首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidation extent of myofibrillar protein (MP) from silver carp (Hypophthalmichthys molitrix) was affected by the content and type of lipid peroxidation (LPO) products. Oxidized linoleic acid (OLA) was selected as a main representative of lipid peroxidation to investigate the effects of oxidative modification of LPO products on MP structure. Structural changes of the oxidized myofibrillar protein were evaluated by the contents of carbonyl and total sulfhydryls, surface hydrophobicity, SDS-PAGE and Fourier transform infrared spectroscopy. Heating procedure was also applied for further evaluation of gelling properties. The results from SDS-PAGE indicated that aggregation and denaturation of myosin occurred in the oxidized system. The presence of OLA intensified oxidation-initiated loss of a-helix conformation as well as tertiary structure of MP. With the addition of OLA concentration less than 3 mM, a remarkably enhanced gelling capacity of MP was observed. While the excessive covalent bond (OLA > 5 mM) could lead to the breakage of protein-protein bonds, causing the collapse of the gel structure. The gelation procedure induced by OLA involved simultaneous protein oxidation and internal cross-linking.  相似文献   

2.
Oxidation is a leading cause for quality deterioration during processing and storage of food. The objective of the present study was to examine the sensitivity of common carp (Cyprinus carpio) myofibrillar protein (MP) to oxidising radicals produced by a hydroxyl radical-generating system. Both structural and functional changes of common carp MP were evaluated. With increasing H2O2 concentrations and oxidation time, the protein carbonyl content, surface hydrophobicity and turbidity of MP increased (P < 0.05), while total sulfhydryl groups decreased (P < 0.05). Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed protein polymerisation in oxidised MP. The oxidative process destroyed (P < 0.05) the texture (springiness and hardness) of MP gels and decreased their water-binding capacity and whiteness. The thermal gelation profile analysis indicated that oxidation led to a great reduction in the elasticity of samples. Taken together, proteins are susceptible to free radical attack, and oxidative stress had a detrimental effect on protein structure and the general functionality of MP.  相似文献   

3.

Pectin was modified by oxidation with sodium periodate at molar ratios of 2.5, 5, 10, 15 and 20 mol% and reductive amination with tyramine and sodium cyanoborohydride afterwards. Concentration of tyramine groups within modified pectin ranged from 54.5 to 538 μmol/g of dry pectin while concentration of ionizable groups ranged from 3.0 to 4.0 mmol/g of dry polymer compared to 1.5 mmol/g before modification due to the introduction of amino group. All tyramine-pectins showed exceptional gelling properties and could form hydrogel both by cross-linking of carboxyl groups with calcium or by cross-linking phenol groups with peroxidase in the presence of hydrogen peroxide. These hydrogels were tested as carriers for soybean hull peroxidase (SHP) immobilization within microbeads formed in an emulsion based enzymatic polymerization reaction. SHP immobilized within tyramine-pectin microbeads had an increased thermal and organic solvent stability compared to the soluble enzyme. Immobilized SHP was more active in acidic pH region and had slightly decreased K m value of 2.61 mM compared to the soluble enzyme. After 7 cycles of repeated use in batch reactor for pyrogallol oxidation microbeads, immobilized SHP retained half of the initial activity.

  相似文献   

4.
This study examined the effects of waterborne silver nanoparticles (AgNPs) on juvenile fish Piaractus mesopotamicus (“pacú”), and analyzed toxicological endpoints such as metal burdens, oxidative stress and genotoxicity in a short-term assay. Fish were individually exposed to 0 (control), 2.5, 10, and 25 μg AgNPs/L. After 24 h, silver accumulation was greater in the brain than the liver and gills at all silver concentrations. Fish exposed to higher AgNPs concentrations showed major alterations in oxidative stress markers. An increase in lipid peroxidation (LPO) levels was observed in the liver of fish exposed to 10 μg AgNPs/L with no changes in the antioxidant enzymes activities. In the case of the 25 μg AgNPs/L treatment, a hepatic activation of the enzymatic antioxidant defense occurred, and LPO levels resulted unaltered. On the other hand, the brain presented the highest LPO levels at both 10 and 25 μg AgNPs/L exposures. The AgNPs toxicity was also evidenced by the DNA damage in fish erythrocytes at higher concentrations. Summarizing, a short exposure to sublethal concentrations of AgNPs is enough to generate deleterious effects on fish, including DNA damage.  相似文献   

