首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytokinesis in the early divergent protozoan Trypanosoma brucei occurs from the anterior cell tip of the new-flagellum daughter toward the nascent posterior end of the old-flagellum daughter of a dividing biflagellated cell. The cleavage furrow ingresses unidirectionally along the preformed cell division fold and is regulated by an orphan kinesin named kinesin localized to the ingressing furrow (KLIF) that localizes to the leading edge of the ingressing furrow. Little is known about how furrow ingression is controlled by KLIF and whether KLIF interacts with and cooperates with other cytokinesis regulatory proteins to promote furrow ingression. Here, we investigated the roles of KLIF in cleavage furrow ingression and identified a cohort of KLIF-associated cytoskeletal proteins as essential cytokinesis regulators. By genetic complementation, we demonstrated the requirement of the kinesin motor activity, but not the putative tropomyosin domain, of KLIF in promoting furrow ingression. We further showed that depletion of KLIF impaired the resolution of the nascent posterior of the old-flagellar daughter cell, thereby stalking cleavage furrow ingression at late stages of cytokinesis. Through proximity biotinylation, we identified a subset of cytoskeleton-associated proteins (CAPs) as KLIF-proximal proteins, and functional characterization of these cytoskeletal proteins revealed the essential roles of CAP46 and CAP52 in positioning the cleavage furrow and the crucial roles of CAP42 and CAP50 in promoting cleavage furrow ingression. Together, these results identified multiple cytoskeletal proteins as cytokinesis regulators and uncovered their essential and distinct roles in cytokinesis.  相似文献   

2.
The midpoint of the mitotic apparatus is fixed in the future division plane long before the division mechanism develops, and this static relationship has been considered essential in speculations concerning division mechanism establishment. The purpose of the present investigation was to determine whether prevention of the static relationship affects the establishment process. Sand dollar eggs were reshaped into cylinders by confinement in an elastic capillary tube and, beginning about 20 min before cleavage, the mitotic apparatus was kept in reciprocal motion by alternately compressing the poles. When the movement was continuous and the excursions were 25, 50 or 75 μm, furrow activity developed near the midpoint of the region underlain by the mitotic apparatus. The acuteness of the furrow decreased as the distance the mitotic apparatus was moved increased. When the movement was made discontinuous by allowing the mitotic apparatus to pause at the end of each excursion, the results depended upon the duration of the pause. Pauses 30 s long resulted in a single furrow formed in the midpoint of the entire region underlain by the mitotic apparatus. When the pauses were 45s long, furrowing activity developed in both regions where the mitotic apparatus was allowed to pause. The results indicated that the normal static relation between the mitotic apparatus midpoint and the division plane is unnecessary for division mechanism establishment. They also demonstrate that a restricted region of contractile activity can be established in the cortex despite experimentally induced spreading and dilution of mitotic apparatus effect.  相似文献   

3.
To identify molecular players implicated in cytokinesis and division plane determination, the Arabidopsis thaliana genome was explored for potential cytokinesis genes. More than 100 open reading frames were selected based on similarity to yeast and animal cytokinesis genes, cytoskeleton and polarity genes, and Nicotiana tabacum genes showing cell cycle-controlled expression. The subcellular localization of these proteins was determined by means of GFP tagging in tobacco Bright Yellow-2 cells and Arabidopsis plants. Detailed confocal microscopy identified 15 proteins targeted to distinct regions of the phragmoplast and the cell plate. EB1- and MAP65-like proteins were associated with the plus-end, the minus-end, or along the entire length of microtubules. The actin-binding protein myosin, the kinase Aurora, and a novel cell cycle protein designated T22, accumulated preferentially at the midline. EB1 and Aurora, in addition to other regulatory proteins (homologs of Mob1, Sid1, and Sid2), were targeted to the nucleus, suggesting that this organelle operates as a coordinating hub for cytokinesis.  相似文献   

