首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wan  Yangling  Guo  Shuntang 《Food biophysics》2019,14(2):164-172

To identify the effects of charged states on the formation and disaggregation of soy protein isolate (SPI) fibril, we studied the thermal aggregation behaviors of the constituent peptides of SPI fibril (CPSF) at various pH values (2–10) and investigated the structural changes of SPI fibril with increasing pH (2–11). Results showed that CPSF would assemble into diverse shapes at different pH values, among which the aggregates contained multiple β-sheet structures at pH less than 6, but these β-sheets were stacked to form fibrils only at pH 2. The damages from the increased pH to SPI fibril structure could be roughly divided into two stages, as follows: when pH was less than or equal to 6, the morphology of fibrils changed markedly due to electrostatic neutralization; at pH larger than 6, the fibrils suffered great losses in β-sheet, causing its structure to disintegrate rapidly. This study could provide theoretical reference to improve the pH stability of SPI fibril from the aspects of preparation and structural protection of the fibril.

  相似文献   

2.
Impact of drying process and storage conditions on properties of konjac glucomannan (KGM) and whey protein isolate (WPI) blend films was investigated. Hundred grams of film solution contained 0.4 g KGM, 3.8 g WPI and 1.5 g glycerol. During drying process, air velocity was varied to produce fast drying (3 h) and slow drying (15 h) in tray dryers under 50 °C. The high air velocity resulted in a significant higher drying rate in fast drying than low air velocity in slow drying. Drying curves from both processes were well-fitted with Page model and Henderson and Pabis model (R2 ≥ 0.98). Fast drying improved transparency and mechanical properties without impairing color, solubility or water vapor permeability (WVP). Fast-dried film had less surface roughness and contained larger protein clusters. It also had greater melting enthalpy of protein aggregates, implying stronger networks. For stability study, fast-dried film was stored at 4-35 °C for 24 days. Transparency decreased over time. Overall mechanical properties have improved during storage. Color, solubility and WVP did not significantly change over time at all conditions (p?>?0.05). Microstructure of aged films was relatively similar to that of the freshly prepared film. Overall, the fast-dried KGM-WPI film exhibited reasonable storage stability.  相似文献   

3.
A comparative study of soybean and rapeseed protein hydrolysis by protosubtilin, an original Russian enzyme preparation widely used in animal feed production, has been performed. SDS-PAG electrophoresis, HPLC, and mass spectrometry have been employed to analyze the obtained products. The soybean protein isolate used for hydrolysate production was obtained from a commercial supplier, and rapeseed proteins were prepared from the meal by alkali extraction. Low molecular weight impurities were removed by ultrafiltration. The degree of protein hydrolysis has been shown to depend on the substrate-to-enzyme preparation ratio, hydrolysis time, and protein concentration. Rapeseed protein hydrolysis by protosubtilin at an enzyme/protein ratio of 1: 20 and hydrolysis time of 20 h resulted in complete cleavage of the proteins present in the raw material and the accumulation of oligopeptides (molecular weight less than 14 kDa) and free amino acids, which accounted for 53 and 8% of the initial protein weight, respectively. In contrast to rapeseed proteins, soybean proteins showed considerable gelling at the initial stages of hydrolysis, and the formation of insoluble hydrolysis-resistant fragments was observed. The soluble part of the hydrolysate contained short oligopeptides and free amino acids, which accounted for 13% of the initial protein weight only.  相似文献   

4.
This study aimed to evaluate the ability of commercial soy protein isolate (SPI) to form cold-set gels under different pHs (5–11), pre-heating temperatures (60 °C, 80 °C), CaCl2 (0–15 mM) and SPI (5–15%, w/v) concentrations, and also select a formulation for the investigation of the effects of incorporating locust bean gum (LBG) (0–0.3%, w/v) and solid lipid microparticles (SLM) on gels rheological and microstructural properties. Gels were evaluated in terms of visual aspect, water-holding capacity, microstructure (using confocal laser scanning microscopy and cryo-scanning electronic microscopy) and rheological properties. SPI showed higher solubilities at pHs 7 (32.0%), 9 (51.6%) and 11 (100%). Self-supported gels were obtained under several conditions at alkaline pHs. At pH 7, only systems pre-heated to 80 °C with 15% (w/v) SPI and 10 or 15 mM CaCl2 gave self-supported gels. At neutral pH, samples showed relative structural instability, which was minimized with LBG incorporation. Formulations GSPI (pH 7, preheated to 80 °C, 15% (w/v) SPI, 10 mM CaCl2) and GMIX (pH 7, preheated to 80 °C, 15% (w/v) SPI, 0.2% (w/v) LBG, 15 mM CaCl2) were selected for emulsion-filled gels (EFG) production. Power law parameters (K′, K″), calculated from frequency sweep results, revealed that non-filled GMIX (K′: 472.1; K″: 77.6) was stronger than GSPI (K′: 170.4; K″: 33.6). Besides, GMIX showed microphase separation. SLM stabilized with Tween 80-Span 80 were active fillers in EFG, altering microstructures and increasing G’, G” and the Young’s modulus (1.8 to 2.1 kPa for GSPI and 1.4 to 2.2 kPa for GMIX).  相似文献   

