共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphology and post-embryonic development of the pleopodal rami of the amphipod crustacean Gammarus roeselii Gervais, 1835 are described, with particular reference to the differentiation of limb articles. An article is the part of a limb between two complete arthrodial membranes and, in the pleopodal rami, most arthrodial membranes are accompanied by two plumose setae on the opposite faces of the article. During post-embryonic development, the rami acquire new plumose setae and new arthrodial membranes proximal to the already differentiated part; this implies that new articles are produced by the division of the most proximal article only. On the proximal article of the inner ramus there are also some bifid setae, whose number increases post-embryonically, most likely by proximal addition of new setae. Data from different limb types of different arthropod groups suggest that during post-embryonic development new articles are also produced from one or more specific zone(s) of the limbs. General aspects of these “growth zones” in arthropod limbs are discussed and their distribution, in respect to both different limb types and different taxa, is reviewed. The available data do not allow unambiguous conclusions about the evolution of growth zones and limb patterning, but the most relevant questions are nevertheless outlined. 相似文献
2.
3.
We propose a new mathematical model describing the establishment of maternal and gap proteins segmental patterning along the antero-posterior axis of the Drosophila early embryo. This model is based on experimental data and, without recurring to pre-defined activation thresholds, predicts qualitatively and quantitatively the expression patterns of the maternal and gap proteins, as well as the expression patterns of proteins resulting from mRNA ectopic expression and from some loss-of-function mutations. We conclude that the gap genes segmental patterning and consequent spatial organization of the embryo is determined by three main factors: (1) the initial positioning of the maternal bicoid and torso mRNA inside the egg, and subsequent diffusion of the corresponding proteins; (2) the structure of the genetic regulatory network; (3) the role of conservation laws in the establishment of steady and non-uniform spatial distributions of non-diffusing proteins. 相似文献
4.
One of the key aspects of functional nervous systems is the restriction of particular neural subtypes to specific regions, which permits the establishment of differential segment-specific neuromuscular networks. Although Hox genes play a major role in shaping the anterior-posterior body axis during animal development, our understanding of how they act in individual cells to determine particular traits at precise developmental stages is rudimentary. We have used the abdominal leucokinergic neurons (ABLKs) to address this issue. These neurons are generated during both embryonic and postembryonic neurogenesis by the same progenitor neuroblast, and are designated embryonic and postembryonic ABLKs, respectively. We report that the genes of the Bithorax-Complex, Ultrabithorax (Ubx) and abdominal-A (abd-A) are redundantly required to specify the embryonic ABLKs. Moreover, the segment-specific pattern of the postembryonic ABLKs, which are restricted to the most anterior abdominal segments, is controlled by the absence of Abdominal-B (Abd-B), which we found was able to repress the expression of the neuropeptide leucokinin. We discuss this and other examples of how Hox genes generate diversity within the central nervous system of Drosophila.Keyword: development, Hox genes, central nervous system, Drosophila, cell fate specification 相似文献
5.
Berg CA 《Trends in genetics : TIG》2005,21(6):346-355
What are the mechanisms that convert cell-fate information into shape changes and movements, thus creating the biological forms that comprise tissues and organs? Tubulogenesis of the Drosophila dorsal eggshell structures provides an excellent system for studying the link between patterning and morphogenesis. Elegant genetic and molecular analyses from over a decade provide a strong foundation for understanding the combinatorial signaling events that specify dorsal anterior cell fates within the follicular epithelium overlying the oocyte. Recent studies reveal the morphogenetic events that alter that flat epithelial sheet into two tubes; these tubes form the mold for synthesizing the dorsal appendages--eggshell structures that facilitate respiration in the developing embryo. This review summarizes the mutant analyses that give insight into these patterning and morphogenetic processes. 相似文献
6.