4.
5.
Axonal transport of microtubules: the long and short of it   总被引:3,自引:0,他引:3  
Recent studies on cultured neurons have demonstrated that microtubules are transported down the axon in the form of short polymers. The transport of these microtubules is bidirectional, intermittent, asynchronous, and occurs at the fast rate of known motors. The majority of the microtubule mass in the axon exists in the form of longer immobile microtubules. We have proposed a model called 'cut and run', in which the longer microtubules are mobilized by enzymes that sever them into shorter mobile polymers. In this view, the molecular motors that transport microtubules are not selective for short microtubules but rather impinge upon microtubules irrespective of their length. In the case of the longer microtubules, these motor-driven forces do not transport the microtubules in a rapid and concerted fashion but presumably affect them nonetheless. Here, we discuss the mechanisms by which the short microtubules are transported and suggest possibilities for how analogous mechanisms may align and organize the longer microtubules and functionally integrate them with each other and with the actin cytoskeleton.  相似文献   

6.
The fission yeast Schizosaccharomyces pombe provides a genetic model system for the study of cytokinesis. As in many eukaryotes, cell division in the fission yeast requires an actin-myosin-based contractile ring. Numerous components of the contractile ring that function in ring assembly, positioning and contraction have been characterized. Many of these proteins are evolutionarily conserved, suggesting that common molecular mechanisms may govern aspects of eukaryotic cell division. Recent advances in the assembly and placement of the contractile ring are discussed. In particular, major findings have been made in the characterization of myosins in cytokinesis, and in how the cell division site may be positioned by the nucleus.  相似文献   

7.
动蛋白(kinesin)是一种具有ATPase活性的微管马达蛋白,它可以利用水解ATP产生的能量沿微管运动. 由于动蛋白参与了众多的生物学过程,近年来动蛋白的研究成为一个热点. 文章总结了动蛋白的结构、沿微管运动的机制、活性调节及动蛋白的分布与功能.  相似文献   

8.
Microtubule dynamics and organization are important for plant cell morphogenesis and development. The microtubule-based motor protein kinesins are mainly responsible for the transport of some organelles and vesicles, although several have also been shown to regulate microtubule organization. The ARMADILLO REPEAT KINESIN (ARK) family is a plant-specific motor protein subfamily that consists of three members (ARK1, ARK2, and ARK3) in Arabidopsis thaliana. ARK2 has been shown to participate in root epidermal cell morphogenesis. However, whether and how ARK2 associates with microtubules needs further elucidation. Here, we demonstrated that ARK2 co-localizes with microtubules and facilitates microtubule bundling in vitro and in vivo. Pharmacological assays and microtubule dynamics analyses indicated that ARK2 stabilizes cortical microtubules. Live-cell imaging revealed that ARK2 moves along cortical microtubules in a processive mode and localizes both at the plus-end and the sidewall of microtubules. ARK2 therefore tracks and stabilizes the growing plus-ends of microtubules, which facilitates the formation of parallel microtubule bundles.  相似文献   

9.
Dictyostelium RacH localizes predominantly to membranes of the nuclear envelope, endoplasmic reticulum and Golgi apparatus. To investigate the role of this protein, we generated knockout and overexpressor strains. RacH-deficient cells displayed 50% reduced fluid-phase uptake and a moderate exocytosis defect, but phagocytosis was unaffected. Detailed examination of the endocytic pathway revealed defective acidification of early endosomes and reduced secretion of acid phosphatase in the presence of sucrose. The distribution of the post-lysosomal marker vacuolin was altered, with a high proportion of cells showing a diffuse vesicular pattern in contrast to the wild-type strain, where few intensely stained vacuoles predominate. Cytokinesis, cell motility, chemotaxis and development appeared largely unaffected. In a cell-free system, RacH stimulates actin polymerization, suggesting that this protein is involved in actin-based trafficking of vesicular compartments. We also investigated the determinants of subcellular localization of RacH by expression of green-fluorescent-protein-tagged chimeras in which the C-terminus of RacH and the plasma-membrane-targeted RacG were exchanged, the insert region was deleted or the net positive charge of the hypervariable region was increased. We show that several regions of the molecule, not only the hypervariable region, determine targeting of RacH. Overexpression of mistargeted RacH mutants did not recapitulate the phenotypes of a strain overexpressing nonmutated RacH, indicating that the function of this protein is in great part related to its subcellular localization.  相似文献   

