首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Chediack-Higashi syndrome (CHS) is an autosomal recessive disorder reported in man and in several animal species including the "beige mice" (bg/bg). Among several manifestations of this genetic trait, deficiency of secretable substances - including serotonin - normally stored in platelet dense granules is a characteristic feature. The animal model of Chediak-Higashi syndrome used in the present study provides a unique opportunity to compare the kinetics of serotonin (5-hydroxytryptamine, 5-HT) uptake in platelets and brain synaptosomes in conditions of selective reduction of 5HT concentration in the platelets. The kinetics of 5HT uptake, as measured in the present study, was normal in synaptosomes and platelets from the same animals. The lower intraplatelet 5HT levels in bg/bg animals as compared to normal synaptosomes levels in the presence of normal uptake offer an indirect proof that the 5HT defect described in the CHS is due to an impaired 5HT storage mechanism. This is supported by the observation that spontaneous release of 5HT was markedly increased in platelets from CH5 mice but was normal in synaptosomes from the same animals. Thus platelets are a reliable model to study 5HT uptake, but not 5HT storage and release in brain synaptosomes.  相似文献   

2.
We investigated the activity of bombesin (BN), neuromedin-C (NM-C) and neuromedin-B (NM-B) on serotonin (5-HT) release and reuptake in rat hypothalamus (HYP) in vitro. BN and NM-C but not NM-B (all 1 microM) decreased K+ evoked 3H-5-HT release from superfused HYP slices by 25%. Bacitracin (BCN, 2 micrograms/ml), a nonspecific peptidase inhibitor, reversed the inhibitory effect of BN on K+ evoked 3H-5-HT release. Phosphoramidon (PAN, 10 microM) an endopeptidase 24.11 inhibitor, abolished the inhibitory effect of BN, but not NM-C, on K+ evoked 3H-5-HT release. The peptidyl dipeptidase A inhibitor enalaprilat (ENP, 10 microM), enhanced both BN and NM-C inhibition of 3H-5-HT release. Bestatin (BST, 10 microM) had no effect on BN or NM-C inhibitory activity on 3H-5-HT release. Neither BN, NM-C nor NM-B affected reuptake of 3H-5-HT into HYP synaptosomes alone or in combination with any of the peptidase inhibitors, nor did these peptides alter the ability of fluoxetine to inhibit 3H-5-HT uptake. These data suggest: a) that BN-like peptides may alter neurotransmission in the HYP by acting presynaptically on the 5-HT release mechanism; b) a similarity in the structural requirements for the BN induced inhibition of 5-HT release and BN evoked thermoregulatory disturbances; and c) that peptidases may selectively augment or reduce pharmacologic activity of BN-like peptides upon CNS administration.  相似文献   

3.
Platelet serotonin (5-HT) content and uptake were studied in male SHR and WKY at various ages. Blood was withdrawn from the carotid artery under anesthesia and 5-HT levels determined from platelet rich plasma (PRP) using a HPLC technique coupled with an electrochemical detection method. Platelet 5-HT uptake was studied by incubating PRP at 37 degrees C for 10 sec with increasing concentrations of 3H-5HT. Lineweaver- Burk plots of 3H-5HT uptake were linear suggesting simple Michaelis- Menten uptake kinetics. The SHR had more platelets than age-matched controls and consequently a higher blood circulating pool of 5-HT. Nevertheless, the 5-HT platelet levels were similar to those of their age-matched rats. The 5 week-old SHR and WKY had greater numbers of platelets and higher 5-HT platelet levels than the older rats of both strains. The affinity constants (Km) and the maximal velocities (Vmax) of platelet 5-HT uptake did not differ significantly between the 12 week- and the 6 month-old SHR and WKY. These data suggest that the SHR do not show the same impairment in platelet 5-HT metabolism as observed in essential hypertension in man.  相似文献   