An important step in Drosophila neurogenesis is to establish the neural dorsoventral (DV) patterning. Here we describe how dpp loss-of- and gain-of-function mutation affects the homeobox-containing neural DV patterning genes expressed in the ventral neuroectoderm. Ventral nervous system defective (vnd), intermediate neuroblast defective (ind), muscle-specific homeobox (msh), and orthodenticle (otd) genes participate in development of the central nervous system and peripheral nervous system, and encode homeodomain proteins. otd and msh genes were ectopically expressed in dpp loss-of-function mutation, but vnd and ind were not affected. However, when dpp was ectopically expressed in the ventral neuroectoderm by rho-GAL4/UAS-dpp system, it caused the repression of vnd, and msh expressions in ventral and dorsal columns of the neuroectoderm, respectively, but not that of ind. The later expression pattern of otd was also restricted by Dpp. The expression pattern of msh, vnd and otd in dpp loss-of-function and gain-of-function mutation indicates that Dpp activity does not reach to the ventral midline and it works locally to establish the dorsal boundary of the ventral neuroectoderm. 相似文献
7.
8.
Elisa M. LaBeau Damian L. Trujillo Richard M. Cripps 《Mechanisms of development》2009,126(5-6):478-486
Cardiac specification models are widely utilized to provide insight into the expression and function of homologous genes and structures in humans. In Drosophila, contractions of the alary muscles control hemolymph inflow and support the cardiac tube, however embryonic development of these muscles remain largely understudied. We found that alary muscles in Drosophila embryos appear as segmental pairs, attaching dorsally at the seven-up (svp) expressing pericardial cells along the cardiac dorsal vessel, and laterally to the body wall. Normal patterning of alary muscles along the dorsal vessel was found to be a function of the Bithorax Complex genes abdominal-A (abd-A) and Ultrabithorax (Ubx) but not of the orphan nuclear receptor gene svp. Ectopic expression of either abd-A or Ubx resulted in an increase in the number of alary muscle pairs from seven to 10, and also produced a general elongation of the dorsal vessel. A single knockout of Ubx resulted in a reduced number of alary muscles. Double knockouts of both Ubx and abd-A prevented alary muscles from developing normally and from attaching to the dorsal vessel. These studies demonstrate an additional facet of muscle development that depends upon the Hox genes, and define for the first time mechanisms that impact development of this important subset of muscles. 相似文献
9.
Evolutional changes in homeotic gene functions have contributed to segmental diversification of arthropodan limbs, but crucial molecular changes have not been identified to date. The first leg of the crustacean Daphnia lacks a prominent ventral branch found in the second to fourth legs. We show here that this phenotype correlates with the loss of Distal-less and concomitant expression of Antennapedia in the limb primordium. Unlike its Drosophila counterpart, Daphnia Antennapedia represses Distal-less in Drosophila assays, and the protein region conferring this activity was mapped to the N terminal region of the protein. The results imply that Dapnia Antennapedia specifies leg morphology by repressing Distal-less, and this activity was acquired through a change in protein structure after separation of crustaceans and insects. 相似文献
10.
Segmentation is one of the most salient characteristics of arthropods, and differentiation of segments along the body axis is the basis of arthropod diversification. This article evaluates whether the evolution of segmentation involves the differentiation of already independent units, i.e., do segments evolve as modules? Because arthropod segmental differentiation is commonly equated with differential character of appendages, we analyze appendages by comparing similarities and differences in their development. The comparison of arthropod limbs, even between species, is a comparison of serially repeated structures. Arthropod limbs are not only reiterated along the body axis, but limbs themselves can be viewed as being composed of reiterated parts. The interpretation of such reiterated structures from an evolutionary viewpoint is far from obvious. One common view is that serial repetition is evidence of a modular organization, i.e., repeated structures with a common fundamental identity that develop semi-autonomously and are free to diversify independently. In this article, we evaluate arthropod limbs from a developmental perspective and ask: are all arthropod limbs patterned using a similar set of mechanisms which would reflect that they all share a generic coordinate patterning system? Using Drosophila as a basis for comparison, we find that appendage primordia, positioned along the body using segmental patterning coordinates, do indeed have elements of common identity. However, we do not find evidence of a single coordinate system shared either between limbs or among limb branches. Data concerning the other diagnostic of developmental modularity--semi-autonomy of development--are not currently available for sufficient taxa. Nonetheless, some data comparing patterns of morphogenesis provide evidence that limbs cannot always be temporally or spatially decoupled from the development of their neighbors, suggesting that segment modularity is a derived character. 相似文献
11.