10.
Direct application of EDTA at precise locations on the cortex at different times during the division of sea urchin eggs was accomplished with a capillary filled with agar-EDTA using a micromanipulator. Treatment with EDTA prior to mid-metaphase arrested cleavage irreversibly. The effects of EDTA applications during metaphase varied according to the precise site of treatment. EDTA treatment of the cleavage furrow, after it appeared at the end of anaphase, had no effect on the completion of cleavage. These results are discussed in relation to the possible role of calcium in determining the site of the cleavage furrow.  相似文献   

11.
Cofilin mediates lamellipodium extension and polarized cell migration by stimulating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by phosphorylation at Ser-3 and reactivated by cofilin-phosphatase Slingshot-1L (SSH1L). Little is known of signaling mechanisms of cofilin activation and how this activation is spatially regulated. Here, we show that cofilin-phosphatase activity of SSH1L increases approximately 10-fold by association with actin filaments, which indicates that actin assembly at the leading edge per se triggers local activation of SSH1L and thereby stimulates cofilin-mediated actin turnover in lamellipodia. We also provide evidence that 14-3-3 proteins inhibit SSH1L activity, dependent on the phosphorylation of Ser-937 and Ser-978 of SSH1L. Stimulation of cells with neuregulin-1beta induced Ser-978 dephosphorylation, translocation of SSH1L onto F-actin-rich lamellipodia, and cofilin dephosphorylation. These findings suggest that SSH1L is locally activated by translocation to and association with F-actin in lamellipodia in response to neuregulin-1beta and 14-3-3 proteins negatively regulate SSH1L activity by sequestering it in the cytoplasm.  相似文献   

12.
采用激光共聚焦显微术研究微管微丝交联因子(MACF1)与成骨样细胞(MD63及MC3T3)微丝/微管骨架、黏着斑之间的相互关系.结果表明,MACF1不连续地分布于微管纤维上,与微丝骨架部分共定位于胞质中,在很多的成骨细胞中可见MACF1分布于骨架相关的粘着斑处:细胞松弛素B影响了MACF1在成骨细胞中的分布,并有使其向细胞核周围及核内转位的趋势.秋水仙素对MACF1的分布无明显的影响.转染了siRNA—MACFl的MG.63细胞微丝骨架纤维分布不连续、微管骨架纤维分布紊乱.这些结果提示MACF1不仅起交联微丝及微管细胞骨架的作用.而且还可稳定细胞骨架:成骨细胞MACF1的分布更依赖于微丝骨架的完整性.  相似文献   

13.
Axonal transport involves kinesin motors trafficking cargo along microtubules that are rich in microtubule‐associated proteins (MAPs). Much attention has focused on the behavior of kinesin‐1 in the presence of MAPs, which has overshadowed understanding the contribution of other kinesins such as kinesin‐2 in axonal transport. We have previously shown that, unlike kinesin‐1, kinesin‐2 in vitro motility is insensitive to the neuronal MAP Tau. However, the mechanism by which kinesin‐2 efficiently navigates Tau on the microtubule surface is unknown. We hypothesized that mammalian kinesin‐2 side‐steps to adjacent protofilaments to maneuver around MAPs. To test this, we used single‐molecule imaging to track the characteristic run length and protofilament switching behavior of kinesin‐1 and kinesin‐2 motors in the absence and presence of 2 different microtubule obstacles. Under all conditions tested, kinesin‐2 switched protofilaments more frequently than kinesin‐1. Using computational modeling that recapitulates run length and switching frequencies in the presence of varying roadblock densities, we conclude that kinesin‐2 switches protofilaments to navigate around microtubule obstacles. Elucidating the kinesin‐2 mechanism of navigation on the crowded microtubule surface provides a refined view of its contribution in facilitating axonal transport.   相似文献   