4.
The neurotoxic compound 1-[methyl-3H]-4-phenylpyridinium ([3H]MPP+) was actively taken up by human, rabbit, and guinea pig platelets incubated in plasma. In human platelets, the apparent Km of this uptake (22.6 microM) was 50 times higher than that for serotonin [5-hydroxytryptamine (5-HT]). The uptake of [3H]MPP+ by human platelets was inhibited by selective 5-HT uptake blockers [cianopramine, (-)-paroxetine, and clomipramine], by metabolic inhibitors (KCN and ouabain), and by drugs that interfere with amine storage in the 5-HT organelles (reserpine, mepacrine, and Ro 4-1284). Impairment of the transmembrane proton gradient by ionophores (monensin and nigericin) induced a marked release of radioactivity from platelets preincubated with [3H]MPP+. Fractionation of homogenates of rabbit platelets preincubated with [3H]MPP+ showed that the drug was concentrated to a great extent in the 5-HT organelle fraction. MPP+ competitively inhibited [14C]5-HT uptake by human platelets and reduced the endogenous 5-HT content of human, rabbit, and guinea pig platelets. These investigations show that MPP+ is transported into the platelets via the 5-HT carrier and is accumulated predominantly in the subcellular organelles that store 5-HT and other monoamines. It is suggested that an accumulation of MPP+ in amine storage vesicles of neurons may be involved in the effects of the drug in the CNS, e.g., by protecting other subcellular compartments from exposure to high concentrations of MPP+, by sustaining a gradual release of the toxin, or both.  相似文献   

5.
This study investigated for the first time the potential effects of cis- and trans-resveratrol (c-RESV and t-RESV) on noradrenaline (NA) and 5-hydroxytryptamine (5-HT) uptake by synaptosomes from rat brain, on 5-HT uptake by human platelets, and on monoamine oxidase (MAO) isoform activity. Both c-RESV and t-RESV (5-200 microM) concentration-dependently inhibited the uptake of [3H]NA and [3H]5-HT by synaptosomes from rat brain and the uptake of [3H]5-HT by human platelets. In both experimental models, t-RESV was slightly more efficient than c-RESV. Furthermore, in synaptosomes from rat brain, the RESV isomers were less selective against [3H]5-HT uptake than the reference drug fluoxetine (0.1-30 microM). On the other hand, both c-RESV and t-RESV (5-200 microM) concentration-dependently inhibited the enzymatic activity of commercial (human recombinant) MAO isoform (MAO-A and MAO-B) activity, c-RESV being slightly less effective than t-RESV. In addition, both RESV isomers were slight but significantly more selective against MAO-A than against MAO-B. Since the principal groups of drugs used in the treatment of depressive disorders are NA/5-HT uptake or MAO inhibitors, under the assumption that the RESV isomers exhibit a similar behaviour in humans in vivo, our results suggest that these natural polyphenols may be of value as structural templates for the design and development of new antidepressant drugs with two important biochemical activities combined in the same chemical structure: NA/5-HT uptake and MAO inhibitory activity.  相似文献   

6.
M Hery  M C Barrit  M Faudon  F Hery 《Peptides》1986,7(2):183-188
Vasoactive intestinal peptide (VIP) inhibits serotonin (5-HT) uptake in the suprachiasmatic area (SCA) of the rat. The present study investigates the possibility of a functional relationship between 5-HT uptake mechanisms and 5-HT autoreceptor activity in this effect of VIP in the SCA. The hypothesis of a linkage between these two mechanisms of 5-HT regulation has been recently proposed. We investigated the possibility of the presence of 5-HT autoreceptors in the SCA. Using superfusion system, exogenous 5-HT (500 and 50 nM) increased the release of newly synthesized 3H-5-HT. In contrast, 5 nM of exogenous 5-HT inhibited this release. This latter effect was antagonized by methiothepin (10(-7) M). In contrast, the concentration of methiothepin required to inhibit the VIP effect was 10(-6) or 10(-5) M, the same molarity found to decrease the 5-HT uptake. On the other hand, the increase of the 3H-5-HT in the synaptic cleft, induced by VIP, did not modify the inhibition of 3H-5-HT release induced by 5 nM of exogenous 5-HT. We conclude that the effect of VIP on 5-HT metabolism in the SCA is linked to the 5-HT uptake mechanism but not to the activity of 5-HT presynaptic autoreceptors. In our experimental conditions, the activity of 5-HT autoreceptors is independent of the 5-HT uptake processes.  相似文献   

