells. Fluorescence resonance energy transfer-based stoichiometry of fluorescent chimeras of actin, PBD, Cdc42, Rac1, and Rac2 was used to quantify G protein activation relative to actin movements during phagocytosis of IgG-opsonized erythrocytes. The activation dynamics of endogenous G proteins, localized using yellow fluorescent protein-labeled PBD, was restricted to phagocytic cups, with a prominent spike of activation over an actin-poor region at the base of the cup. Refinements of fluorescence resonance energy transfer stoichiometry allowed calculation of the fractions of activated GTPases in forming phagosomes. Cdc42 activation was restricted to the leading margin of the cell, whereas Rac1 was active throughout the phagocytic cup. During phagosome closure, activation of Rac1 and Rac2 increased uniformly and transiently in the actin-poor region of phagosomal membrane. These distinct roles for Cdc42, Rac1, and Rac2 in the component activities of phagocytosis indicate mechanisms by which their differential regulation coordinates rearrangements of actin and membranes.  相似文献   

5.
The calcium-sensing receptor (CaR) recently has been shown to activate MAP kinase (ERK1/2) in various cell types as well as in heterologous expression systems. In this study we show that the CaR agonist NPS R-467 (1 microm), which does not activate the CaR by itself, robustly activates ERK1/2 in the presence of a low concentration of Ca(2+) (0.5 mm CaCl(2)) in human embryonic kidney (HEK) cells permanently expressing the human CaR (HEK-hCaR). Ca(2+) (4 mm) also activates ERK1/2 but with differing kinetics. CaR-dependent ERK1/2 activation begins to desensitize to 4 mm Ca(2+) after 10 min, whereas there is no desensitization to NPS R-467/CaCl(2) as late as 4 h. Moreover, recovery from desensitization occurs as rapidly as 30 min with 4 mm CaCl(2). Pretreatment of HEK-hCaR cells with concanavalin A (250 microg/ml) to block CaR internalization completely eliminated the NPS R-467/CaCl(2)-mediated ERK1/2 activation but did not block the 2-min time point of 4 mm Ca(2+)-mediated ERK1/2 activation. Neither dominant-negative dynamin (K44A) nor dominant-negative beta-arrestin inhibited ERK1/2 activation by either CaR agonist treatment, suggesting that CaR-elicited ERK1/2 signaling occurs via a dynamin-independent pathway. Pertussis toxin pretreatment partially attenuated the 4 mm Ca(2+)-ERK1/2 activation; this attenuated activity was completely restored by co-expression of the Galpha(i2) (C351I) but not Galpha(i1) (C351I) or Galpha(i3) (C351I) G proteins, PTX-insensitive G protein mutants. Taken together, these data suggest that both 4 mm Ca(2+) and NPS R-467/CaCl(2) activate ERK1/2 via distinguishable pathways in HEK-hCaR cells and may represent a nexus to differentially regulate differentiation versus proliferation via CaR activation.  相似文献   

6.
Neutrophils contain a soluble guanine-nucleotidebinding protein, made up of two components with molecular masses of 23 and 26 kDa, that mediates stimulation of phospholipase C-beta2 (PLCbeta2). We have identified the two components of the stimulatory heterodimer by amino acid sequencing as a Rho GTPase and the Rho guanine nucleotide dissociation inhibitor LyGDI. Using recombinant Rho GTPases and LyGDI, we demonstrate that PLCbeta2 is stimulated by guanosine 5'-O-(3-thiotriphosphate) (GTP[S])-activated Cdc42HsxLyGDI, but not by RhoAxLyGDI. Stimulation of PLCbeta2, which was also observed for GTP[S]-activated recombinant Rac1, was independent of LyGDI, but required C-terminal processing of Cdc42Hs/Rac1. Cdc42Hs/Rac1 also stimulated PLCbeta2 in a system made up of purified recombinant proteins, suggesting that this function is mediated by direct protein-protein interaction. The Cdc42Hs mutants F37A and Y40C failed to stimulate PLCbeta2, indicating that the Cdc42Hs effector site is involved in this interaction. The results identify PLCbeta2 as a novel effector of the Rho GTPases Cdc42Hs and Rac1, and as the first mammalian effector directly regulated by both heterotrimeric and low-molecular-mass GTP-binding proteins.  相似文献   