14.
Actin is a key cytoskeletal protein with multiple roles in cellular processes such as polarized growth, cytokinesis, endocytosis, and cell migration. Actin is present in all eukaryotes as highly dynamic filamentous structures, such as linear cables and branched filaments. Detailed investigation of the molecular role of actin in various processes has been hampered due to the multifunctionality of the protein and the lack of alleles defective in specific processes. The actin cytoskeleton of the fission yeast, Schizosaccharomyces pombe, has been extensively characterized and contains structures analogous to those in other cell types. In this study, primarily with the view to uncover actin function in cytokinesis, we generated a large bank of fission yeast actin mutants that affect the organization of distinct actin structures and/or discrete physiological functions of actin. Our screen identified 17 mutants with specific defects in cytokinesis. Some of these cytokinesis mutants helped in dissecting the function of specific actin structures during ring assembly. Further genetic analysis of some of these actin mutants revealed multiple genetic interactions with mutants previously known to affect the actomyosin ring assembly. We also characterize a mutant allele of actin that is suppressed upon overexpression of Cdc8p-tropomyosin, underscoring the utility of this mutant bank. Another 22 mutant alleles, defective in polarized growth and/or other functions of actin obtained from this screen, are also described in this article. This mutant bank should be a valuable resource to study the physiological and biochemical functions of actin.  相似文献   

15.
Ciliary or flagellar movement is the model of microtubule-dependent motility, the best studied at the molecular level. It is based on the relative sliding of outer doublets of microtubules that are linked at their proximal end to the basal structure and interconnected by associated proteins, among which dynein ATPase is at the origin of the movement. It is regulated from inside and outside media by various diffusible factors such as Ca2+, cyclic adenosine monophosphate (cAMP), polypeptides and so on (see other conferences presented during this meeting). Other motility processes are based on microtubules: vesicle and organelle transport through the cytoplasm (axonal flow in neurons, pigment granule movements in fish chromatophores, movements of particles along heliozoan axopods, etc.) could be mediated by microtubule motors such as kinesin or MAP 1C. Kinesin and MAP 1C, like dynein, are proteins that bind to microtubules and show an ATPase activity associated with force production. They differ from each other by their structure, and biochemical and pharmacological properties. The movements of chromosomes during mitosis and meiosis have long been studied, but are still poorly understood at the molecular level; this topic will be discussed in the light of recent data. Other constituents of the cytoskeleton are certainly involved in cellular motility: actin microfilaments and their motor myosin, intermediate filaments, non-actin filaments, all organized around the Microtubule Organizing Center (MTOC). As more information becomes available, it seems increasingly obvious that these various networks are closely interconnected and that each component probably modulates, resists, or favors properties of its partners, contributing to cellular and intracellular motility.  相似文献   

16.
Kinesin-2 is a motor for late endosomes and lysosomes   总被引:1,自引:2,他引:1  
The bidirectional nature of late endosome/lysosome movement suggests involvement of at least two distinct motors, one minus-end directed and one plus-end directed. Previous work has identified dynein as the minus-end-directed motor for late endosome/lysosome localization and dynamics. Conventional kinesin (kinesin-1) has been implicated in plus-end-directed late endosome/lysosome movement, but other kinesin family members may also be involved. Kinesin-2 is known to drive the movement of pigment granules, a type of lysosomally derived organelle, and was recently found to be associated with purified late endosomes. To determine whether kinesin-2 might also power endosome movement in non-pigmented cells, we overexpressed dominant negative forms of the KIF3A motor subunit and KAP3 accessory subunit and knocked down KAP3 levels using RNAi. We found kinesin-2 to be required for the normal steady-state localization of late endosomes/lysosomes but not early endosomes or recycling endosomes. Despite the abnormal subcellular distribution of late endosomes/lysosomes, the uptake and trafficking of molecules through the conventional endocytic pathway appeared to be unaffected. The slow time-course of inhibition suggests that both kinesin-2 itself and its attachment to membranes do not turn over quickly.  相似文献   