7.
Accumulation of serotonin (5-HT) into human platelets was not affected by the presence of the extra-cellular calcium chelator EGTA, while decreased by platelet incubation with the membrane permeant chelator BAPTA-AM. Serotonin uptake also diminished upon platelet exposure to EGTA/thapsigargin or EGTA/ionomycin which increased the cytosolic [Ca(2+)] to levels lower than those inducing secretion of dense granules. The latter inhibition depended in part on changes of intra-granular pH, since the accumulation of acridine orange, which is driven into the dense granules by the intra-granular acid pH gradient, was slightly decreased in the presence of EGTA/thapsigargin. These compounds also inhibited the 5-HT uptake in platelets pre-incubated with reserpine and bafilomycin that prevent 5-HT from entering into the dense granules. Inhibitors of protease, protein phosphatase, Na(+)/H(+) exchanger or ciclo-oxygenase activities did not modify the serotonin accumulation. Addition of EGTA/thapsigargin to reserpine-treated, [(14)C]5-HT-loaded, platelets caused an imipramine-insensitive release of labelled serotonin. This release was reduced by both BAPTA-AM or protein kinase C inhibitor bisindoylmaleimide (GF). The latter compound, either alone or together with EGTA/thapsigargin, inhibited the 5-HT accumulation in reserpine-treated platelets. It is concluded that both cytosolic [Ca(2+)] and protein kinase C are involved in the regulation of the plasma membrane 5-HT transport.  相似文献   

8.
The effects of structurally different PAF receptor blockers were investigated in platelets, neutrophils, guinea pig ileum, rat isolated lung and rat isolated pulmonary artery. PAF caused serotonin release from platelets and a characteristic shape change and adhesion of neutrophils. The antagonists (CV 3988, alprazolam, 48740 RP and Merck-Sharp and Dohme L-652, 731) inhibited platelet serotonin release but not neutrophil shape change adhesion or lysosomal enzyme release. The antagonists in high concentrations (10(-5)-10(-4)M) inhibited nonspecifically the PAF-induced (10(-8)M) guinea pig ileum contraction, but were ineffective at concentrations which inhibited platelet responses. In the rat lung the compounds, in high concentrations, partially inhibited the low dose PAF-induced pulmonary vasodilation and the high dose PAF induced pulmonary vasoconstriction and edema. Our data indicate that some platelet PAF antagonists may be ineffective in blocking the action of PAF on neutrophils and smooth muscle preparations and suggest either PAF-receptor independent actions of PAF or different classes of PAF receptors.  相似文献   

9.
Treatment of human platelets with activators of protein kinase C (PKC) for 5-20 min resulted in substantial reductions in the rate of platelet serotonin (5-HT) transport. The mean Vmax observed after 5 min treatment with 1 microM 4-beta-12-tetradecanoylphorbol 13-acetate (beta-TPA) was 66% (n = 16, P = 0.0001) of the control value. 5 min of treatment with 1 microM mezerein reduced uptake to 78% (n = 3, P = 0.01) of control. Both beta-TPA and mezerein had little effect on the Km of transport and had EC50 values of approx. 100 mM when a 20-min treatment period was used. The maximum effects of both were reached at approx. 20 min and could be blocked with staurospine. The beta-TPA effect was stereospecific, as alpha-TPA did not alter platelet 5-HT uptake. Although the PKC activators may have altered transmembrane ion-gradients for Na+ and Cl-, which are co-transported with 5-HT, minimizing ion-gradient changes had little effect on the observed reductions in transport. The PKC activators also had little or no effect on platelet 5-HT release or on the number (Bmax) of 5-HT transporters expressed at the platelet surface. The data indicate that PKC activation may down-regulate the activity of the 5-HT transporter in platelets. Apparently, most of this effect is mediated through mechanisms other than changes in ion-gradients, reductions in the number of available transporters, or increased 5-HT release. The apparent regulation of 5-HT transport by PKC may have important implications in platelet and neuronal functioning.  相似文献   

