首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a simple and versatile coacervation technique has been developed by using an ultrasound-assisted oil/water emulsion method for the preparation of antifungal agent-loaded microcapsules. Two types of chitosan microcapsules are successfully prepared. The mean particle size of the chitosan/miconazole nitrate microcapsules is 2.6 μm and that of the chitosan/clotrimazole microcapsules is 4.1 μm. The encapsulation efficiency of the chitosan/miconazole nitrate microcapsules (77.58–96.81%) is relatively higher than that of the chitosan/clotrimazole microcapsules (56.66–93.82%). The in vitro drug release performance of the microcapsules shows that the chitosan/miconazole nitrate microcapsules release about 49.5% of the drug while chitosan/clotrimazole microcapsules release more than 66.1% of the drug after 12 h under a pressure of 5 kg at pH 5.5, which is similar to the pH of human skin. The prepared drug-loaded microcapsules could be applied onto bandages or socks, and will continuously release antifungal drugs in a controlled manner under pressure.  相似文献   

2.
A study of alginate lyase was carried out to determine if this enzyme could be used to remove alginate present in the core of alginate/poly-L-lysine (AG/PLL) microcapsules in order to maximize cell growth and colonization. A complete kinetic study was undertaken, which indicated an optimal activity of the enzyme at pH 7-8, 50 degrees C, in the presence of Ca2+. The buffer, not the ionic strength, influenced the alginate degradation rate. Alginate lyase was also shown to be active on gelled forms of alginate, as well as on the AG/PLL complex constituting the membrane of microcapsules. Batch cultures of CHO cells in the presence of alginate showed a decrease of the growth rate by a factor of 2, although the main metabolic flux rates were not modified. The addition of alginate lyase to cell culture medium increased the doubling time 5-7-fold and decreased the protein production rate, although cell viability was not affected. The addition of enzyme to medium containing alginate did not improve growth conditions. This suggests that alginate lyase is probably not suitable for hydrolysis of microcapsules in the presence of cells, in order to achieve high cell density and high productivity. However, the high activity may be useful for releasing cells from alginate beads or AG/PLL microcapsules.  相似文献   

3.
The microcapsules with oil core and multi-layers shell were developed from poly-cationic chitosan (CS) and anionic SDS in multistep electrostatic layer by layer deposition technique combined with oil in water emulsification process. The net charge of microcapsules determined by zeta potential indicated that microcapsules are highly positive charged because of poly-cationic nature of CS, and charge neutralization of microcapsules occurred after alkali treatment. The granulometry measurement showed increase in average diameter of microcapsules by alkali treatment suggesting swelling or formation of small aggregates. The morphology analysis of microcapsules by optical microscopy corroborated the results of granulometry, and diameter of microcapsules was found to be decreased in multistep process due to tight packing of layers in outer shell of microcapsules. The alkali treatment of microcapsules to solidify outer shell was optimized with 0.02N NaOH to reduce microcapsules aggregation and gel formation by CS chains as found in optical micrographs.  相似文献   

4.
Properties of a novel magnetized alginate for magnetic resonance imaging   总被引:2,自引:0,他引:2  
Implanting recombinant cells encapsulated in alginate microcapsules to secrete therapeutic proteins has been proven clinically effective in treating several murine models of human diseases. However, once implanted, these microcapsules cannot be assessed without invasive surgery. We now report the preparation and characterization of a novel ferrofluid to render these microcapsules visible with magnetic resonance imaging (MRI). The ferrofluid was prepared as a colloidal iron oxide stabilized in water by alginate. The presence of iron particles in the ferrofluid was verified with chemical titration, dynamic light scattering, and magnetization measurement. The microcapsules fabricated with various concentrations of the ferrofluid in the core, or on the surface of alginate microcapsules, or both, all produced microcapsules with smooth surfaces as shown with light and scanning electron microscopy. However, at the nanoscale level, as revealed with atomic force microscopy, the ferrofluid-fabricated microcapsules demonstrated increased granularity, particularly when the ferrofluid was used to laminate the surface. From the force spectroscopy measurements, these modified microcapsules showed increasing surface rigidity in the following order: traditional alginate < ferrofluid in the core < ferrofluid on the surface. Although the mechanical stability of low-concentration ferrofluid (0.1%) microcapsules was reduced, increasing concentrations, up to 20%, were able to improve stability. When these ferrofluid microcapsules were examined with MRI, their T(2) relaxation time was reduced, thereby producing increased contrast readily detectable with MRI, whereas the traditional alginate microcapsules showed no difference when compared with water. In conclusion, such ferrofluid-enhanced alginate is suitable for fabricating microcapsules that offer the potential for in vivo tracking of implanted microcapsules without invasive surgery.  相似文献   