5.
Defatted rumen protein and soy protein concentrate were extruded in a 15.5:1 L/D single-screw extruder at the optimum conditions for their expansion (150°C and 35% moisture, and 130°C and 35% moisture, respectively). Emulsions were produced with these proteins and studied by rheology and time domain low-resolution 1H nuclear magnetic resonance (TD-NMR). Extrusion increased storage modulus of rumen protein emulsions. The opposite was observed for soy protein. Mechanical relaxation showed the existence of three relaxing components in the emulsions whose relative contributions were changed by extrusion. Likewise, spin–spin relaxation time constants (T 2) measured by TD-NMR also showed three major distinct populations of protons in respect to their mobility that were also altered by extrusion. Extrusion increased surface hydrophobicity of both rumen and soy protein. Solubility of rumen protein increased with extrusion whereas soy protein had its solubility decreased after processing. Extrusion promoted molecular reorganization of protein, increasing its superficial hydrophobicity, affecting its interfacial properties and improving its emulsifying behavior. The results show that extrusion can promote the use of rumen, a by-product waste from the meat industry, in human nutrition by replacing soy protein in food emulsions.  相似文献   

6.
Experiments were carried out to elucidate the correlation between gel chromatographic profiles and rheological properties of dope with respect to the spinnability of soy protein. It was found that dope prepared with 20% protein concentrate and 1.2% sodium hydroxide showed a good transition zone from rubber-like elasticity to rubber-like flow, as frequency (log ω) in limitation was increased from ?1 to 1, and also the dope showed good spinnability when prepared in the above manner. Good spinnable dopes showed three main fractions in the gel chromatographic profiles on using a Sepharose 4B gel column. The first peak was of a high molecular weight fraction (Mw > 1,000,000) eluted at the void volume, the second peak was of low molecular weight fraction (Mw < 200,000; the peak was around 10,000) eluted at the end of the gel chromatogram, and the third part was a gentle upward slope between the two peaks (1,000,000 > Mw > 200,000). It was clear that the spinnabilities and rheological properties of dope depended on differences in composition of the three main fractions mentioned.  相似文献   

7.
The effect of the supplementation of sulfur amino acids to a low casein or soy protein isolate diet on tissue lipid metabolism was investigated. Supplementation of methionine to a 8% casein diet produced a fatty liver in rats, however, supplementation of methionine to a 8.8% soy protein diet (corresponding to a 8% casein diet as to sulfur amino acids content) did not produce a fatty liver. At the level of 8% or less of soy protein in the diet, the accumulation of liver lipids and serum triglyceride was observed. An amino acid mixture simulating the composition of soy protein isolate caused significant accumulation of liver lipids, but serum triglyceride was not changed. Serum cholesterol in rats fed the soy protein diet was lower than that in rats fed the casein diet, but on feeding the amino acid mixtures simulating these protein diets, there was no difference between the two groups. The small differences between soy protein isolate and casein as to lipid metabolism might be due to the small differences in the contents of sulfur amino acids or the specific nature of the soy protein or casein. The supplemental effect of methionine and cystine was also studied. About 60% of total sulfur amino acids could be substituted by cystine for maximum growth.  相似文献   