5.
This study aimed to investigate the antiproliferative and antioxidant properties of crude venom from the nematocyst of Jellyfish Acromitus flagellates on human lung cancer (A549) and liver cancer (HepG2) cell lines. The prepared crude venom was subjected to analyses of the biochemical constituents, protein profiles, antioxidant and anticancer activities by standard methods. The extracted venom was pale-yellow in color and viscous/sticky. The biochemical composition such as, protein (1.547 mg/ml), lipid (0.039 mg/ml) and carbohydrate (0.028 mg/ml) was estimated. Protein profiles were determined by SDS PAGE, the result revealed that the molecular weight range from 205 ? 3.5 kDa. The free radical scavenging activity was analyzed by the reducing potential (56.36%), DPPH (72.47%), hydroxyl (68.50%), superoxide anion (65.75%), and nitric oxide (33.04%). The cell viability was observed by using different concentrations (20 to 100 µg/ml) of crude venom on A549 and HepG2 cancer cell lines and the IC50 values were recorded in (60 μg/ml and 40 μg/ml) respectively, while it had none cytotoxic effects on Vero cell line up to the concentration of 90 μg/ml. These results suggest that crude venom from nematocyst of A. flagellatus possesses anti-cancer activity and able to develop novel drugs on marine-derived compounds.  相似文献   

6.
Glutathionylated hemoglobin (Hb-SSG) is now recognized as a promising biomarker of systemic oxidative stress. Aim of this study is to gain a mechanistic insight into its formation. The ability of GSSG to form Hb-SSG through a thiol-disulfide exchange mechanism was firstly examined. For this purpose, GSSG (ranging from 0.23 to 230 μmol/g Hb, 15 μM–15 mM final concentrations) was incubated with 1 mM Hb and the relative content of Hb-SSG determined by direct infusion mass spectrometry (Orbitrap as analyzer). No detectable Hb-SSG was observed at a GSSG concentration range found in physiopathological conditions (0.13–0.23 μmol/g Hb). To reach a detectable Hb-SSG signal, the GSSG concentration was raised to 2.3 μmol/g Hb (0.5% relative abundance). The relative content of Hb-GSSG dose-dependently increased to 6% and 11% at 77 and 153 μmol/g Hb, respectively. The second step was to demonstrate whether Hb-SSG is formed through a sulfenic acid intermediate, a well-recognized mechanism of S-protein glutathionylation. Cys β93 sulfenic acid was found to be formed by oxidizing Hb with 1 mM H2O2, as demonstrated by direct infusion and LC–ESI-MS/MS experiments and using dimedone as derivatazing agent. When H2O2-treated Hb was incubated with physiological concentrations of GSH (9 μmol/g Hb), the corresponding Hb-SSG form was detected, reaching 15% of relative abundance. In summary, we here demonstrate that Hb glutathionylation can occur through a Cys sulfenic acid intermediate which is formed in oxidizing conditions. Hb glutathionylation is also mediated by a thiol-disulfide transfer mechanism, but this requires a concentration of GSSG which is far to be achieved in physiopathological conditions.  相似文献   