17.
驱动蛋白(kinesin)是以微管为轨道的分子马达,其催化ATP水解为ADP,将贮藏在ATP分子中的化学能高效地转化为机械能,在细胞形态建成、细胞分裂、细胞运动、胞内物质运输和信号转导等多种生命活动中发挥重要作用。对植物驱动蛋白的研究落后于动物和真菌,其原因不仅由于植物进化出独有的驱动蛋白家族,而且其家族成员数量远多于动物驱动蛋白。该文主要总结了驱动蛋白在微管阵列动态组织,包括周质微管和有丝分裂早前期微管带、纺锤体及成膜体中的角色和功能,以及其对植物生理活动的调控作用。同时对重要经济作物大豆(Glycine max)中的驱动蛋白进行了系统分析、分类及功能预测,发现大豆驱动蛋白数量庞大。结合公共数据库中大豆转录组数据,对部分大豆驱动蛋白进行功能预测,以期对大豆及其它作物驱动蛋白功能研究提供线索和启示。  相似文献   

18.
With their ability to depolymerize microtubules (MTs), KinI kinesins are the rogue members of the kinesin family. Here we present the 1.6 A crystal structure of a KinI motor core from Plasmodium falciparum, which is sufficient for depolymerization in vitro. Unlike all published kinesin structures to date, nucleotide is not present, and there are noticeable differences in loop regions L6 and L10 (the plus-end tip), L2 and L8 and in switch II (L11 and helix4); otherwise, the pKinI structure is very similar to previous kinesin structures. KinI-conserved amino acids were mutated to alanine, and studied for their effects on depolymerization and ATP hydrolysis. Notably, mutation of three residues in L2 appears to primarily affect depolymerization, rather than general MT binding or ATP hydrolysis. The results of this study confirm the suspected importance of loop 2 for KinI function, and provide evidence that KinI is specialized to hydrolyze ATP after initiating depolymerization.  相似文献   

19.
A key step in pollen formation is the segregation of the products of male meiosis into a tetrad of microspores, each of which develops into a pollen grain. Separation of microspores does not occur in tetraspore (tes) mutants of Arabidopsis thaliana, owing to the failure of male meiotic cytokinesis. tes mutants thus generate large 'tetraspores' containing all the products of a single meiosis. Here, we report the positional cloning of the TES locus and details of the role played by the TES product in male cytokinesis. The predicted TES protein includes an N-terminal domain homologous to kinesin motors and a C-terminus with little similarity to other proteins except for a small number of plant kinesins. These include the Arabidopsis HINKEL protein and NACK1 and two from tobacco (Nishihama et al., 2002), which are involved in microtubule organization during mitotic cytokinesis. Immunocytochemistry shows that the characteristic radial arrays of microtubules associated with male meiotic cytokinesis fail to form in tes mutants. The TES protein therefore is likely to function as a microtubule-associated motor, playing a part either in the formation of the radial arrays that establish spore domains following meiosis, or in maintaining their stability.  相似文献   

20.
为了解释动物细胞胞质分裂的力学机理 ,基于大量的细胞卵裂实验数据 ,在Zinemanas和Nir的流体动力学模型基础上 ,对微丝的局部集中函数改为随同质膜移动 ,增加了由于生化刺激引起主动微丝的影响系数。数值计算表明 :此模型能较好的预测细胞在胞质分裂过程中 ,细胞的总体和局部变形 ,以及卵裂沟处的张力和细胞内压。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号