10.
H Y Wang  E Friedman 《Life sciences》1990,47(16):1419-1425
Protein kinase C (PKC) activity and translocation in response to the phorbol ester, phorbol 12-myristate, 13-acetate (PMA), serotonin (5-HT) and thrombin was assessed in human platelets. Stimulation with PMA and 5-HT for 10 minutes or thrombin for 1 minute elicited platelet PKC translocation from cytosol to membrane. The catecholamines, norepinephrine or epinephrine at 10 microM concentrations did not induce redistribution of platelet PKC. Serotonin (0.5-100 microM) and the specific 5-HT2 receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (10-100 microM) but not the 5-HT1A or 5-HT1B agonists, (+/-) 8-hydroxy-dipropylamino-tetralin (8-OH-DPAT) or 5-methoxy-3-3-(1,2,3,6-tetrahydro-4-pyridin) 1H-indole succinate (RU 24969) induced dose-dependent PKC translocations. Serotonin-evoked PKC translocation was blocked by selective 5-HT2 receptor antagonists, ketanserin and spiroperidol. These results suggest that, in human platelets, PMA, thrombin and 5-HT can elicit PKC translocation from cytosol to membrane. Serotonin-induced PKC translocation in platelets is mediated via 5-HT2 receptors.  相似文献   

11.
Serotonin organelles of rabbit platelets contain synaptophysin   总被引:1,自引:0,他引:1  
Synaptophysin, an integral membrane protein of synaptic vesicles in nerve terminals and a class of small translucent vesicles in neuroendocrine cells, was detected in intact rabbit platelets by immunoblotting, immunofluorescence staining and immuno-electron microscopy. In a highly purified preparation of serotonin organelles isolated from rabbit platelets, synaptophysin was enriched approximately 10-15-fold over platelet homogenate. About 80% of total platelet synaptophysin was present in this purified fraction. The apparent molecular mass (approximately 38 kDa) and the extent of glycosylation of platelet-derived synaptophysin was more similar to the neuronal than to the neuroendocrine form of the protein. Immunofluorescence microscopy revealed that synaptophysin was compartmentalized in intact rabbit platelets and immuno-electron microscopy of subcellular fractions showed that it was localized exclusively to the membrane surface of serotonin organelles. No synaptophysin-like immunoreactivity was detected in platelets from other species such as human, guinea pig and rat. Another integral membrane protein of synaptic vesicles, p65, and a family of synaptic vesicle-associated phosphoproteins, the synapsins, were not detected in platelets of any species tested. These results provide evidence that serotonin organelles from rabbit platelets share a subset of protein components with synaptic vesicles from neurons. Synaptophysin in serotonin organelles from rabbit platelets, as suggested for small synaptic vesicles in neurons, might play a role in the formation of protein channels for the exocytotic release of serotonin.  相似文献   

