首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Four aphid species (Aphis fabae cirsiiacanthoidis Scop., Brachycaudus cardui (L.), Capitophorus carduinus Walker and Uroleucon cirsii (L.)) feed on the creeping thistle Cirsium arvense. They utilize different parts of their host plant and at different times. A wide niche is typical of C. carduinus and U. cirsii, whereas A. f. crisiiacanthoidis and B. cardui, show narrower but overlapping niches. Morphological features such as stylet length and body size as well as colony size and density are associated with the choice of feeding site. C. carduinus, the smallest species with the shortest stylets was able to use leaf veins and lamina, while the other species mainly used the stem and peduncles. Within this group, A. f. cirsiiacanthoidis and B. cardui are restricted to the upper part of the stem because of their short stylets, but adult U. cirsii, the species with the longest stylets, can also feed at the base of the stem.
Räumliche und zeitliche ressourcenaufteilung in der blattlausgilde an der ackerkratzdistel cirsium arvense
Zusammenfassung An der Ackerkratzdistel leben vier Blattlausarten (Aphis fabae cirsiiacanthoidis Scop., Brachycaudus cardui (L.), Capitophorus carduinus Walker und Uroleucon cirsii (L.)), die im Verlauf der Vegetationsperiode verschiedene Strukturen ihrer Wirtspflanze nutzen. Eine breite Nische ist für U. cirsii und C. carduinus typisch, während A. f. cirsiiacanthoidis und B. cardui engere Nischen besitzen, die sich nahezu überlappen. Die Nahrungsplatzwahl wird sowohl durch morphologische Parameter wie Stilettlänge und Körpergewicht als auch durch Koloniegröe und Dispersion innerhalb der Kolonie beeinflut. Die kleinste Art, C. carduinus, die auch das kürzeste Stilett besitzt, ist in der Lage, an Blattadern und auf der Blattspreite zu saugen. Die anderen Arten bevorzugen Stengel, Seitenstengel und Blütenstiele. Innerhalb dieser Gruppe können A. f. cirsiiacanthoidis und C. carduinus wegen ihrer kürzeren Stilette nur am oberen Teil des Stengels saugen, während adulte U. cirsii aufgrund ihrer längeren Stilette auch an der Stengelbasis leben können.
  相似文献   

2.
Abstract. The tolerance of four species of aphids to myrcene was assessed by measuring the mortality of aphids exposed to different amounts of this monoterpene.Each species was found to exhibit significantly different levels of tolerance to myrcene.which is explicable in terms of the likely concentration of myrcene at the feeding site of each species.
Tolerance to monoterpenes maybe specific only to those encountered in high concentrations at the feeding site.whereas others are found to be toxic.This suggests that each species has become physiologically adapted to tolerate different levels of the specific monoterpenes that occur in the microhabitats they occupy.  相似文献   

3.
The partitioning of limited resources commonly explains how different species can coexist within the same ecological community. In this 2010 study, the diets of three coexisting freshwater fishes (Cape galaxias Galaxias zebratus, n = 27; Cape kurper Sandelia capensis, n = 60; Breede River redfin Pseudobarbus burchelli, n = 77) were characterised and compared in three headwater streams in South Africa's Cape Fold Ecoregion using gut contents and stable isotope analyses. These data were analysed to ascertain whether the three species exploit distinct trophic niches. Both approaches provided evidence that these species occupy different trophic niches, though with some overlap. However, dietary differences among sites were not consistent and were probably influenced by site-specific factors like resource availability. Pseudobarbus burchelli had a broader niche breadth at Tierkloof Stream than the other two species, but not at Waaihoek or Tierstel Streams. Our results also suggest that P. burchelli consumed a more omnivorous diet than do the other two species, whereas S. capensis occupied a higher trophic position than the other two species and consumed vertebrates. Our findings suggest that these species occupy non-equivalent feeding niches in Cape Fold Ecoregion headwater streams, and that diet partitioning might facilitate their coexistence in these systems.  相似文献   

