首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bae W  Lee YJ  Kim DH  Lee J  Kim S  Sohn EJ  Hwang I 《Nature cell biology》2008,10(2):220-227
In plant cells, chloroplasts have essential roles in many biochemical reactions and physiological responses. Chloroplasts require numerous protein components, but only a fraction of these proteins are encoded by the chloroplast genome. Instead, most are encoded by the nuclear genome and imported into chloroplasts from the cytoplasm post-translationally. Membrane proteins located in the chloroplast outer envelope membrane (OEM) have a critical function in the import of proteins into the chloroplast. However, the biogenesis of chloroplast OEM proteins remains poorly understood. Here, we report that an Arabidopsis ankyrin repeat protein, AKR2A, plays an essential role in the biogenesis of the chloroplast OEM proteins. AKR2A binds to chloroplast OEM protein targeting signals, as well as to chloroplasts. It also displays chaperone activity towards chloroplast OEM proteins, and facilitates the targeting of OEP7 to chloroplasts in vitro. AKR2A RNAi in plants with an akr2b knockout background showed greatly reduced levels of chloroplast proteins, including OEM proteins, and chloroplast biogenesis was also defective. Thus, AKR2A functions as a cytosolic mediator for sorting and targeting of nascent chloroplast OEM proteins to the chloroplast.  相似文献   

2.

Background

The Arabidopsis CAH1 alpha-type carbonic anhydrase is one of the few plant proteins known to be targeted to the chloroplast through the secretory pathway. CAH1 is post-translationally modified at several residues by the attachment of N-glycans, resulting in a mature protein harbouring complex-type glycans. The reason of why trafficking through this non-canonical pathway is beneficial for certain chloroplast resident proteins is not yet known. Therefore, to elucidate the significance of glycosylation in trafficking and the effect of glycosylation on the stability and function of the protein, epitope-labelled wild type and mutated versions of CAH1 were expressed in plant cells.

Methodology/Principal Findings

Transient expression of mutant CAH1 with disrupted glycosylation sites showed that the protein harbours four, or in certain cases five, N-glycans. While the wild type protein trafficked through the secretory pathway to the chloroplast, the non-glycosylated protein formed aggregates and associated with the ER chaperone BiP, indicating that glycosylation of CAH1 facilitates folding and ER-export. Using cysteine mutants we also assessed the role of disulphide bridge formation in the folding and stability of CAH1. We found that a disulphide bridge between cysteines at positions 27 and 191 in the mature protein was required for correct folding of the protein. Using a mass spectrometric approach we were able to measure the enzymatic activity of CAH1 protein. Under circumstances where protein N-glycosylation is blocked in vivo, the activity of CAH1 is completely inhibited.

Conclusions/Significance

We show for the first time the importance of post-translational modifications such as N-glycosylation and intramolecular disulphide bridge formation in folding and trafficking of a protein from the secretory pathway to the chloroplast in higher plants. Requirements for these post-translational modifications for a fully functional native protein explain the need for an alternative route to the chloroplast.  相似文献   

3.
Pulse-labeling of wild-type and a Photosystem II mutant strain of Chlamydomonas reinhardtii was carried out in the presence or absence of inhibitors of either cytoplasmic or chloroplast ribosomes, and their thylakoid membrane polypeptides were analyzed by polyacrylamide gel electrophoresis. A pulse-chase study was also done on the wild-type strain in the presence of anisomycin, an inhibitor of protein synthesis on cytoplasmic ribosomes. The following results were obtained: the Photosystem II reaction center is mainly composed of integral membrane proteins synthesized within the chloroplast. Several of the proteins of the Photosystem II reaction center are post-translationally modified, after they have been inserted in the thylakoid membrane.  相似文献   

4.
Proteins in the chloroplast outer envelope membrane are nuclear encoded and post-translationally targeted to the chloroplast. The targeting and membrane insertion of these proteins is not well understood. Although early work suggested otherwise, the best-studied outer membrane proteins (OMPs) use both proteins within the chloroplast and NTPs for insertion. There have been conflicting reports in the field regarding protein targeting and insertion, which have probably arisen because of differences in experimental methodology and different interpretations of reduction (versus abolition) of integration. This review summarizes what is known to date about the mechanism of chloroplast OMP targeting.  相似文献   