5.
Bio-artificial livers (BAL) with microencapsulated hepatocytes have the typical limitations in maintaining hepatocyte functions, mechanical stability and uniform perfusion in packed or fluidized-bed bioreactors. We have previously developed microcapsules with enhanced hepatocyte functions. Here we have introduced a fibrin network inside microcapsules by (1) mixing collagen and fibrinogen with the encapsulated hepatocytes to support the cells; (2) submerging the microcapsules into a thrombin solution to induce the formation of an insoluble fibrin network inside the microcapsules. Fracture analysis on the microcapsules revealed significant improvement in mechanical stability. We have also introduced different amounts of gold nano-particles into microcapsules to achieve different densities for uniform bioreactor perfusion. These gold nano-particles also improved the mechanical stability of the microcapsules. Both the fibrin network and gold nano-particles exhibited the additional benefits of enhancing certain bio-functions of the encapsulated hepatocytes. The applications of these improved microcapsules in the development of bio-artificial livers are discussed.  相似文献   

6.
Preparation and characteristics of microcapsules containing asparaginase   总被引:1,自引:0,他引:1  
Conditions for the preparation of microcapsules containing asparaginase by interfacial polymerization were investigated. The activity of microcapsules prepared under the optimal conditions was about 37% compared with that of native asparaginase. Particle size of microcapsules could be controlled by determining the stirring rate and concentration of Span 85. The membranes of microcapsules were resistant to mechanical shock or attack of chymotrypsin, and no leakage of asparaginase from microcapsules was observed.  相似文献   

7.
The rainfastness of a microencapsulated sex pheromone formulation for codling moth, Cydia pomonella (L.), was evaluated in a series of laboratory experiments with detached apple, pear, and walnut leaves. Increasing the intensity and duration of simulated rainfall significantly increased the removal of microcapsules from both the top and bottom of apple leaves. The removal of microcapsules was significantly higher from the top versus the bottom of leaves at all rates tested. Leaf angle was a significant factor affecting the removal of microcapsules from the top surface of apple leaves with fewer microcapsules removed, because leaves were oriented with a steeper downward angle. Both leaf surfaces of apple and pear retained a higher proportion of microcapsules than walnut leaves, and the bottom surface of apple leaves retained significantly more than pear leaves. Three spray adjuvants were evaluated as stickers for microcapsules. No difference was found in the number of microcapsules deposited on apple leaves among three stickers tested at rates from 0.06 to 0.25%. However, in a second test a latex sticker significantly increased the deposition of microcapsules on apple leaves compared with a polyvinyl polymer and a pine resin sticker at a rate of 0.06%. Significantly more microcapsules were retained on the bottom versus the top of apple leaves with all stickers. The latex and polyvinyl stickers significantly increased the retention of microcapsules versus the pine resin sticker and the control on apple leaves. In another test, the addition of 0.06% latex sticker did not increase the deposition of microcapsules on any of the three leaf types. However, the addition of the latex sticker significantly increased the retention of microcapsules on the top of apple and pear leaves and the bottom of apple leaves. The addition of a latex sticker did not affect the retention of microcapsules on walnut leaves.  相似文献   