8.
Guan  Haining  Diao  Xiaoqin  Han  Jianchun  Kong  Baohua  Liu  Dengyong 《Food biophysics》2021,16(3):395-405

The influences of soy protein isolate hydrolysate (SPIH) obtained during different pressure treatments for 4 h on pasting and short-term retrogradation behaviors of maize starch (MS) were investigated. The results showed solubility of MS markedly increased, whereas swelling power decreased with increased SPIH concentration and pressure. Compared with native MS, the addition of SPIH led to decrease of peak viscosity, final viscosity, setback, and breakdown, whereas pasting temperature was increased. Meanwhile, differential scanning calorimetry (DSC) analysis also showed an increase in gelatinization temperature. In addition, low-field nuclear magnetic resonance (LF-NMR) analysis indicated that the tight association of water and starch molecules was observed with increasing pressures and additions of SPIH. Confocal laser scanning microscopy (CLSM) and atomic force microscope (AFM) images indicated that SPIH obtained at 200 MPa dispersed in the MS gel system to block the formation of hydrogen bonds and inhibit the recrystallization of MS. Fourier transform infrared (FTIR) spectroscopy analysis demonstrated that the addition of SPIH resulted in a decrease in hydrogen bonds within the starch molecules and the result supported above CLSM and AFM measurement results. The results proved that the addition of SPIH could effectively influence pasting characteristics and inhibit the short-term retrogradation of MS, which can be helpful to the application of SPIH in starch-based functional foods.

  相似文献   

9.
The contribution of soybean variety and coagulant type to the textural and rheological properties of soy protein isolate (SPI) tofu-type emulsion gels was studied. SPIs from eight soybean varieties were subjected to amino acid and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis, and results showed that the 11S fraction proteins (r?=?0.833, p?<?0.05) and the ratio of 11S to 7S (r =?0.920, p <?0.01) were positively correlated with the hardness of CaSO4-induced emulsion gels and glucono-δ-lactone (GDL)-induced gels, with the correlation coefficients of 0.827 (p <?0.05) and 0.893 (p <?0.01), respectively. In the case of microbial transglutaminase (MTGase), strong relations between the content of glutamate (r =?0.886, p?<?0.01) and lysine (r =?0.810, p <?0.05) and gel hardness were found. Rheological data demonstrated that CaSO4-induced emulsion gel was stiffer with high rigidity but gel induced by MTGase performed better elasticity. The findings of this study are of great importance to further understand the gelation mechanisms of different coagulants and provide useful information for the development of SPI-based filled tofu.  相似文献   

10.
11.
Encapsulation of proteins in chaperonins is an important mechanism by which the cell prevents the accumulation of misfolded species in the cytosol. However, results from theory and simulation for repulsive cavities appear to be inconsistent with recent experimental results showing, if anything, a slowdown in folding rate for encapsulated Rhodanese. We study the folding of Rhodanese in GroEL, using coarse-grained molecular simulations of the complete system including chaperonin and substrate protein. We find that, by approximating the substrate:GroEL interactions as repulsive, we obtain a strong acceleration in rate of between one and two orders of magnitude; a similar result is obtained by representing the chaperonin as a simple spherical cavity. Remarkably, however, we find that using a carefully parameterized, sequence-based potential to capture specific residue-residue interactions between Rhodanese and the GroEL cavity walls induces a very strong reduction of the folding rates. The effect of the interactions is large enough to completely offset the effects of confinement, such that folding in some cases can be even slower than that of the unconfined protein. The origin of the slowdown appears to be stabilization—relative to repulsive confinement—of the unfolded state through binding to the cavity walls, rather than a reduction of the diffusion coefficient along the folding coordinate.  相似文献   

12.
The aim of this work was to investigate the suitability of some polymeric films as buccal systems for the delivery of the antiseptic drug chlorhexidine diacetate, considered as a valid adjunct in the treatment of oral candidiasis. Six different film formulations, mono- or double-layered, containing 5 or 10 mg of chlorhexidine diacetate, respectively, and alginate and/or hydroxypropylmethylcellulose and/or chitosan as excipients, were prepared by a casting-solvent evaporation technique and characterized in terms of drug content, morphology (scanning electron microscopy), drug release behavior, and swelling properties. Moreover, the in vivo concentrations of chlorhexidine diacetate in saliva were evaluated after application of a selected formulation on the oral mucosa of healthy volunteers. The casting-solvent evaporation proved to be a suitable technique for preparing soft, flexible, and easily handy mono- or double-layered chlorhexidine-loaded films. Some prepared formulations showed favorable in vitro drug release rates and swelling properties. The behavior of a selected formulation, chosen on the basis of its in vitro release results, was preliminarily investigated in vivo after application in the oral cavity of healthy volunteers. The films were well tolerated and the salivary chlorhexidine concentrations were maintained above the minimum inhibitory concentration for Candida albicans for almost 3 h. These preliminary results indicate that polymeric films can represent a valid vehicle for buccal delivery of antifungal/antimicrobial drugs.  相似文献   