5.
Among the protein translocation pathways of the thylakoid membrane in chloroplasts, the DeltapH/TAT pathway is unique in several aspects. In vitro transport assays with isolated chloroplasts or thylakoids have defined the trans-thylakoidal proton gradient as the sole requirement for effecting transport. From these studies, evidence has also accumulated indicating that, in contrast to the remaining protein transport pathways present in the thylakoid membrane, the DeltapH/TAT pathway is able to mediate the transport of folded proteins. The present work has established a novel approach to demonstrate the transport of folded proteins by this pathway in vivo. For this purpose, Arabidopsis thaliana plants were stably transformed with gene constructs expressing enhanced green fluorescent protein (EGFP) alone or fused to the transit peptides of different chloroplast proteins under the control of the 35S CAMV promoter. The intracellular and intraorganellar distribution of EGFP in the resulting transformants showed that while all the chloroplast transit peptides efficiently mediated the transport of EGFP into plastids, only those specific for the DeltapH/TAT pathway were able to direct the protein into the thylakoid lumen as well. This could be demonstrated both by fluorescence and immunoelectron microscopy. Analysis of isolated and fractionated chloroplasts using western blot and spectrofluorometric assays confirmed the presence of folded EGFP solely within the thylakoid lumen of these lines. These results strongly suggest that the protein adopts a folded state in the chloroplast stroma and thus, can only be translocated further into the chloroplast lumen by the DeltapH/TAT pathway.  相似文献   

6.
Bayer RG  Stael S  Csaszar E  Teige M 《Proteomics》2011,11(7):1287-1299
Chloroplasts are fundamental organelles enabling plant photoautotrophy. Besides their outstanding physiological role in fixation of atmospheric CO(2), they harbor many important metabolic processes such as biosynthesis of amino acids, vitamins or hormones. Technical advances in MS allowed the recent identification of most chloroplast proteins. However, for a deeper understanding of chloroplast function it is important to obtain a complete list of constituents, which is so far limited by the detection of low-abundant proteins. Therefore, we developed a two-step strategy for the enrichment of low-abundant soluble chloroplast proteins from Pisum sativum and their subsequent identification by MS. First, chloroplast protein extracts were depleted from the most abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase by SEC or heating. Further purification was carried out by affinity chromatography, using ligands specific for ATP- or metal-binding proteins. By these means, we were able to identify a total of 448 proteins including 43 putative novel chloroplast proteins. Additionally, the chloroplast localization of 13 selected proteins was confirmed using yellow fluorescent protein fusion analyses. The selected proteins included a phosphoglycerate mutase, a cysteine protease, a putative protein kinase and an EF-hand containing substrate carrier protein, which are expected to exhibit important metabolic or regulatory functions.  相似文献   

7.
Protein import into chloroplasts occurs post-translationally in vitro. The precursor proteins are generally synthesised in a reticulocyte lysate- or wheat germ lysate-derived system and imported out of this system into chloroplast. These complex soluble protein mixtures are likely to contain factors, which influence somehow the import competence and import efficiency. Here we describe a heat-stable soluble proteinaceaous factor, which inhibits protein import into chloroplasts in vitro. The inhibitor interacts directly with the precursor protein and renders it import incompetent. This mode of action is supported by two observations: firstly, binding of the precursor to the chloroplast surface is diminished in the presence of the inhibitor. Secondly, when chloroplasts were loaded with precursor proteins under conditions, which allow only binding but not import the inhibitor was unable to abolish the subsequent translocation step.  相似文献   

8.
Plastids are a diverse group of plant organelles that perform essential functions including important steps in many biosynthetic pathways. Chloroplasts are the best characterized type of plastid, and constitute the site of oxygenic photosynthesis in plants, a process essential to all higher life forms. It is well established that the majority (>90%) of chloroplast proteins are nucleus-encoded and must be post-translationally imported into these envelope-bound compartments. Most nucleus-encoded chloroplast proteins are translated in precursor form on cytosolic ribosomes, targeted to the chloroplast surface, and then imported across the double-membrane envelope by translocons in the outer and inner envelope membranes of the chloroplast, termed TOC and TIC, respectively. Recently, significant progress has been made in our understanding of how proteins are targeted to the chloroplast surface and translocated across the chloroplast envelope into the stroma. Evidence suggesting the existence of multiple import pathways at the outer envelope membrane for different classes of precursor proteins has been presented. These pathways appear to utilize similar TOC complexes equipped with different combinations of homologous GTPase receptors, providing preprotein recognition specificity.  相似文献   