4.
Plant–pollinator interactions are often thought to have been a decisive factor in the diversification of flowering plants, but to be of little or no importance for the maintenance of existing plant diversity. In a recent opinion paper, Pauw (2013 Trends Ecol. Evol. 28, 30–37. (doi:10.1016/j.tree.2012.07.019)) challenged this view by proposing a mechanism of diversity maintenance based on pollination niche partitioning. In this article, I investigate under which conditions the mechanism suggested by Pauw can promote plant coexistence, using a mathematical model of plant and pollinator population dynamics. Numerical simulations show that this mechanism is most effective when the costs of searching for flowers are low, pollinator populations are strongly limited by resources other than pollen and nectar, and plant–pollinator interactions are sufficiently specialized. I review the empirical literature on these three requirements, discuss additional factors that may be important for diversity maintenance through pollination niche partitioning, and provide recommendations on how to detect this coexistence mechanism in natural plant communities.  相似文献   

5.
Resource partitioning in a tropical stream fish assemblage   总被引:1,自引:0,他引:1  
An assemblage of freshwater fishes inhabiting a medium-sized stream in tropical central Vietnam was investigated with respect to spatial and trophic distribution. Point-abundance sampling, gut content analysis and relative intestine length yielded interspecific differences in niche expression. Conspecific juvenile and adult habitat and feeding niches were also distinct. Niche differences arose mainly from differences in current velocity, substrata and foraging preferences. Extreme specializations, such as selective feeding on hard incustrations of cyanobacteria by adult Annamia normani , were present. The low niche overlap suggests that this tropical fish assemblage is structured by competitive interactions.  相似文献   

6.
Niche partitioning through foraging is a mechanism likely involved in facilitating the coexistence of ecologically similar and co‐occurring animal species by separating their use of resources. Yet, this mechanism is not well understood in flying insectivorous animals. This is particularly true of bats, where many ecologically similar or cryptic species coexist. The detailed analysis of the foraging niche in sympatric, cryptic sibling species provides an excellent framework to disentangle the role of specific niche factors likely involved in facilitating coexistence. We used DNA metabarcoding to determine the prey species consumed by a population of sympatric sibling Rhinolophus euryale and Rhinolophus mehelyi whose use of habitat in both sympatric and allopatric ranges has been well established through radio tracking. Although some subtle dietary differences exist in prey species composition, the diet of both bats greatly overlapped (Ojk = 0.83) due to the consumption of the same common and widespread moths. Those dietary differences we did detect might be related to divergences in prey availabilities among foraging habitats, which prior radio tracking on the same population showed are differentially used and selected when both species co‐occur. This minor dietary segregation in sympatry may be the result of foraging on the same prey‐types and could contribute to reduce potential competitive interactions (e.g., for prey, acoustic space). Our results highlight the need to evaluate the spatial niche dimension in mediating the co‐occurrence of similar insectivorous bat species, a niche factor likely involved in processes of bat species coexistence.  相似文献   

7.
The exceptional fossil sites of Cerro de los Batallones (Madrid Basin, Spain) contain abundant remains of Late Miocene mammals. From these fossil assemblages, we have inferred diet, resource partitioning and habitat of three sympatric carnivorous mammals based on stable isotopes. The carnivorans include three apex predators: two sabre-toothed cats (Felidae) and a bear dog (Amphicyonidae). Herbivore and carnivore carbon isotope (δ13C) values from tooth enamel imply the presence of a woodland ecosystem dominated by C3 plants. δ13C values and mixing-model analyses suggest that the two sabre-toothed cats, one the size of a leopard and the other the size of a tiger, consumed herbivores with similar δ13C values from a more wooded portion of the ecosystem. The two sabre-toothed cats probably hunted prey of different body sizes, and the smaller species could have used tree cover to avoid encounters with the larger felid. For the bear dog, δ13C values are higher and differ significantly from those of the sabre-toothed cats, suggesting a diet that includes prey from more open woodland. Coexistence of the sabre-toothed cats and the bear dog was likely facilitated by prey capture in different portions of the habitat. This study demonstrates the utility of stable isotope analysis for investigating the behaviour and ecology of members of past carnivoran guilds.  相似文献   