7.
Class A macrophage scavenger receptors (SR-A) are multifunctional receptors with roles in modified lipoprotein uptake, innate immunity, and macrophage adhesion. Our previous studies conducted in mouse peritoneal macrophages demonstrated that pertussis toxin (PTX) mediated inhibition of G(i/o) attenuated SR-A-dependent uptake of modified lipoprotein. The finding that SR-A-mediated lipoprotein internalization was PTX-sensitive led us to hypothesize that SR-A-mediated cell adhesion might be similarly regulated by G(i/o)-dependent signaling pathways. To test this hypothesis, SR-A was expressed in HEK cells under inducible control. Relative to HEK cells that lack SR-A, SR-A expressing cells displayed enhanced adhesion to tissue culture dishes. SR-A-mediated adhesion was significantly reduced following PTX treatment and was insensitive to chelating divalent cations with EDTA. SR-A-expressing cells exhibited a distinct cell morphology characterized by fine filopodia-like projections. Both polymerized actin and vinculin were codistributed with SR-A in the filopodia-like projections indicating the formation of focal adhesion complexes. Overall, our results indicate that the ability of SR-A to enhance cell adhesion involves G(i/o) activation and formation of focal adhesion complexes.  相似文献   

8.
Thrombin causes rapid pseudopod detachment and shortening in Dunning rat prostatic carcinoma (MAT-Lu) cells. As seen by interference reflection microscopy and by immunofluorescence analysis with antibodies to paxillin and talin, the primary event is disassembly of adhesion sites. Biochemically, thrombin is a potent activator of cytosolic phospholipase A2 and increases eicosanoid production in these cells. The pseudopod effects are blocked by lipoxygenase (but not cyclooxygenase) inhibitors. Arachidonic acid and 12(S)-hydroxyeicosatetraenoic acid or 15(S)-hydroxyeicosatetraenoic acid mimic the thrombin effect. We conclude that in certain cancer cells, thrombin is a pseudopod repellent that exerts its effect via a cascade involving cytosolic phospholipase A2, 12/15-lipoxygenase, and 12(S)- and/or 15(S)-hydroxyeicosatetraenoic acid.  相似文献   

9.
The double-stranded (ds) RNA-dependent protein kinase (PKR) is a primary regulator of antiviral responses; however, the ability of dsRNA to activate nuclear factor-kappa B (NF-kappa B) and dsRNA + interferon gamma (IFN-gamma) to stimulate inducible nitric-oxide synthase (iNOS) expression by macrophages isolated from PKR(-/-) mice suggests that signaling pathways in addition to PKR participate in antiviral activities. We have identified a novel phospholipid-signaling cascade that mediates macrophage activation by dsRNA and viral infection. Bromoenol lactone (BEL), a selective inhibitor of the calcium-independent phospholipase A(2) (iPLA(2)), prevents dsRNA- and virus-induced iNOS expression by RAW 264.7 cells and mouse macrophages. BEL does not modulate dsRNA-induced interleukin 1 expression, nor does it affect dsRNA-induced NF-kappa B activation. Protein kinase A (PKA) and the cAMP response element binding protein (CREB) are downstream targets of iPLA(2), because selective PKA inhibition prevents dsRNA-induced iNOS expression, and the inhibitory actions of BEL on dsRNA-induced iNOS expression are overcome by the direct activation of PKA. In addition, BEL inhibits dsRNA-induced CREB phosphorylation and CRE reporter activation. PKR does not participate in iPLA(2) activation or iNOS expression, because dsRNA stimulates iPLA(2) activity and dsRNA + IFN-gamma induces iNOS expression and nitric oxide production to similar levels by macrophages isolated from PKR(+/+) and PKR(-/-) mice. These findings support a PKR-independent signaling role for iPLA(2) in the antiviral response of macrophages.  相似文献   