9.
The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.  相似文献   

10.
Phosphorylation of the transit peptide of several chloroplast-targeted proteins enables the binding of 14-3-3 proteins. The complex that forms, together with Hsp70, has been demonstrated to be an intermediate in the chloroplast protein import pathway in vitro[May, T. & Soll, J. (2000) Plant Cell 12, 53-63]. In this paper we report that mutagenesis (in order to remove the phosphorylation site) of the transit peptide of the small subunit of ribulose bisphosphate carboxylase/oxygenase did not affect its ability to target green fluorescent protein to chloroplasts in vivo. We also found no mistargeting to other organelles such as mitochondria. Similar alterations to the transit peptides of histidyl- or cysteinyl-tRNA synthetase, which are dual-targeted to chloroplasts and mitochondria, had no effect on their ability to target green fluorescent protein in vivo. Thus, phosphorylation of the transit peptide is not responsible for the specificity of chloroplast import.  相似文献   

11.
12.
Transport of cytoplasmically synthesized precursor proteins into chloroplasts, like the protein transport systems of mitochondria and the endoplasmic reticulum, appears to require the action of molecular chaperones. These molecules are likely to be the sites of the ATP hydrolysis required for precursor proteins to bind to and be translocated across the two membranes of the chloroplast envelope. Over the past decade, several different chaperones have been identified, based mainly on their association with precursor proteins and/or components of the chloroplast import complex, as putative factors mediating chloroplast protein import. These factors include cytoplasmic, chloroplast envelope-associated and stromal members of the Hsp70 family of chaperones, as well as stromal Hsp100 and Hsp60 chaperones and a cytoplasmic 14-3-3 protein. While many of the findings regarding the action of chaperones during chloroplast protein import parallel those seen for mitochondrial and endoplasmic reticulum protein transport, the chloroplast import system also has unique aspects, including its hypothesized use of an Hsp100 chaperone to drive translocation into the organelle interior. Many questions concerning the specific functions of chaperones during protein import into chloroplasts still remain that future studies, both biochemical and genetic, will need to address.  相似文献   

13.
The thylakoid membrane, located inside the chloroplast, requires proteins transported across it for plastid biogenesis and functional photosynthetic electron transport. The chloroplast Tat translocator found on thylakoids transports proteins from the plastid stroma to the thylakoid lumen. Previous studies have shown that the chloroplast Tat pathway is independent of NTP hydrolysis as an energy source and instead depends on the thylakoid transmembrane proton gradient to power protein translocation. Because of its localization on the same membrane as the proton motive force-dependent F(0)F(1) ATPase, we believed that the chloroplast Tat pathway also made use of the thylakoid electric potential for transporting substrates. By adjusting the rate of photosynthetic proton pumping and by utilizing ionophores, we show that the chloroplast Tat pathway can also utilize the transmembrane electric potential for protein transport. Our findings indicate that the chloroplast Tat pathway is likely dependent on the total protonmotive force (PMF) as an energy source. As a protonmotive-dependent device, certain predictions can be made about structural features expected to be found in the Tat translocon, specifically, the presence of a proton well, a device in the membrane that converts electrical potential into chemical potential.  相似文献   

14.
H M Li  T Moore    K Keegstra 《The Plant cell》1991,3(7):709-717
The chloroplastic envelope is composed of two membranes, inner and outer, each with a distinct set of polypeptides. Like proteins in other chloroplastic compartments, most envelope proteins are synthesized in the cytosol and post-translationally imported into chloroplasts. Considerable knowledge has been obtained concerning protein import proteins. We isolated a cDNA clone from pea that encodes a 14-kilodalton outer envelope membrane protein. The precursor form of this protein does not possess a cleavable transit peptide and its import into isolated chloroplasts does not require either ATP or a thermolysin-sensitive component on the chloroplastic surface. These findings, together with similar observations made with a spinach chloroplastic outer membrane protein, led us to propose that proteins destined for the outer membrane of the chloroplastic envelope follow an import pathway distinct from that followed by proteins destined for other chloroplastic compartments.  相似文献   