12.
The effects of 5-hydroxytryptophan (5-HTP) and serotonin (5-HT) on dopamine synthesis and release in rat brain striatal synaptosomes have been examined and compared to the effects of tyramine and dopamine. Serotonin inhibited dopamine synthesis from tyrosine, with 25% inhibition occurring at 3 μM-5-HT and 60% inhibition at 200 μM. Dopamine synthesis from DOPA was also inhibited by 5-HT, with 30% inhibition occurring at 200 μ. At 200 μM-5-HTP, dopamine synthesis from both tyrosine and DOPA was inhibited about 70%. When just the tyrosine hydroxylation step was measured in the intact synaptosome, 5-HT, 5-HTP, tyramine and dopamine all caused significant inhibition, but only dopamine inhibited soluble tyrosine hydroxylase [L-tyrosine 3-monooxygenase; L-tyrosine, tetrahydropteridine oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] prepared from lysed synaptosomes. Particulate tyrosine hydroxylase was not inhibited by 10 μM-5-HT, but was about 20% inhibited by 200 μM-5-HT and 5-HTP. At 200 μM both 5-HT and 5-HTP stimulated endogenous dopamine release. These experiments suggest that exposure of dopaminergic neurons to 5-HT or 5-HTP leads to an inhibition of dopamine synthesis, mediated in part by an intraneuronal displacement of dopamine from vesicle storage sites, leading to an increase in dopamine-induced feedback inhibition of tyrosine hydroxylase, and in part by a direct inhibition of DOPA decarboxylation.  相似文献   

13.
The mechanism underlying the serotoninergic neurotoxicity of some amphetamine derivatives, such as p-chloroamphetamine (pCA) and 3,4-methylenedioxymethamphetamine (MDMA), is still debated. Their main acute effect, serotonin (5-HT) release from nerve endings, involves their interaction with 5-HT transporters (SERTs), as substrates. Although this interaction is required for the neurotoxic effects, 5-HT release alone may not be sufficient to induce long-term 5-HT deficits. Some non-neurotoxic compounds, including p-methylthioamphetamine (MTA) and 1-(m-chlorophenyl)piperazine (mCPP), have 5-HT releasing properties in vivo and in brain slices comparable to that of neurotoxic amphetamine derivatives. We measured 5-HT release in superfused rat brain synaptosomes preloaded with [3H]5-HT, a model that distinguishes a releasing effect from reuptake inhibition. MTA and mCPP induced much lower release than pCA and MDMA. The striking difference between our findings in synaptosomes and those obtained in vivo or in brain slices is probably related to a different compartmentalisation of 5-HT in the different experimental models. Studies in synaptosomes, where the vesicular storage of 5-HT is predominant, could therefore bring to light differences between neurotoxic and non-neurotoxic 5-HT releasing agents which cannot be appreciated in other experimental models and might be useful to identify the mechanisms responsible for the neurotoxicity induced by amphetamine derivatives.  相似文献   

14.
Tyramine and dopamine are taken up by rat platelets through the serotonin uptake mechanism while phenethylamine is not taken up. This indicates that an aromatic hydroxyl group is a structural requirement for the uptake of phenethylamine derivatives by rat platelets. Although none of these phenethylamine derivatives induce platelet shape change, they inhibit serotonin-induced shape change and serotonin uptake with the same relative potency (tyramine >phenethylamine ? dopamine). This suggests that the receptors controlling serotonin uptake and serotonin-induced shape change have a common structural component that binds phenethylamine derivatives. However, the fact that phenethylamine derivatives activate the serotonin uptake mechanism but do not induce platelet shape change suggests that serotonin uptake and serotonin-induced shape change are mediated by two distinct activation sites of serotonin receptors.  相似文献   