Seth S. Blair 《BioEssays : news and reviews in molecular, cellular and developmental biology》1995,17(4):299-309
The appendages of Drosophila develop from the imaginal discs. During the extensive growth of these discs cell lineages are for the most part unfixed, suggesting a strong role for cell-cell interactions in controlling the final pattern of differentiation. However, during early and middle stages of development, discs are subdivided by strict lineage restrictions into a small number of spatially distinct compartments. These compartments appear to be maintained by stably inheriting states of gene expression; the compartmentspecific expression of two such ‘selector’ - like genes, engrailed and apterous, are critical for anterior-posterior and dorso-ventral compartmentalization, respectively. Recent work suggests that one purpose of compartmentalization is to establish regions of specialized cells near compartment boundaries via intercompartmental induction, using molecules like the hedgehog protein. Thus, compartments can act as organizing centers for patterning within compartments. Evidence for non-compartmental patterning mechanisms will also be discussed. 相似文献
12.
The linear cardiac tube of Drosophila, the dorsal vessel, is an important model organ for the study of cardiac specification and patterning in vertebrates. In Drosophila, the Hox segmentation gene abdominal-A (abd-A) is required for the specification of a functionally distinct heart region at the posterior of the dorsal vessel, from which blood is pumped anteriorly through a tube termed the aorta. Since we have previously shown that the posterior part of the aorta is specified during embryogenesis to form the adult heart during metamorphosis, we determined if the embryonic aorta is also patterned by the function of Hox segmentation genes. Using gain- and loss-of-function experiments, we demonstrate that the three Hox genes expressed in the posterior aorta and heart are sufficient to confer heart or posterior aorta fate throughout the dorsal vessel. Additionally, we demonstrate that Ultrabithorax and abd-A, but not Antennapedia, function to control cell number in the dorsal vessel. These studies add robustness to the model that homeotic selector genes pattern the Drosophila dorsal vessel, and further extend our understanding of how the cardiac tube is patterned in animal models. 相似文献
13.
Rolf Urbach Dagmar Volland Janina Seibert Gerhard M Technau 《Development (Cambridge, England)》2006,133(21):4315-4330
An initial step in the development of the Drosophila central nervous system is the delamination of a stereotype population of neural stem cells (neuroblasts, NBs) from the neuroectoderm. Expression of the columnar genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind) and muscle segment homeobox (msh) subdivides the truncal neuroectoderm (primordium of the ventral nerve cord) into a ventral, intermediate and dorsal longitudinal domain, and has been shown to play a key role in the formation and/or specification of corresponding NBs. In the procephalic neuroectoderm (pNE, primordium of the brain), expression of columnar genes is highly complex and dynamic, and their functions during brain development are still unknown. We have investigated the role of these genes (with special emphasis on the Nkx2-type homeobox gene vnd) in early embryonic development of the brain. We show at the level of individually identified cells that vnd controls the formation of ventral brain NBs and is required, and to some extent sufficient, for the specification of ventral and intermediate pNE and deriving NBs. However, we uncovered significant differences in the expression of and regulatory interactions between vnd, ind and msh among brain segments, and in comparison to the ventral nerve cord. Whereas in the trunk Vnd negatively regulates ind, Vnd does not repress ind (but does repress msh) in the ventral pNE and NBs. Instead, in the deutocerebral region, Vnd is required for the expression of ind. We also show that, in the anterior brain (protocerebrum), normal production of early glial cells is independent from msh and vnd, in contrast to the posterior brain (deuto- and tritocerebrum) and to the ventral nerve cord. 相似文献
14.
T. A. Williams 《Development genes and evolution》1998,207(7):427-434
In Drosophila, Distalless (Dll) is critical in establishing the proximal/distal axis of the leg. Lack of proper Dll expression causes distal limb structures to be truncated or lost. Dll expression was examined through the course of development in the limbs of two crustaceans, Triops and Nebalia. Because the limbs of these two species are branched, they provide a comparison to the uniramous (unbranched) leg of Drosophila. In Triops and Nebalia, development of limb branches is not tightly coupled with Dll expression: in some cases, branches can arise prior to Dll expression and in others, certain branches never express Dll. These data suggest that, while Dll may indeed initiate overall limb outgrowth, limb branches are unlikely to be patterned by a simple iteration of the mechanism
patterning the unbranched leg of Drosophila.
Received: 14 May 1997 / Accepted: 25 September 1997 相似文献
15.