8.
Microcapsules of a water-in-oil-in-water (W/O/W) emulsion, which contained a hydrophilic substance, 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA), in its inner aqueous phase, was prepared by hot-air-drying or freeze-drying the emulsion using a single-droplet-drying method. Pullulan, maltodextrin, or gum arabic was used as a wall material, and the oily phase was tricaprylin, oleic acid, olive oil, or a mixture of tricaprylin and olive oil. An encapsulation efficiency higher than 0.95 was reached except for the microcapsules prepared using gum arabic and oleic acid. The hot-air-dried microcapsules were generally more stable than the freeze-dried microcapsules at 37 degrees C and various relative humidities. The stability was higher for the microcapsules with tricaprylin as the oily phase than for the microcapsules with oleic acid. The higher stability of the microcapsules with tricaprylin would be ascribed to the lower partition coefficient of PTSA to the oily phase. There was a tendency for the stability to be higher at lower relative humidity for both the hot-air- and freeze-dried microcapsules. The volumetric fraction of olive oil in its mixture with tricaprylin did not significantly affect either the encapsulation efficiency or the stability of the hot-air-dried microcapsules.  相似文献   

9.
Swelling behaviour is one of the important properties for microcapsules made by hydrogels, which always affects the diffusion and release of drugs when the microcapsules are applied in drug delivery systems. In this paper, alginate–chitosan microcapsules were prepared by different technologies called external or internal gelation process respectively. With the volume swelling degree (Sw) as an index, the effect of properties of chitosan on the swelling behaviour of both microcapsules was investigated. It was demonstrated that the microcapsules with low molecular weight and high concentration of chitosan gave rise to low Sw. Considering the need of maintaining drug activity and drug loading, neutral pH and short gelation time were favorable. It was also noticed that Sw of internal gelation microcapsules was lower than that of external gelation microcapsules, which was interpreted by the structure analysis of internal or external gelation Ca–alginate beads with the aid of confocal laser scanning microscope.  相似文献   

10.
Semipermeable microcapsules were prepared using biodegradable material as the enclosing membranes. For instance, polylactic acid was used as membrane material to microencapsulate biologically active materials. Asparaginase microencapsulated within polylactic acids functions effectively in converting external asparagine into aspartic acid and ammonium. By variations in permeability characteristics, insulin microencapsulated within polylactic acid can be released at pre-adjusted rates. Thus, release rates of 50% in 5 hours, 50% in 20 hours, and 2.5% in 24 hours have been demonstrated. Drugs and vaccines have also been similarily microencapsulated. The advantage of the biodegradable microcapsules is the ability of the body to convert the injected polymer material to normal body metabolites (e.g., CO2 and H2O in the case of polylactic acid) after completion of its function.  相似文献   

11.
Microcapsules of a water-in-oil-in-water (W/O/W) emulsion, which contained a hydrophilic substance, 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA), in its inner aqueous phase, was prepared by hot-air-drying or freeze-drying the emulsion using a single-droplet-drying method. Pullulan, maltodextrin, or gum arabic was used as a wall material, and the oily phase was tricaprylin, oleic acid, olive oil, or a mixture of tricaprylin and olive oil. An encapsulation efficiency higher than 0.95 was reached except for the microcapsules prepared using gum arabic and oleic acid. The hot-air-dried microcapsules were generally more stable than the freeze-dried microcapsules at 37°C and various relative humidities. The stability was higher for the microcapsules with tricaprylin as the oily phase than for the microcapsules with oleic acid. The higher stability of the microcapsules with tricaprylin would be ascribed to the lower partition coefficient of PTSA to the oily phase. There was a tendency for the stability to be higher at lower relative humidity for both the hot-air- and freeze-dried microcapsules. The volumetric fraction of olive oil in its mixture with tricaprylin did not significantly affect either the encapsulation efficiency or the stability of the hot-air-dried microcapsules.  相似文献   