15.
Autoregulatory mechanisms affecting serotonin [5-hydroxytryptamine (5-HT)] release and synthesis during the early period of development were investigated in dissociated cell cultures raised from embryonic rostral rat rhombencephalon. The presence of 5-HT1A and 5-HT1B receptors in serotoninergic neurons was assessed using binding assays. The involvement of 5-HT1A and 5-HT1B receptors in the control of the synthesis and release of [3H]5-HT was studied using biochemical approaches with several serotoninergic receptor ligands. A mean decrease of 30% in [3H]5-HT synthesis and release was observed in the presence of 5-HT (10(-8) M), the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), the 5HT1B/1A agonist 5-methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969), the 5-HT1B agonist 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one (CP-93,129), and the 5-HT(1D/1B) agonist sumatriptan. Inhibition of 5-HT synthesis and release induced by 8-OH-DPAT was blocked by chiral N-tert-butyl-3-[1-[1-(2-methoxy)phenyl]piperazinyl]-1-phenylpropionam ide dihydrochloride quaternary-hydrate (WAY 100135) (10(7) M) or methyl 4-[4-[4-(1,1,3-trioxo-2H-1,2-benzoisothiazol-2-yl)butyl]-1-p iperazinyl]-1Hindole-2-carboxylate (SDZ 216-525) (10(-7)M), and that of CP-93,129 was blocked by methiothepin (10(-7) M). Paradoxically, extracellular levels of [3H]5-HT increased in the presence of 8-OH-DPAT and RU 24969 at 10(-6) M. 5-HT uptake experiments showed that these two agonists interacted with the 5-HT transporter. 5-HT1 binding sites (620 fmol/mg of protein) and 5-HT1A (482 fmol/mg of protein) and 5-HT1B (127 fmol/mg of protein) receptors were detected in 12-day in vitro cell cultures. Experiments carried out with tetrodotoxin suggested that 5-HT1A receptors are located on nerve cell bodies, whereas 5-HT1B receptors are located on the nerve terminals. We concluded that autoregulatory mechanisms involving 5-HT1A and 5-HT1B autoreceptors are functionally mature in cells from rostral raphe nuclei during the early period of development.  相似文献   

16.
An HPLC assay with fluorometric detection has been developed that is sensitive enough to measure simultaneously endogenous levels of tryptophan, serotonin (5-hydroxytryptamine, or 5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) inside synaptosomes as well as that released into the incubation medium. Using this assay, we have observed that tryptophan is rapidly taken up by synaptosomes and turned over to 5-HIAA without a concurrent release of 5-HT. Exogenous 5-HT is also rapidly taken up, and, within 20-30 min, 80% of the 5-HT is deaminated. Veratridine induces release of both tryptophan and 5-HT from synaptosomes. Changes in the disposition of exogenous tryptophan or 5-HT can be completely accounted for by uptake or by stoichiometric changes in metabolites. This assay method should be valuable in the study of 5-HT pools and in the determination of from which pool 5-HT release occurs.  相似文献   

17.
This study examined the effects induced by long-term pinealectomy, daily melatonin treatment to pinealectomized and intact rats, and a single melatonin injection on [14C]-serotonin (5-HT) uptake and release from synaptosomes obtained of hypothalamic regions. Pinealectomy inhibited the accumulation of labeled 5-HT by synaptosomes of the preoptic area-anterior hypothalamus (POA-AH), but it failed to alter the [K+]-evoked 5-HT release. Melatonin treatment for 10 consecutive days to pinealectomized rats restored 5-HT uptake in POA-AH, and also increased 5-HT release in medial and posterior hypothalamus. These results suggest that pineal melatonin plays a stimulatory role on the serotoninergic terminals of the hypothalamus. Moreover, when daily melatonin treatment was administered to intact rats a significant increase in 5-HT uptake activity by synaptosomes of all the hypothalamic regions was observed, but 5-HT release was unaffected. In contrast, a single melatonin injection induced a significant decrease in 5-HT release from synaptosomes of the POA-AH was observed. The results suggest the existence of a differential sensitivity in the mechanisms mediating melatonin actions on 5-HT uptake/release, which depends on the presence of the pineal gland in the animals and on the frequency of the treatments with the pineal hormone.  相似文献   