10.
The small GTPase RhoB regulates endocytic trafficking of receptor tyrosine kinases (RTKs) and the non-receptor kinases Src and Akt. While receptor-mediated endocytosis is critical for signaling processes driving cell migration, mechanisms that coordinate endocytosis with the propagation of migratory signals remain relatively poorly understood. In this study, we show that RhoB is essential for activation and trafficking of the key migratory effectors Cdc42 and Rac in mediating the ability of platelet-derived growth factor (PDGF) to stimulate cell movement. Stimulation of the PDGF receptor-β on primary vascular smooth muscle cells (VSMCs) results in RhoB-dependent trafficking of endosome-bound Cdc42 from the perinuclear region to the cell periphery, where the RhoGEF Vav2 and Rac are also recruited to drive formation of circular dorsal and peripheral ruffles necessary for cell migration. Our findings identify a novel RhoB-dependent endosomal trafficking pathway that integrates RTK endocytosis with Cdc42/Rac localization and cell movement.  相似文献   

11.
Src homology 3 domain (SH3)-containing proline-rich protein kinase (SPRK)/mixed-lineage kinase (MLK)-3 is a serine/threonine kinase that upon overexpression in mammalian cells activates the c-Jun NH(2)-terminal kinase pathway. The mechanisms by which SPRK activity is regulated are not well understood. The small Rho family GTPases, Rac and Cdc42, have been shown to bind and modulate the activities of signaling proteins, including SPRK, which contain Cdc42/Rac interactive binding motifs. Coexpression of SPRK and activated Cdc42 increases SPRKs activity. SPRKs Cdc42/Rac interactive binding-like motif contains six of the eight consensus residues. Using a site-directed mutagenesis approach, we show that SPRK contains a functional Cdc42/Rac interactive binding motif that is required for SPRKs association with and activation by Cdc42. However, experiments using a SPRK variant that lacks the COOH-terminal zipper region/basic stretch suggest that this region may also contribute to Cdc42 binding. Unlike the PAK family of protein kinases, we find that the activation of SPRK by Cdc42 cannot be recapitulated in an in vitro system using purified, recombinant proteins. Comparative phosphopeptide mapping demonstrates that coexpression of activated Cdc42 with SPRK alters the in vivo serine/threonine phosphorylation pattern of SPRK suggesting that the mechanism by which Cdc42 increases SPRKs catalytic activity involves a change in the in vivo phosphorylation of SPRK. This is, to the best of our knowledge, the first demonstrated example of a Cdc42-mediated change in the in vivo phosphorylation of a protein kinase. These studies suggest an additional component or cellular environment is required for SPRK activation by Cdc42.  相似文献   

12.
DOCK (dedicator of cytokinesis) guanine nucleotide exchange factors (GEFs) activate the Rho-family GTPases Rac and Cdc42 to control cell migration, morphogenesis, and phagocytosis. The DOCK A and B subfamilies activate Rac, whereas the DOCK D subfamily activates Cdc42. Nucleotide exchange is catalyzed by a conserved DHR2 domain (DOCK(DHR2)). Although the molecular basis for DOCK(DHR2)-mediated GTPase activation has been elucidated through structures of a DOCK9(DHR2)-Cdc42 complex, the factors determining recognition of specific GTPases are unknown. To understand the molecular basis for DOCK-GTPase specificity, we have determined the crystal structure of DOCK2(DHR2) in complex with Rac1. DOCK2(DHR2) and DOCK9(DHR2) exhibit similar tertiary structures and homodimer interfaces and share a conserved GTPase-activating mechanism. Multiple structural differences between DOCK2(DHR2) and DOCK9(DHR2) account for their selectivity toward Rac1 and Cdc42. Key determinants of selectivity of Cdc42 and Rac for their cognate DOCK(DHR2) are a Phe or Trp residue within β3 (residue 56) and the ability of DOCK proteins to exploit differences in the GEF-induced conformational changes of switch 1 dependent on a divergent residue at position 27. DOCK proteins, therefore, differ from DH-PH GEFs that select their cognate GTPases through recognition of structural differences within the β2/β3 strands.  相似文献   