7.
We investigated the effect of acrolein, a byproduct of lipid oxidation, on the structure and gel properties of myofibrillar proteins (MPs) isolated from rabbit meat. As the acrolein concentration increased, the protein carbonyl compounds significantly accumulated (p?<?0.05), and the total sulfhydryl content was significantly lost (p?<?0.05). The results of circular dichroism spectra, surface hydrophobicity, UV absorption spectra and intrinsic fluorescence spectra evidenced that acrolein caused the disruption of α-helix structure, the exposure of hydrophobic sites and the unfolding of MPs. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis suggested that medium (0–1 mM) and high (5–10 mM) concentrations of acrolein could induce protein cross-linkage and protein aggregation, respectively. These structural changes could affect gelling properties of MPs involving gel strength and water holding capacity (WHC). The results of Raman spectroscopy indicated that moderate oxidative modification caused protein unfolding as well as the decline of α-helix structure and the increase of β-sheets structure in gels, thereby influencing the gel properties. Moderate oxidative modification (0–1 mM) improved gel strength and WHC, while excessive oxidative modification (5–10 mM) resulted in decreased gel properties.  相似文献   

8.
Evidence for Zn protection against Cd-induced reactive oxygen species in the free-floating hydrophyte Ceratophyllum demersum L. is presented in this paper. Metal treatments of 10 μmol/L Cd, 10 Cd μmol/L supplemented with Zn (10, 50, 100 and 200 μmol/L) and Zn-alone treatments of the same concentrations were used. Using 5,5 dimethyl pyrroline-N-oxide as the spin-probe, electron spin resonance spectra indicated a drastic increase in hydroxyl radicals (OH) in Cd-10 μmol/L treatments, which was closely correlating with the enhanced formation of hydrogen peroxide (H2O2) and generation of superoxide radical (O2?) triggered by the oxidation of NADPH. The supplementation of adding Zn (10–200 μmol/L) to the Cd-10 μmol/L treatments significantly decreased the production of free radicals especially by eliminating the precursors of OH through inhibition of NADPH oxidation. Cd-enhanced ROS production which substantially increased the oxidative products of proteins measured as carbonyls was effectively inhibited by Zn supplementation.  相似文献   

9.
Summary  Kovac et al (1) have shown that bikaverin uncouples oxidative phosphorylation of mitochondria at 20μg/ml (52 nmol/ml) in the reaction system without magnesium (Mg2+). In the present study, the effects of bikaverin on mitochondrial reactions were reexamined in detail at various concentrations both in the reaction systems with and without magnesium, using isolated rat liver mitochondria and submitochondrial particles (SMP) to characterize its mode of actions to mitochondrial respiration at low concentrations (<30nmol/mg mitochondrial protein). It was concluded that bikaverin showed no uncoupling effect (no decrease in P/O ratio) at low concentrations and did it at high concentrations in consequence of disturbing the ion permeability in the mitochondrial inner membranes. At low concentrations, bikaverin repressed both NAD- and succinate-linked respirations, but did not interfere with electron transport and energy transfer systems of mitochondria.  相似文献   

10.
Several peroxidovanadium(V) complexes have been shown as a potent anticancer agents. The aim of this study was to investigate the interaction of monoperoxidovanadium(V) complex Pr4N[VO(O2)(ox)(phen)], (Vphen), [phen = 1,10-phenantroline, ox = oxalate(2?) and Pr4N = tetra(n-propyl)ammonium(1+)] with DNA. UV–Vis spectrophotometry and the alkaline single-cell gel electrophoresis (SCGE, the comet assay) were used to examine the possibility of the vanadium(V) complex to induce changes in DNA. The interaction of Vphen with calf thymus DNA resulted in absorption hyperchromicity in DNA spectrum and shift of the absorption band of DNA to longer wavelengths for the [complex]/[DNA] concentration ratio equals to 4 and after 60 min of incubation. The rise in DNA absorption (by 34%) and bathochromic shift (Δλmax = 6 nm) are indicative of the interaction between DNA and the complex molecules. DNA strand breaks in cellular DNA were investigated using the comet assay. The human lymphocytes were exposed to various concentrations of Vphen for 30 min. The results revealed that Vphen contributed to the DNA damage expressed as DNA strand breaks in concentration dependent manner. The used concentrations of Vphen (ranging from 0.1 to 100 μmol/L) caused higher DNA damage in lymphocytes compared to untreated cells (from 1.2 times for 0.1 μmol/L to 1.8 times for 100 μmol/L). Vphen was screened for its potential antitumor activity towards murine leukemia cell line L1210. Vphen exhibited significant antiproliferative activity depending on its concentration and time of exposure. The IC50 values were 0.247 μg/mL (0.45 μmol/L) for 24 h, 0.671 μg/mL (1.21 μmol/L) for 48 h and 0.627 μg/mL (1.13 μmol/L) for 72 h.  相似文献   