8.
Documenting trophic niche partitioning and resource use within a community is critical to evaluate underlying mechanisms of coexistence, competition, or predation. Detailed knowledge about foraging is essential as it may influence the vital rates, which, in turn, can affect trophic relationships between species, and population dynamics. The aims of this study were to evaluate resource and trophic niche partitioning in summer/autumn between the endangered Atlantic‐Gaspésie caribou (Rangifer tarandus caribou) population, moose (Alces americanus) and their incidental predators, the black bear (Ursus americanus) and coyote (Canis latrans), and to quantify the extent to which these predators consumed caribou. Bayesian isotopic analysis showed a small overlap in trophic niche for the two sympatric ungulates suggesting a low potential for resource competition. Our results also revealed that caribou occupied a larger isotopic niche area than moose, suggesting a greater diversity of resources used by caribou. Not surprisingly, coyotes consumed mainly deer (Odocoileus virginianus), moose, snowshoe hare (Lepus americanus), and occasionally caribou, while bears consumed mainly vegetation and, to a lesser extent, moose and caribou. As coyotes and bears also feed on plant species, we documented trophic niche overlap between caribou and their predators, as searching for similar resources can force them to use the same habitats and thus increase the encounter rate and, ultimately, mortality risk for caribou. Although the decline in the Gaspésie caribou population is mostly driven by habitat‐mediated predation, we found evidence that the low level of resource competition with moose, added to the shared resources with incidental predators, mainly bears, may contribute to jeopardize the recovery of this endangered caribou population. Highlighting the trophic interaction between species is needed to establish efficient conservation and management strategies to insure the persistence of endangered populations. The comparison of trophic niches of species sharing the same habitat or resources is fundamental to evaluate the mechanisms of coexistence or competition and eventually predict the consequences of ecosystem changes in the community.  相似文献   

9.
Resource partitioning in a community of diurnal arboreal mammalsconsisting of the lion-tailed macaque Macaca silenus, bonnetmacaque (BM) Macaca radiata, Nilgiri langur Semnopithecus johnii,and the Indian giant squirrel Ratufa indica of the Western Ghats,southern India, was studied. Differences in their diet, verticalstratification, food resource niche breadth, niche overlap,and behavioral interactions were examined. Resource partitioningwas through differential habitat use, resource use, and verticalstratification. Of the four species, the BM was not a residentspecies and made frequent forays into evergreen forest fromthe adjacent deciduous forest during the flowering season ofCullenia exarillata and fruiting season of Ficus microcarpa.The macaques had narrower niches, and the langur and the squirrelhad wider niches. Niche overlap was highest between the twomacaques. Overlap among the study species was particularly pronouncedduring the flowering of C. exarillata. There was significantcorrelation between niche overlap and intolerance among thestudy species. Certain species pairs showed little or no mutualintolerance despite high overlap. Cooperative interactions suchas alarm calls occurred more frequently among the resident species.Interaction matrices revealed an underlying pattern of interspecificdominance hierarchy, with the BM dominating over the other threespecies. Our study suggests that the BM do not coexist withthe other three because of high overlap with its congener andlow occurrence of cooperative interactions.  相似文献   

10.
11.
Prey diversity and temporal foraging patterns of six abundant,predatory ant species were investigated seasonally in an agroecosystem with two main vegetable crops.Pheidole sp.demonstrated the highest predation success and therefore appears to be the dominant species while Tapinoma melanocephalum showed the lowest success under the natural field conditions.Investigation of prey diversity and temporal activity patterns with the null model tests of niche overlap revealed a significant overlap indicating that t...  相似文献   

12.
Overexploitation of marine communities can lead to modifications in the structure of the food web and can force organisms like elasmobranchs to change their feeding habits. To evaluate the impact that fisheries have on food webs and on the interactions between species, it is necessary to describe and quantify the diet of the species involved and follow it through time. This study compares the diet of five skate species using the data obtained from the by-catch of the Argentine hake (Merluccius hubbsi) fishery in north and central Patagonia, Argentina. Diet composition was assessed by analysing the digestive tract contents and trophic overlapping between species of the genus Bathyraja: Bathyraja albomaculata, Bathyraja brachyurops, Bathyraja macloviana, Bathyraja magellanica and Bathyraja multispinis. A total of 184 stomachs were analysed. The diets of B. albomaculata and B. macloviana mainly comprised annelids, whereas that of B. brachyurops primarily comprised fish, including hake heads discarded by the fishery. The diets of B. magellanica and B. multispinis were largely based on crustaceans. Despite the morphological similarities and their shared preference for benthic habitats, no complete diet overlaps were found between the different species. These results suggest that these skate species have undergone a process of diet specialisation. This is a common feeding strategy that occurs to successfully eliminate competition when resources are limited, which corresponds to the conditions found in an environment being affected by the pressures of overfishing.  相似文献   