13.
Although human group VIB calcium-independent phospholipase A(2) (iPLA(2)gamma) contains the lipase-consensus sequence Gly-Xaa-Ser-Xaa-Gly in the C-terminal half, its overall sequence exhibits a week similarity to those of other PLA(2)s, and thus no information on the catalytic site has been available. Here we show that the C-terminal region of human iPLA(2)gamma is responsible for the enzymatic activity. Comparison of this catalytic domain with those of the mouse homologue, human cytosolic PLA(2) (cPLA(2)), and the plant PLA(2) patatin reveals that an amino acid sequence of a short segment around Asp-627 of iPLA(2)gamma is conserved among these PLA(2)s, in addition to the Ser-483-containing lipase motif; the corresponding serine and aspartate in cPLA(2) and patatin are known to form a catalytic dyad. Since substitution of alanine for either Ser-483 or Asp-627 results in a loss of the PLA(2) activity, we propose that Ser-483 and Asp-627 of human iPLA(2)gamma constitute an active site similar to the Ser-Asp dyad in cPLA(2) and patatin.  相似文献   

14.
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules that form homo- and hetero-trans-dimers (trans-interactions). Nectins first form cell-cell contact and then recruit cadherins to the nectin-based cell-cell contact sites to form adherens junctions cooperatively with cadherins. In addition, the trans-interactions of nectins induce the activation of Cdc42 and Rac small G proteins, which enhances the formation of adherens junctions by forming filopodia and lamellipodia, respectively. The trans-interactions of nectins first recruit and activate c-Src at the nectin-based cell-cell contact sites. c-Src then phosphorylates and activates FRG, a Cdc42-GDP/GTP exchange factor (GEF) for Cdc42. The activation of both c-Src and Cdc42 by FRG is necessary for the activation of Rac, but the Rac-GEF responsible for this activation of Rac remains unknown. We showed here that the nectin-induced activation of Rac was inhibited by a dominant negative mutant of Vav2, a Rac-GEF. Nectins recruited and tyrosine-phosphorylated Vav2 through c-Src at the nectin-based cell-cell contact sites, whereas Cdc42 was not necessary for the nectin-induced recruitment of Vav2 or the nectin-induced, c-Src-mediated tyrosine phosphorylation of Vav2. Cdc42 activated through c-Src then enhanced the GEF activity of tyrosine-phosphorylated Vav2 on Rac1. These results indicate that Vav2 is a GEF responsible for the nectin-induced, c-Src-, and Cdc42-mediated activation of Rac.  相似文献   

15.
Recent studies implicate the collagen receptor, glycoprotein VI (GPVI) in activation of platelet 12-lipoxygenase (p12-LOX). Herein, we show that GPVI-stimulated 12-hydro(peroxy)eicosatetraenoic acid (H(P)ETE) synthesis is inhibited by palmityl trifluromethyl ketone or oleyloxyethylphosphocholine , but not bromoenol lactone, implicating secretory and cytosolic, but not calcium-independent phospholipase A2 (PLA2) isoforms. Also, following GPVI activation, 12-LOX co-immunoprecipitates with both cytosolic and secretory PLA2 (sPLA2). Finally, venoms containing sPLA2 acutely activate p12-LOX in a dose-dependent manner. This study shows that platelet 12-H(P)ETE generation utilizes arachidonate substrate from both c- and sPLA2 and that 12-LOX functionally associates with both PLA2 isoforms.  相似文献   