18.
Exploring the mechanisms of serotonin [5-hydroxytryptamine (5-HT)] in the brain requires an in vivo method that combines fast temporal resolution with chemical selectivity. Fast-scan cyclic voltammetry is a technique with sufficient temporal and chemical resolution for probing dynamic 5-HT neurotransmission events; however, traditionally it has not been possible to probe in vivo 5-HT mechanisms. Recently, we optimized fast-scan cyclic voltammetry for measuring 5-HT release and uptake in vivo in the substantia nigra pars reticulata (SNR) with electrical stimulation of the dorsal raphe nucleus (DRN) in the rat brain. Here, we address technical challenges associated with rat DRN surgery by electrically stimulating 5-HT projections in the medial forebrain bundle (MFB), a more accessible anatomical location. MFB stimulation elicits 5-HT in the SNR; furthermore, we find simultaneous release of an additional species. We use electrochemical and pharmacological methods and describe physiological, anatomical and independent chemical analyses to identify this species as histamine. We also show pharmacologically that increasing the lifetime of extracellular histamine significantly decreases 5-HT release, most likely because of increased activation of histamine H-3 receptors that inhibit 5-HT release. Despite this, under physiological conditions, we find by kinetic comparisons of DRN and MFB stimulations that the simultaneous release of histamine does not interfere with the quantitative 5-HT concentration profile. We therefore present a novel and robust electrical stimulation of the MFB that is technically less challenging than DRN stimulation to study 5-HT and histamine release in the SNR.  相似文献   

19.
We previously observed that the neurotransmitter 5-hydroxytryptamine (5-HT, serotonin) binds with high- and low-affinity interactions to an actin-like protein prepared from rat brain synaptosomes. In this study, we examined its binding to highly purified actin obtained from rabbit skeletal muscle. Monomeric G-actin bound serotonin with high and low affinities, exhibiting equilibrium dissociation constants (KD values) of 5 X 10(-5) M and 4 X 10(-3) M, respectively. The serotonin binding site on actin was distinct from those sites previously characterized for divalent cations, nucleotides, and cytochalasin alkaloids. The binding of serotonin (1 microM) to G-actin was increased as much as 26-fold by divalent cations. Potassium iodine (KI) increased the affinity of G-actin for serotonin, KD values for this binding being 3 X 10(-7) M and X 10(-5) M. Serotonin bound with even higher affinity to polymerized F-actin, with KD values of 2 X 10(-8) M and 2 X 10(-5) M. However, the total number of binding sites on F-actin was only about 4% of the number of G-actin. The binding of serotonin (0.1 microM) to G-actin could be inhibited by phenothiazines (1 microM) or reserpine (10 microM), but not by classical antagonists of serotonin receptors or by drugs that release serotonin or inhibit its uptake. The binding of serotonin to actin in vivo may participate in a contractile process related to neurotransmitter release.  相似文献   

20.
The present study characterizes a serotonin (5-HT) binding site on human platelet membranes, using [3H]8-OH-DPAT as the radioligand. [3H]8-OH-DPAT binds specifically and saturably to a site on human platelet membranes with an average KD of 43 nM and Bmax of 1078 fmol/mg protein. Determinations of IC50 values for various serotonergic characterizing agents in platelets for displacement of [3H]8-OH-DPAT were performed. For example, 8-OH-DPAT 5HT1A had an IC50 of 117 nM; TFMPP 5HT1B (2.3 microM0 and PAPP 1A + 5HT2 (9 microM); ipsapirone 5HT1A (21.1 microM) and buspirone 5HT1A (greater than 100 microM); ketanserin 5HT2 (greater than 100 microM); 5-HT uptake inhibitors: paroxetine (13 nM); chlorimipramine (73 nM) and fluoxetine (653 nM). The pharmacological inhibitory profile of the platelet 8-OH-DPAT site is not consistent with profiles reported for brain. 8-OH-DPAT does not inhibit [3H]imipramine binding, however, it does inhibit [3H]5-HT uptake in human platelets near 5-HT's Km value (IC50 = 2-4 microM). These results suggest that the human platelet site labeled by [3H]8-OH-DPAT is pharmacologically different from the neuronal site and probably is a component of the 5-HT transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号