11.
Saxitoxins (STXs) are neurotoxins produced by cyanobacteria such as Cylindrospermopsis raciborskii. During bloom events, the production of these compounds causes contamination on public water supply sources. STXs block voltage gated sodium channels and can lead to severe poisoning and death of organisms at different trophic levels. Other toxicity mechanism of STX is the generation of reactive oxygen species (ROS). The aim of this study was to investigate the effect of consumption of water contaminated with a C. raciborskii strain (producing variants of Neo-STX and STX) by rats during 30 days through the analysis of oxidative stress biochemical parameters. Total antioxidant capacity (ACAP) and oxidative stress parameters were analyzed at pre-frontal cortex, hippocampus and liver of adult Wistar rats (2–3 months old). Treated animals ingested concentrations of 3 and 9 μg/L of STX equivalents and were compared with a control group (culture medium ASM-1). At the concentration of 3 μg/L, a decrease in ROS production associated with lower ACAP at hippocampus was observed. Furthermore, a decrease of glutamate cysteine ligase (GCL) activity in the cortex and an increase of brain and liver glutathione concentration were also observed. At the highest concentration (9 μg/L), there was an ACAP increase in the hippocampus as well as in the activity GCL and glutathione-S-transferase in the cortex and hippocampus. At both concentrations, lipid peroxidation was registered in the liver. Therefore, chronic ingestion of STXs can alter the antioxidant defenses and induce oxidative stress in brain and liver. The present results point to the values adopted as threshold limit for STXs in potable waters (3 μg/L) shows already significant chronic effects that alter antioxidant defenses and induce oxidative stress at least in two of the organs studied.  相似文献   

12.
Gelation of fully deoxygenated sickle cell hemoglobin was assayed by (1) determination of the temperature at which viscosity increased sharply and (2) a high-speed sedimentation equilibrium method in which three zones are seen. These are a pre-gelation zone, a narrow transition zone exhibiting aggregation, followed by a phase change and a zone of gelation. Only the first zone is seen with deoxyhemoglobin A and CO hemoglobins A and S up to about 0·35 g protein/ml. Minimal gelling temperatures by the viscosity method and, by ultracentrifugation, minimal gelling concentrations determined at the onset of aggregation and at the phase change showed: (a) lowering the pH toward 6·7 favors gelation; (b) deoxyhemoglobin S gels more readily in 6 mm-2,3-diphosphoglycerate than in its total absence; (c) 1 m-NaCl and l m-KCl inhibit gelation. The known favoring of gelation by warming is confirmed by the equilibrium method and is about 2% change in minimal gelling concentration per degree.The effects of pH and high ionic strengths are consistent with contributions of specific polar interactions to gel structure. The effect of 2,3-diphosphoglycerate probably depends on known structural changes which this cofactor induces rather than on alteration of the allosteric quaternary structure equilibrium.  相似文献   