16.
Numerous studies have reported the implication of calcium-independent phospholipase A2 (iPLA2) in various biological mechanisms. Most of these works have used in vitro models and only a few have been carried out in vivo on iPLA2−/− mice. The functions of iPLA2 have been investigated in vivo in the heart, brain, pancreatic islets, and liver, but not in the retina despite its very high content in phospholipids. Phospholipids in the retina are known to be involved in several various key mechanisms such as visual transduction, inflammation or apoptosis. In order to investigate the implication of iPLA2 in these processes, this work was aimed to build an in vivo model of iPLA2 activity inhibition. After testing the efficacy of different chemical inhibitors of iPLA2, we have validated the use of bromoenol lactone (BEL) in vitro and in vivo for inhibiting the activity of iPLA2. Under in vivo conditions, a dose of 6 μg/g of body weight of BEL in mice displayed a 50%-inhibition of retinal iPLA2 activity 8–16 h after intraperitoneal administration. Delivering the same dose twice a day to animals was successful in producing a similar inhibition that was stable over one week. In summary, this novel mouse model exhibits a significant inhibition of retinal iPLA2 activity. This model of chemical inhibition of iPLA2 will be useful in future studies focusing on iPLA2 functions in the retina.  相似文献   

17.
Su Z  Osborne MJ  Xu P  Xu X  Li Y  Ni F 《Biochemistry》2005,44(50):16461-16474
The small GTPase Cdc42, a member of the highly conserved Rho family of intracellular GTPases, communicates with downstream signaling proteins via high-affinity interactions with the consensus Cdc42/Rac interactive binding (CRIB) polypeptide sequence. Previous biochemical and structural studies show that the CRIB motif itself is insufficient for high-affinity binding to Cdc42 but requires the sequence segment C-terminal to the CRIB motif for enhanced affinity. In this study, we have investigated the high-affinity (K(d) in units of nanomolar) associations of two highly homologous extended CRIB domains (eCRIBs) from the PAK kinases, Cla4 and Cst20, with Cdc42 from Candida albicans. (1)H-(15)N NMR heteronuclear NOE data of the eCRIB polypeptides in complex with Candida Cdc42 (CaCdc42) indicate that both eCRIB peptides have approximately two binding loci for CaCdc42. When each of the two eCRIB peptides is dissected into two fragments, the N-terminal fragments containing the minimal CRIB motif (mCRIB), mCla4 and mCst20, have relatively high binding affinities with dissociation constants (K(d)) of 4.2 and 0.43 microM, respectively. On the other hand, the C-terminal fragments (cCRIB), cCla4 and cCst20, exhibit significantly lower affinities for their binding to CaCdc42. The cCla4 peptide binds to CaCdc42 with a sub-millimolar K(d) of 275 microM, and the cCst20 peptide shows an even lower binding affinity (K(d) = 1160 microM). Cross-titration experiments with the cognate fragments show that the binding affinity of cCst20 is enhanced approximately 5.5-fold (K(d) = 207 microM) in the presence of saturating amounts of mCst20, and vice versa. No such effect is observed for the binding of cCla4 and mCla4. These results suggest that the Cdc42-CRIB system can be represented by a "dual recognition" model for protein-protein interactions [Kleanthous, C., et al. (1998) Mol. Microbiol. 28, 227-233], following much the same mechanisms of multivalent molecular interactions [Song, J., and Ni, F. (1998) Biochem. Cell Biol. 76, 177-188; Mammen, M., et al. (1998) Angew Chem., Int. Ed. 37, 2754-2794]. The bivalent modeling of linked peptide fragments shows that the binding of eCla4 follows a simple additivity/avidity model, while binding of eCst20 appears to have a more complex mechanism involving cooperative effects. The differential binding mechanisms between closely related eCRIB polypeptides and CaCdc42 provide a new molecular basis for understanding kinase activation and for the design of antifungal agents targeting the large protein interaction interfaces engaged by the fungal GTPase.  相似文献   