13.
Sex differences in foraging behavior have been widely reported in the ornithological literature, but few examples are available from tropical avifaunas. Differences between males and females in foraging behavior have been hypothesized to be a byproduct of sexual size dimorphism or a result of niche partitioning to reduce intersexual competition for food or different reproductive roles. From 2010 to 2013, I used foraging data and mist‐net capture rates from multiple study sites to examine possible sex differences in the foraging behavior of two New Guinean Pachycephala whistlers. I found that male Regent (Pachycephala schlegelii) and Sclater's (Pachycephala soror) whistlers consistently foraged in higher strata than females. It is unlikely that these differences are due to sexual dimorphism because these species exhibit little sexual dimorphism. Sex differences in foraging behavior were consistent across years and study sites and did not appear linked to breeding behavior, supporting the food‐competition hypothesis, but not the reproductive‐roles hypothesis. Male territorial defense often occurs in relatively high strata in Pachycephala whistlers, possibly influencing male foraging strata. However, male territorial behavior cannot explain why females predominately forage in lower strata. Instead, intersexual competition for food resources is likely the primary driver of differences in the foraging behavior of male and female Regent and Sclater's whistlers.  相似文献   

14.
Together with Calcinus verrilli from Bermuda, the Mediterraneanhermit crab C. tubularis is unique in that it exhibits a sharpsexual dimorphism in resource use in which one sex, the male,occupies loose shells and the other, the female, occupies attachedtubes. Field surveys and laboratory experiments addressed twoissues that help understand male-female resource partitioningin this species. First, the value of shells as shelters differsbetween sexes. Shells furnish mobility to their inhabitants,but also greater opportunities to grow because they can providelarger size than can the tubes, whereas both mobility and largedimensions are crucial selective factors for the reproductiveoutcomes of males only. In fact, egg production seemed not tobe affected by females' sedentary life and the number of eggswas not related to the female size. Second, previous shelterexperience plays a role in reducing male-female competition.I found that individual crabs, once presented simultaneouslywith a shell and a tube, more likely selected the type of shelterthat they were collected in. Then, in male-female competitionexperiments, pairs composed of one crab found in a shell andone crab found in a tube and offered a shell and a tube in conjunctionoccupied the housing in accordance to the shelter previouslyoccupied without any influence of their sex or size. The questionremains as to how, why, and when such a sexual dimorphism inthe distribution of C. tubularis between microhabitats did occurduring a hermit crab's life.  相似文献   

15.
A large portion of the surface‐ocean biomass is represented by microscopic unicellular plankton. These organisms are functionally and morphologically diverse, but it remains unclear how their diversity is generated. Species of marine microplankton are widely distributed because of passive transport and lack of barriers in the ocean. How does speciation occur in a system with a seemingly unlimited dispersal potential? Recent studies using planktonic foraminifera as a model showed that even among the cryptic genetic diversity within morphological species, many genetic types are cosmopolitan, lending limited support for speciation by geographical isolation. Here we show that the current two‐dimensional view on the biogeography and potential speciation mechanisms in the microplankton may be misleading. By depth‐stratified sampling, we present evidence that sibling genetic types in a cosmopolitan species of marine microplankton, the planktonic foraminifer Hastigerina pelagica, are consistently separated by depth throughout their global range. Such strong separation between genetically closely related and morphologically inseparable genetic types indicates that niche partitioning in marine heterotrophic microplankton can be maintained in the vertical dimension on a global scale. These observations indicate that speciation along depth (depth‐parapatric speciation) can occur in vertically structured microplankton populations, facilitating diversification without the need for spatial isolation.  相似文献   