13.
Alendronate (ALN) is a second-generation bisphosphonate widely used for osteoporosis and cancer-induced bone lesions. Many studies have confirmed a strong relationship between osteonecrosis of the jaws (ONJ) development and oral bisphosphonates, especially ALN, although the molecular mechanisms underlying this pathology have not yet been elucidated. The reduction in bone turnover and vascularization usually observed in ONJ are the result of ALN action on different cell types harboured in oral microenvironment, such as osteoclasts, endothelial cells, and periodontal ligament stem cells (PDLSCs). In this perspective, the present study aims to investigate the effects of different ALN concentrations (2 μM, 5 μM, 10 μM, 25 μM, 50 μM) on the phenotype and functional properties of human PDLSCs (hPDLSCs). hPDLSCs showed a decrease in cell viability (MTT assay) only when treated with ALN concentration of 10 μM or larger for 48 h and 72 h. Cell cycle analysis revealed a moderate increase in proportion of S-phase cells after exposure to low ALN concentration (2–5 μM), an effect that was reverted after exposure to 10–50 μM ALN. Conversely, cell death was evidenced via Annexin V/PI assay at very high concentration of ALN (50 μM) after 4 days of treatment. In addition, we explored whether the effects of ALN on hPDLSCs growth and survival can be mediated by its ability to modulate oxidative stress. To this, we quantified the intracellular ROS amount and lipid peroxidation by using DCF probe and Bodipy staining, respectively. Flow cytometry analysis showed that ALN induced a dose-dependent reduction of intracellular oxidative stress and lipid peroxidation upon treatment with low concentrations at both 48 h and 72 h. Increased levels of oxidative stress was reported at 50 μM ALN and was also confirmed via TEM analysis. Despite the stability of the cellular immunophenotype, hPDLSCs showed impaired mobility after ALN exposure. Chronic exposure (7–14 days) to ALN in the range of 2–10 μM significantly decreased the expression of the differentiation-related factors ALP, RUNX2, COLI, and OPN as well as the osteogenic ability of hPDLSCs compared with untreated cells. Conversely, higher doses were found to be neutral. Our findings indicated that the effects of ALN on hPDLSCs behavior are dose-dependent and suggest a role for oxidative stress in ALN-induced cell death that may lead to novel therapeutic approaches for ONJ.  相似文献   

14.
Platelets play an indispensable role in human health and disease. Platelets are very sensitive to oxidative stress, as it leads to the damage of mitochondrial DNA, which is the initial step of a sequence of events culminating in the cell death through the intrinsic pathway of apoptosis. Owing to a lot of reports on secondary complications arising from oxidative stress caused by therapeutic drug overdose, the present study concentrated on the influence of sesamol on oxidative stress-induced platelet apoptosis. Sesamol, a phenolic derivative present in sesame seeds is an exceptionally promising drug with lots of reports on its protective functions, including its inhibitory effects on platelet aggregation at concentrations below 100 μM, and its anti-cancer effect at 1 mM. However, the present study explored the toxic effects of sesamol on human platelets. Sesamol at the concentration of 0.25 mM and above induced platelet apoptosis through endogenous generation of ROS, depletion of thiol pool, and Ca2+ mobilization. It also induced mitochondrial membrane potential depolarization, caspase activation, cytochrome c translocation and phosphatidylserine exposure, thus illustrating the pro-apoptotic effect of sesamol at higher concentration. However, even at high concentration of 2 mM sesamol effectively inhibited collagen/ADP/epinephrine-induced platelet aggregation. The study demonstrates that even though sesamol inhibits platelet aggregation, it has the tendency to elicit platelet apoptosis at higher concentrations. Sesamol has a potential as thrombolytic agent, nevertheless the current work highlights the significance of an appropriate dosage of sesamol when it is used as a therapeutic drug.  相似文献   