L I Held 《BioEssays : news and reviews in molecular, cellular and developmental biology》1991,13(12):633-640
The 5000 bristles that protrude from the cuticle of a Drosophila adult function as either mechanosensors or chemosensors, and they are arranged in surprisingly intricate patterns. Development of the patterns appears to involve five stages: (1) establishment of a coordinate system of 'positional information'; (2) partitioning of the epidermis into areas where bristles either can or cannot originate; (3) selection of one or more bristle mother cells within each permissible area; (4) suppression of bristle development in the neighborhood of each mother cell; and (5) differentiation of the mother cell to produce four or more descendant cells, each of which forms part of the bristle apparatus. Some of the genes that control these events participate in more than one stage, and others play key roles in seemingly unrelated developmental pathways, including embryonic neurogenesis, body segmentation, and sex determination. 相似文献
16.
The remarkable diversity of form in arthropods reflects flexible genetic programs deploying many conserved genes. In the insect model Drosophila melanogaster, diversity of form can be observed between serially homologous appendages or when a single appendage is transformed by homeotic mutations, such as the adult labial mouthparts that can present alternative antennal, prothoracic, or maxillary identities. We have examined the roles of the Hox selector genes proboscipedia (pb) and Sex combs reduced (Scr), and the antennal selectors homothorax (hth) and spineless (ss) in labial specification, by tissue-directed mitotic recombination. Whereas loss of pb function transforms labium to prothoracic leg, loss of Scr, hth, or ss functions results in little or no change in labial specification. Results of analysis of single and multiple mutant combinations support a genetic hierarchy in which the homeotic pb gene possesses a primary role. It is surprising to note that while loss of ss activity alone had no detected effect, all mutant combinations lacking both pb and ss yielded the most severe phenotype observed: stunted, apparently tripartite legs that may correspond to a default state. The roles of the four selector genes are functionally linked to a cell nonautonomous mechanism involving the coupled activities of the decapentaplegic (dpp)/TGF-β and wingless (wg)/Wnt signaling pathways. Accordingly, several mutant combinations impaired in dpp signaling were seen to reorient labial-to-leg transformations toward antennal aristae. A crucial aspect of selector function in development and evolution may be in regulating diffusible signals, including those emitted by dpp and wg. 相似文献
17.
The clonal composition of biramous and uniramous arthropod limbs 总被引:1,自引:0,他引:1
We present the first comparative cell lineage analysis of uniramous and biramous limbs of an arthropod, the crustacean Orchestia cavimana. Via single cell labelling of the cells that are involved in limb development, we are able to present the first complete clonal composition of an arthropod limb. We show that the two main branches of crustacean limbs, exopod and endopod, are formed by a secondary subdivision of the growth zone of the main limb axis. Additional limb outgrowths such as exites result from the establishment of new axes. In contrast to general belief, uniramous limbs in Orchestia are not formed by the loss of the exopod but by suppression of the split into exopod and endopod. Our results offer a developmental approach to discriminate between the different kinds of branches of arthropod appendages. This leads to the conclusion that a 'true' biramous limb comprising an endopod and an exopod might have occurred much later in euarthropod evolution than has previously been thought, probably either in the lineage of the Mandibulata or that of the Tetraconata. 相似文献
18.
Page DT 《Development (Cambridge, England)》2002,129(9):2121-2128
In vertebrates (deuterostomes), brain patterning depends on signals from adjacent tissues. For example, holoprosencephaly, the most common brain anomaly in humans, results from defects in signaling between the embryonic prechordal plate (consisting of the dorsal foregut endoderm and mesoderm) and the brain. I have examined whether a similar mechanism of brain development occurs in the protostome Drosophila, and find that the foregut and mesoderm act to pattern the fly embryonic brain. When the foregut and mesoderm of Drosophila are ablated, brain patterning is disrupted. The loss of Hedgehog expressed in the foregut appears to mediate this effect, as it does in vertebrates. One mechanism whereby these defects occur is a disruption of normal apoptosis in the brain. These data argue that the last common ancestor of protostomes and deuterostomes had a prototype of the brains present in modern animals, and also suggest that the foregut and mesoderm contributed to the patterning of this 'proto-brain'. They also argue that the foreguts of protostomes and deuterostomes, which have traditionally been assigned to different germ layers, are actually homologous. 相似文献
19.