18.
The pertussis toxin-sensitive G protein, G(i), has been implicated in lysophosphatidic acid-induced cell mitogenesis and migration, but the mechanisms remain to be detailed. In the present study, we found that pertussis toxin blocks lysophosphatidic acid-induced cell spreading of NIH 3T3 fibroblasts on fibronectin. This prevention of cell spreading was eliminated by the expression of constitutively active mutants of Rho family small GTP-binding proteins, Rac and Cdc42, but not by Rho. In addition, activation of the endogenous forms was suppressed by pertussis toxin, indicating that G(i)-induced cell spreading is mediated through the Rac and Cdc42 pathway. Transfection of constitutively active mutants of G alpha(i) and G alpha(11) and G beta gamma subunits enhanced spreading of pertussis toxin-treated cells. G beta(1) with G gamma(12), a major G gamma form in fibroblasts, was more effective for increasing cell spreading than G beta(1)gamma(2) or G beta(1) plus G gamma(12)S2A, a mutant in which Ser-2, a phosphorylation site for protein kinase C, is replaced with alanine. In addition, a protein kinase C inhibitor diminished G beta(1)gamma(12)-induced cell spreading, suggesting a role for phosphorylation of the protein. These findings indicate that both G alpha(i) and G beta gamma stimulate Rac and Cdc42 pathways with lysophosphatidic acid-induced cell spreading on fibronectin.  相似文献   

19.
Tan M  Jing T  Lan KH  Neal CL  Li P  Lee S  Fang D  Nagata Y  Liu J  Arlinghaus R  Hung MC  Yu D 《Molecular cell》2002,9(5):993-1004
ErbB2 overexpression confers resistance to taxol-induced apoptosis by inhibiting p34(Cdc2) activation. One mechanism is via ErbB2-mediated upregulation of p21(Cip1), which inhibits Cdc2. Here, we report that the inhibitory phosphorylation on Cdc2 tyrosine (Y)15 (Cdc2-Y15-p) is elevated in ErbB2-overexpressing breast cancer cells and primary tumors. ErbB2 binds to and colocalizes with cyclin B-Cdc2 complexes and phosphorylates Cdc2-Y15. The ErbB2 kinase domain is sufficient to directly phosphorylate Cdc2-Y15. Increased Cdc2-Y15-p in ErbB2-overexpressing cells corresponds with delayed M phase entry. Expressing a nonphosphorylatable mutant of Cdc2 renders cells more sensitive to taxol-induced apoptosis. Thus, ErbB2 membrane RTK can confer resistance to taxol-induced apoptosis by directly phosphorylating Cdc2.  相似文献   

20.
The cyclin-dependent kinase 2 (Cdk2) inhibitors p21(CIP1) and p27(KIP1) are negatively regulated by anchorage during cell proliferation, but it is unclear how integrin signaling may affect these Cdk2 inhibitors. Here, we demonstrate that integrin ligation led to rapid reduction of p21(CIP1) and p27(KIP1) protein levels in three distinct cell types upon attachment to various extracellular matrix (ECM) proteins, including fibronectin (FN), or to immobilized agonistic anti-integrin monoclonal antibodies. Cell attachment to FN did not rapidly influence p21(CIP1) mRNA levels, while the protein stability of p21(CIP1) was decreased. Importantly, the down-regulation of p21(CIP1) and p27(KIP1) was completely blocked by three distinct proteasome inhibitors, demonstrating that integrin ligation induced proteasomal degradation of these Cdk2 inhibitors. Interestingly, ECM-induced proteasomal proteolysis of a ubiquitination-deficient p21(CIP1) mutant (p21K6R) also occurred, showing that the proteasomal degradation of p21(CIP1) was ubiquitin independent. Concomitant with our finding that the small GTPases Cdc42 and Rac1 were activated by attachment to FN, constitutively active (ca) Cdc42 and ca Rac1 promoted down-regulation of p21(CIP1). However, dominant negative (dn) Cdc42 and dn Rac1 mutants blocked the anchorage-induced degradation of p21(CIP1), suggesting that an integrin-induced Cdc42/Rac1 signaling pathway activates proteasomal degradation of p21(CIP1). Our results indicate that integrin-regulated proteasomal proteolysis might contribute to anchorage-dependent cell cycle control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号