15.
Oxidative stress has a considerable influence on endothelial cell dysfunction and atherosclerosis. Acacetin, an anti-inflammatory and antiarrhythmic, is frequently used in the treatment of myocarditis, albeit its role in managing atherosclerosis is currently unclear. Thus, we evaluated the regulatory effects of acacetin in maintaining endothelial cell function and further investigated whether the flavonoid could attenuate atherosclerosis in apolipoprotein E deficiency (apoE−/−) mice. Different concentrations of acacetin were tested on EA.hy926 cells, either induced or non-induced by human oxidized low-density lipoprotein (oxLDL), to clarify its influence on cell viability, cellular reactive oxidative stress (ROS) level, apoptotic ratios and other regulatory effects. In vivo, apoE−/− mice were fed either a Western diet or a chow diet. Acacetin pro-drug (15 mg/kg) was injected subcutaneously two times a day for 12 weeks. The effects of acacetin on the atherosclerotic process, plasma inflammatory factors and lipid metabolism were also investigated. Acacetin significantly increased EA.hy926 cell viability by reducing the ratios of apoptotic and necrotic cells at 3 μmol/L. Moreover, 3 μmol/L acacetin clearly decreased ROS levels and enhanced reductase protein expression through MsrA and Nrf2 pathway through phosphorylation of Nrf2 and degradation of Keap1. In vivo, acacetin treatment remarkably attenuated atherosclerosis by increasing reductase levels in circulation and aortic roots, decreasing plasma inflammatory factor levels as well as accelerating lipid metabolism in Western diet-fed apoE−/− mice. Our findings demonstrate the anti-oxidative and anti-atherosclerotic effects of acacetin, in turn suggesting its potential therapeutic value in atherosclerotic-related cardiovascular diseases (CVD).  相似文献   

16.
Exposure to chlorpyrifos (CPF) poses several harmful effects to human and animal health. The present study investigated the influence of diphenyl diselenide (DPDS) on CPF-induced toxicity in Drosophila melanogaster. Firstly, the time course lethality response of virgin flies (2- to 3-day-old) to CPF (0.075–0.6 μg/g) and DPDP (5–40 μmol/kg) in the diet for 28 consecutive days were investigated. Subsequently, the protective effect of DPDS (10, 20 and 40 μmol/kg) on CPF (0.15 μg/g)-induced mortality, locomotor deficits, neurotoxicity and oxidative stress was assessed in a co-exposure paradigm for 7 days. Results showed that CPF exposure significantly decreased the percent live flies in a time- and concentration-dependent manner, whereas the percent live flies with DPDS treatment was not statistically different from control following 28 days of treatment. In the co-exposure study, CPF significantly increased flies mortality while the survivors exhibited significant locomotor deficits with decreased acetylcholinesterase (AChE) activity. Dietary supplementation with DPDS was associated with marked decrease in mortality, improvement in locomotor activity and restoration of AChE activity in CPF-exposed flies. Moreover, CPF exposure significantly decreased catalase and glutathione-S-transferase activities, total thiol level with concomitant significant elevation in the levels of reactive oxygen species and thiobarbituric acid reactive substances in the head and body regions of the treated flies. Dietary supplementation with DPDS significantly improved the antioxidant status and prevented CPF-induced oxidative stress, thus demonstrating the protective effect of DPDS in CPF-treated flies.  相似文献   

17.
α-Crystallin functions as a molecular chaperone and maintains transparency of eye lens by protecting other lens-proteins. Non-enzymatic glycation of α-crystallin by methylglyoxal, plays a crucial role on its chaperone function and structural stability. Our studies showed that methylglyoxal modification even in lower concentration caused significant decrease in chaperone function of α-crystallin as reflected both in thermal aggregation assay and enzyme refolding assay. Thermal denaturation studies showed drastic reduction of denaturation temperature with increase in the degree of modification. Thermodynamic stability studies by urea denaturation assay reflected a decrease of transition midpoint. Quantitatively we found that ΔG° of native α-crystallin decreased from 21.6 kJ/mol to 10.4 kJ/mol due to 72 h modification by 10 mM methylglyoxal. The surface hydrophobicity of α-crystallin after MG modification, was found to be decreased. Circular dichroism spectroscopy revealed conversion of β-sheet structure to random coil structure. Significant cross-linking was also observed due to methylglyoxal modification of human α-crystallin.  相似文献   