16.
Resource partitioning is an important process driving habitat use and foraging strategies in sympatric species that potentially compete. Differences in foraging behavior are hypothesized to contribute to species coexistence by facilitating resource partitioning, but little is known on the multiple mechanisms for partitioning that may occur simultaneously. Studies are further limited in the marine environment, where the spatial and temporal distribution of resources is highly dynamic and subsequently difficult to quantify. We investigated potential pathways by which foraging behavior may facilitate resource partitioning in two of the largest co‐occurring and closely related species on Earth, blue (Balaenoptera musculus) and humpback (Megaptera novaeangliae) whales. We integrated multiple long‐term datasets (line‐transect surveys, whale‐watching records, net sampling, stable isotope analysis, and remote‐sensing of oceanographic parameters) to compare the diet, phenology, and distribution of the two species during their foraging periods in the highly productive waters of Monterey Bay, California, USA within the California Current Ecosystem. Our long‐term study reveals that blue and humpback whales likely facilitate sympatry by partitioning their foraging along three axes: trophic, temporal, and spatial. Blue whales were specialists foraging on krill, predictably targeting a seasonal peak in krill abundance, were present in the bay for an average of 4.7 months, and were spatially restricted at the continental shelf break. In contrast, humpback whales were generalists apparently feeding on a mixed diet of krill and fishes depending on relative abundances, were present in the bay for a more extended period (average of 6.6 months), and had a broader spatial distribution at the shelf break and inshore. Ultimately, competition for common resources can lead to behavioral, morphological, and physiological character displacement between sympatric species. Understanding the mechanisms for species coexistence is both fundamental to maintaining biodiverse ecosystems, and provides insight into the evolutionary drivers of morphological differences in closely related species.  相似文献   

17.
Knowledge of food resource partitioning among sympatric fish species is crucial for understanding the potential mechanisms of species coexistence. Gudgeons (Teleostei: Cyprinidae: Gobioninae) often dominate fish assemblages in the upper Yangtze River. However, little research has been conducted on their trophic interactions. In this paper, seasonal diet and feeding strategy variations of four sympatric gudgeon species, Coreius guichenoti, Coreius heterodon, Rhinogobio ventralis, and Rhinogobio cylindricus, were investigated by analysis of intestinal tract contents, aiming to explore whether food resource partitioning occurred among them. Fish specimens were collected during spring (April–May) and autumn (August–October) in 2010 in Hejiang, a free‐flowing stretch of the upper Yangtze River. Coreius guichenoti, C. heterodon, and R. cylindricus showed omnivorous feeding habits, while R. ventralis exhibited an obligate carnivore feeding habit. Diet overlap among the four studied species was high, especially in spring. However, changes in feeding strategies were observed in autumn. Specifically, C. guichenoti and R. cylindricus expanded their dietary niche breadth and consumed detritus, Sinopotamidae or Hydropsychidae as important complementary food resources. In contrast, C. heterodon and R. ventralis reduced their dietary niche breadth and became more specialized on mussels (Limnoperna lacustris). These results confirmed that sympatric fish species can coexist with high diet overlap, and food resource partitioning among these species may also fluctuate with the seasons.  相似文献   

18.
Summary Competitive relationships were estimated for plants from young and old pasture populations. Experimental treatments were conducted under both common garden field station conditions and actual grazed pasture conditions. The results suggest four conclusions. (1) Grazing and other pasture conditions did not prevent plant competition. (2) Interspecific competition appears to promote the use of different resources (niche divergence). (3) Intraspecific competition may lead to a broadening of resource use by a species and, thus, indirectly increase both niche overlap and interspecific competition. No evidence was found to support an alternative theory of co-existence in which interspecific competition is argued to promote a balancing of competitive abilities without changes to relative niche overlap. (4) Changes in resource use appears to occur within a few decades after pasture formation.  相似文献   

19.
20.
Microhabitat selectivity, resource partitioning, and niche shifts in five species of grazing caddisfly larvae (Glossosoma califica, G. penitum, Dicosmoecus gilvipes, Neophylax rickeri, and N. splendens) were quantified by underwater measurement of microhabitat availability and utilization in three northern California streams. The microhabitat parameters water depth and velocity and rock size, roughness, and slope were measured. Comparisons of habitat available to habitat used revealed significant selection for at least two microhabitat parameters by each population, with depth and velocity being the most important. Comparisons of habitat used by different species showed significant partitioning of at least two microhabitat parameters at each site, with depth being partitioned at all sites. Non-parametric discriminant analysis revealed significant microhabitat partitioning on a multivariate level at two sites. Comparisons of habitat used at different sites quantified a major niche shift by D. gilvipes in its preference for riffles versus pools. Size-selective predation by dippers (Cinclus mexicanus) and steelhead (Salmo gairdneri gairdneri) is proposed as a hypothesis to explain the observed resource partitioning and niche shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号