12.
This study reports on the encapsulation efficiency of proteins in dextran sulfate/poly-L-arginine-based microcapsules, fabricated via layer-by-layer assembly (LbL). For this purpose, radiolabeled proteins are entrapped in CaCO(3) microparticles, followed by LbL coating of the CaCO(3) cores and subsequent dissolving of the CaCO(3) using EDTA. To allow to improve protein encapsulation in LbL microcapsules, we studied all steps in the preparation of the microcapsules where loss of protein load might occur. The encapsulation efficiency of proteins in LbL microcapsules turns out to be strongly dependent on both the charge and molecular weight of the protein as well as on the number of polyelectrolyte bilayers the microcapsules consist of.  相似文献   

13.
In this study an universal method for preparation of biodegradable microcapsules for antigen entrapment was proposed and optimized. The multilayer microcapsules were prepared by layer-by-layer adsorption of various polyelectrolytes (such as alginate, poly-L-lysine, κ-carrageenan, chitosan and dextran derivatives). High entrapment efficiency of protein and plasmid DNA (non less than 90%) was shown. To carry out in vivo tests, a set of microcapsules with entrapped pTKShi plasmid encoding the E2 polypeptide of classical swine fever was prepared. It was shown that an injection of these microcapsules into mice induced an immune response. The highest antibody titers of mouse blood sera were got after immunization by microcapsules based on modified dextran/carrageenan and modified chitosan/carrageenan. The proposed method for antigen entrapment in biodegradable microcapsules could be used for development of encapsulated vaccines of a new generation (DNA-vaccines).  相似文献   

14.
Conclussion  Thus, large spherical microcapsules with a coat consisting of alginate and a mucoadhesive polymer (sodium CMC, methylcellulose, Carbopol, or HPMC) could be prepared by an orifice-ionic gelation process. The microcapsules exhibited good mucoadhesive properties in an in vitro test. Glipizide release from these mucoadhesive microcapsules was slow and extended over longer periods of time and depended on composition of the coat. Drug release was diffusion controlled and followed zero-order kinetics after a lag, period of 1 hour. In the in vivo evaluation, alginate-Carbopol microcapsules could sustain the hypoglycemic effect of glipizide over a 14-hour period. These mucoadhesive microcapsules are, thus, suitable for oral controlled release of glipizide.  相似文献   

15.
Injectable polysaccharide microcapsules holding minocycline were fabricated from alginate and chitosan for the treatment of periodontitis. The microcapsules were examined for the release and degradation of minocycline, as well as antimicrobial activity. The microcapsules were biodegradable and released minocycline between 10 and 1000 μg ml−1, which was higher than the usual therapeutic concentration (1–5 μg ml−1), for up to 7 days. These microcapsules showed a statistically significant suppression of pathogenic bacteria, such as Prevotella intermedia causing periodontitis. The microcapsules are thus potentially useful for drug delivery for the treatment of periodontitis.  相似文献   

16.
In this study an attempt was made to prepare mucoadhesive microcapsules of gliclazide using various mucoadhesive polymers designed for oral controlled release. Gliclazide microcapsules were prepared using sodium alginate and mucoadhesive polymer such as sodium carboxymethyl cellulose (sodium CMC), carbopol 934P or hydroxy propylmethyl cellulose (HPMC) by orifice-ionic gelation method. The microcapsules were evaluated for surface morphology and particle shape by scanning electron microscope. Microcapsules were also evaluated for their microencapsulation efficiency, in vitro wash-off mucoadhesion test, in vitro drug release and in vivo study. The microcapsules were discrete, spherical and free flowing. The microencapsulation efficiency was in the range of 65–80% and microcapsules exhibited good mucoadhesive property in the in vitro wash off test. The percentage of microcapsules adhering to tissue at pH 7.4 after 6 h varied from 12–32%, whereas the percentage of microcapsules adhering to tissue at pH 1.2 after 6 h varied from 35–68%. The drug release was also found to be slow and extended for more than 16 h. In vivo testing of the mucoadhesive microcapsules in diabetic albino rats demonstrated significant antidiabetic effect of gliclazide. The hypoglycemic effect obtained by mucoadhesive microcapsules was for more than 16 h whereas gliclazide produced an antidiabetic effect for only 10 h suggesting that mucoadhesive microcapsules are a valuable system for the long term delivery of gliclazide.  相似文献   