18.
Hyperglycaemia triggers the formation of both ‘early’ and advanced glycation end products, which are considered the major factors responsible for the complications of diabetes. Poly(amido)amine (PAMAM) dendrimers are relatively new class of materials with unique molecular structure predisposing them for the use as anti-glycation agents. The ability of poly(amido)amine (PAMAM) dendrimers G2 (MW 3256, 120 μmol/l) and G4 (MW 14215, 30 μmol/l) to inhibit the modification of proteins by high glucose (30 mmol/l, 37 °C, 72 h) was investigated using radiometric and spectrofluorometric assays. We monitored (a) non-enzymatic modifications of primary amino groups in BSA and polyamine compounds, and (b) the impact of anti-glycation agents on BSA conformation. Both PAMAM dendrimers and poly(l-lysine) (MW 70 kDa) effectively reduced BSA glycation, while undergoing the time-dependent modification themselves. Such a modification was a function of a number of available free amino groups per molecule, however, both dendrimers and poly(l-lysine) were equally effective in glucose scavenging. PAMAMs neither affected BSA conformation nor formed stable complexes with a protein, while non-glycated poly(l-lysine) significantly quenched BSA fluorescence. Our results encourage raising the hypothesis that PAMAM dendrimers may be considered effective and safe chemical competitors for non-enzymatic modification by glucose, thus confirming the earlier in vivo study showing the inhibition of protein modification in experimental diabetes in the presence of PAMAM dendrimers.  相似文献   

19.
A positively charged tetraphenylethene (TPE) derivative, TPE-4MN, was synthesized as a probe for heparin based on aggregation induced emission. On the addition of 5.0 μg/mL of heparin, TPE-4MN showed an enhanced emission of about 10-fold. The change in fluorescence at 475 nm was linear over a range of heparin concentrations of 0–1.0 μg/mL with an R = 0.99988 and the limit of detection (LOD) was calculated to be 0.75 μg/mL. The mechanism of the detection was proven to be through an ion pairing interaction. TPE-4MN showed good selectivity for heparin over other types of polysaccharides and could easily distinguish heparin from heparan sulfate, a glycosaminoglycan having a similar structure to that of heparin.  相似文献   

20.

Synbiotics are known to exert multiple beneficial effects, including anti-inflammatory and antioxidant actions. The aim of this study was to evaluate the effects of synbiotic supplementation on carotid intima-media thickness (CIMT), biomarkers of inflammation, and oxidative stress in people with overweight, diabetes, and coronary heart disease (CHD). This randomized, double-blind, placebo-controlled trial was conducted and involved 60 people with overweight, diabetes, and CHD, aged 50–85 years old. Participants were randomly allocated into two groups to take either synbiotic supplements containing three probiotic bacteria spices Lactobacillus acidophilus strain T16 (IBRC-M10785), Lactobacillus casei strain T2 (IBRC-M10783), and Bifidobacterium bifidum strain T1 (IBRC-M10771) (2 × 109 CFU/g each) plus 800 mg inulin or placebo (n = 30 each group) for 12 weeks. Fasting blood samples were taken at baseline and after the 12-week intervention period to determine metabolic variables. After the 12-week intervention, compared with the placebo, synbiotic supplementation significantly reduced serum high-sensitivity C-reactive protein (hs-CRP) (− 3101.7 ± 5109.1 vs. − 6.2 ± 3163.6 ng/mL, P = 0.02), plasma malondialdehyde (MDA) (− 0.6 ± 1.0 vs. − 0.1 ± 0.3 μmol/L, P = 0.01), and significantly increased nitric oxide (NO) levels (+ 7.8 ± 10.3 vs. − 3.6 ± 6.9 μmol/L, P < 0.001). We did not observe any significant changes of synbiotic supplementation on other biomarkers of oxidative stress and CIMT levels. Overall, synbiotic supplementation for 12 weeks among people with overweight, diabetes, and CHD had beneficial effects on serum hs-CRP, plasma NO, and MDA levels; however, it did not have any effect on other biomarkers of oxidative stress and CIMT levels.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号