15.
16.
Transformation of the nuclear, chloroplast, and mitochondrial genomes can now be accomplished inChlamydomonas reinhardtii. Many biosynthetic pathways are carried out in the chloroplast, and efforts to manipulate these pathways will require that gene products be directed to this compartment. Chloroplast proteins are encoded in either the chloroplast or nuclear genome. In the latter case they are synthesized in the cytoplasm and imported post-translationally into the chloroplast. Thus, strategies for expressing foreign genes or overexpressing endogenous genes whose products reside in the chloroplast could involve either genome. This paper reviews the present status of transformation methodology for the nuclear and chloroplast genomes inChlamydomonas. Considerations for expressing gene products in the chloroplast are discussed. Experimental evidence for homologous recombination during transformation of the nuclear genome is presented.  相似文献   

17.
In contrast to animal and fungal cells, green plant cells contain one or multiple chloroplasts, the organelle(s) in which photosynthetic reactions take place. Chloroplasts are believed to have originated from an endosymbiotic event and contain DNA that codes for some of their proteins. Most chloroplast proteins are encoded by the nuclear genome and imported with the help of sorting signals that are intrinsic parts of the polypeptides. Here, we show that a chloroplast-located protein in higher plants takes an alternative route through the secretory pathway, and becomes N-glycosylated before entering the chloroplast.  相似文献   

18.
J Rine  S H Kim 《The New biologist》1990,2(3):219-226
Intermediates of the cholesterol biosynthetic pathway are covalently attached to a number of eukaryotic proteins, including the Ras oncoprotein. Ras protein is post-translationally processed at its carboxyl terminus in three steps, resulting in a COOH-terminal cysteine residue to which a polyisoprenoid moiety, probably farnesyl, is attached in a thioether linkage. Polyisoprenylation of Ras protein is required for its membrane association and for the oncogenicity of mutant forms of the protein. Inhibition of polyisoprenylation may offer a route by which Ras-mediated tumors can be pharmacologically suppressed. Other proteins that are polyisoprenylated include nuclear lamin B, fungal mating factors, and subunits of trimeric guanine nucleotide-binding proteins. A consensus sequence for polyisoprenylation (Cys-aliphatic-aliphatic-X) has been identified at the COOH-terminus of modified proteins. Recent evidence indicates that proteins can be modified by several different polyisoprenoids.  相似文献   

19.
Tail-anchored proteins are post-translationally targeted and inserted into the endoplasmic reticulum membrane. They do not use the co-translational signal-recognition particle (SRP)-dependent pathway, but rather utilize an ill-defined, ATP-dependent mechanism. Here, we show that a tail-anchored protein can be cleaved by signal peptidase and that the sequence requirements for efficient cleavage seem to be the same as for cleavage of co-translationally targeted SRP-dependent proteins.  相似文献   

20.
Leaf proteins, and in particular the photosynthetic proteins of plastids, are extensively degraded during senescence. Although this involves massive amounts of protein, the mechanisms responsible for chloroplast protein degradation are largely unknown. Degradation within the plastid itself is supported by the observation that chloroplasts contain active proteases, and that chloroplasts isolated from senescing leaves can cleave Rubisco to release partially digested fragments. It is less clear whether chloroplasts can complete Rubisco degradation. Chloroplastic proteases are likely involved in the breakdown of the D1 and LHCII proteins of photosystem II. Small s enescence- a ssociated v acuoles (SAVs) with high-proteolytic activity develop in senescing leaf cells, and there is evidence that SAVs contain chloroplast proteins. Thus, an extra-plastidic pathway involving SAVs might participate in the degradation of some chloroplast proteins. Plastidic and extra-plastidic pathways might cooperate in the degradation of chloroplast proteins, or they might represent alternative, redundant pathways for photosynthetic protein degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号