17.
Semipermeable aqueous collodion microcapsules were prepared containing both yeast alcohol dehydrogenase (EC 1.1.1.1) and malic dehydrogenase (EC 1.1.1.37). These microcapsules exhibited both enzymic activities in good amount in the ratio 3:1 with respect to malic dehydrogenase:alcohol dehydrogenase.Both NAD+ and NADH were successfully cycled within the microcapsules by employing the included enzyme activities acting sequentially. A soluble, immobilized NAD+ derivative was also recycled within the semipermeable microcapsules.  相似文献   

18.
目的:本文研究了一种海藻酸钠漂浮微囊的制备方法用以实现胃部持续给药。方法:采用微胶囊发生器制备海藻酸钠漂浮微囊,壁材为海藻酸钠,芯材为食用油的漂浮微囊,衡量不同的制备参数对微囊的理化特性影响;采用克拉霉素作为模型脂溶性药物,测量漂浮药物递送系统的控制释放性质、以及微囊载药特性和小鼠体内漂浮验证。结果:成功制备出了具有漂浮特性的海藻酸钠微囊,其中泵送速度对微囊性质的影响最大。制备出的微囊具有低细胞毒性,可以实现90%的药物包埋率。此外,微囊可以在小鼠的胃中保存超过6小时,具有良好的漂浮特性。结论:海藻酸钠漂浮微囊是一种有效的胃部药物递送系统,可明显延长药物在胃部的滞留时间。  相似文献   

19.
By virtue of the biocompatibility and physical properties of hydrogel, picoliter‐sized hydrogel microcapsules have been considered to be a biometric signature containing several features similar to that of encapsulated single cells, including phenotype, viability, and intracellular content. To maximize the experimental potential of encapsulating cells in hydrogel microcapsules, a method that enables efficient hydrogel microcapsule purification from oil is necessary. Current methods based on centrifugation for the conventional stepwise rinsing of oil, are slow and laborious and decrease the monodispersity and yield of the recovered hydrogel microcapsules. To remedy these shortcomings we have developed a simple one‐step method to purify alginate microcapsules, containing a single live cell, from oil to aqueous phase. This method employs oil impregnation using a commercially available hydrophobic filter paper without multistep centrifugal purification and complicated microchannel networks. The oil‐suspended alginate microcapsules encapsulating single cells from mammalian cancer cell lines (MCF–7, HepG2, and U937) and microorganisms (Chlorella vulgaris) were successfully exchanged to cell culture media by quick (~10 min) depletion of the surrounding oil phase without coalescence of neighboring microcapsules. Cell proliferation and high integrity of the microcapsules were also demonstrated by long‐term incubation of microcapsules containing a single live cell. We expect that this method for the simple and rapid purification of encapsulated single‐cell microcapsules will attain widespread adoption, assisting cell biologists and clinicians in the development of single‐cell experiments.  相似文献   

20.
灵芝孢子油微胶囊制备技术   总被引:2,自引:1,他引:1  
灵芝孢子油是从灵芝孢子粉中提取的具有一定药理活性的脂质成分。为提高灵芝孢子油稳定性,以大豆分离蛋白和麦芽糊精为壁材,采用喷雾干燥法和冷冻干燥法制备灵芝孢子油微胶囊。通过试验优化了制备工艺条件并比较了两者干燥方式制备微胶囊的理化性质。结果表明:最佳工艺为大豆分离蛋白和麦芽糊精质量比1:1、固形物含量20%、均质压力30MPa、壁材芯材质量比4:1。两种干燥方式微胶囊流动性、溶解性均较好,差异不显著。但两种微胶囊形态差异较大,喷雾干燥微胶囊整体呈球状、表面紧密无裂缝有凹陷,包埋率为90.84%;冷冻干燥微胶囊结构疏松呈片状,表面多孔。因此喷雾干燥法更适合包埋灵芝孢子油。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号