13.
目的:制备链亲和素标记的人白细胞介素-2(SA-hIL2)融合蛋白,并研究其生物学功能。方法:构建SA-L-IL2-pET24重组表达质粒,在大肠杆菌中表达SA-hIL2融合蛋白,对表达的SA-hIL2融合蛋白采用镍金属螯合(Ni-NTA)层析柱进行纯化,透析复性。CCK-8法检测SA-hIL2融合蛋白对PHA刺激的人外周血淋巴细胞的增值活性,流式细胞仪分析SA-hIL2融合蛋白对生物素化的B16.F10肿瘤细胞表面锚定修饰效率。结果:SA-hIL2在大肠杆菌中实现了高效表达,约占菌体总蛋白的20%,制备的SA-hIL2融合蛋白纯度达到95%,并具有双重活性,即hIL-2促进PHA刺激的人外周血淋巴细胞的增值活性和SA介导的高效结合至已生物素化的B16.F10肿瘤细胞表面的功能(表面锚定修饰效率约95%)。结论:研制的SA-hIL2融合蛋白具有双重活性,可为研制表面修饰的新型肿瘤细胞疫苗提供基础。  相似文献   

14.
本研究以本实验室保存的含重组载体pDEST17-NSP的原核表达菌株E.coli BL21(DE3)为材料,于25℃、0.1 mmol/L IPTG条件下诱导4 h,集菌后超声波破碎,获得以包涵体形式表达的约20 kD的融合蛋白.实验结果表明,将沉淀的融合蛋白溶于含6 mol/L尿素的Binding Buffer中,再经Ni2+-NTA亲和层析纯化后,可获得高纯度的融合蛋白.将纯化融合蛋白经12%SDS-PAGE电泳,切胶回收目的带,液氮研磨并按1:1(W/V)混合佐剂,4次免疫家兔,获得BBTV病毒核穿梭蛋白的特异性抗血清.以融合蛋白作抗原,间接ELISA法测定其抗血清效价为1:5 000.田间检测样品的最佳抗血清工作浓度为1:500.Western Blot鉴定结果表明抗血清能与目的蛋白特异性结合.本研究的结果将为下一步NSP基因转录调控和蛋白功能研究奠定一定基础.  相似文献   

15.
Buccal bioadhesive films, releasing topical drugs in the oral cavity at a slow and predetermined rate, provide distinct advantages over traditional dosage forms. The aim of present study was to prepare and evaluate buccal bioadhesive films of clotrimazole for oral candidiasis. The film was designed to release the drug at a concentration above the minimum inhibitory concentration for a prolonged period of time so as to reduce the frequency of administration of the available conventional dosage forms. The different proportions of sodium carboxymethylcellulose and carbopol 974P (CP 974P) were used for the preparation of films. Carbopol was used to incorporate the desired bioadhesiveness in the films. The films were prepared by solvent casting method and evaluated for bioadhesion, in vitro drug release and effectiveness against Candida albicans. In vitro drug release from the film was determined using a modified Franz diffusion cell while bioadhesiveness was evaluated with a modified two-arm balance using rabbit intestinal mucosa as a model tissue. Films containing 5% CP 974P of the total polymer were found to be the best with moderate swelling along with favorable bioadhesion force, residence time and in vitro drug release. The microbiological studies revealed that drug released from the film could inhibit the growth of C. albicans for 6 h. The drug release mechanism was found to follow non-Fickian diffusion.  相似文献   

16.
Production of protein encapsulated silver nanoparticles (AgNPs) assisted by marine actinomycetes strain has been investigated. The selective isolate was identified as Streptomyces parvulus SSNP11 based on chemotaxonomic and 16S rRNA analysis. Maximum AgNPs production was observed within 24 h incubation time. The produced AgNPs are spherical in shape with monodispersive and crystalline in nature. The particle size distribution ranges from 1.66 to 11.68 nm with a mean size of 2.1 nm. The biosynthesized AgNPs revealed stretching vibrations of primary and secondary amines along with C–H and C–N, suggesting that metabolically produced proteins are involved in size regulation of reduced AgNPs. These particles possess an average negative zeta potential value of 81.5 mV with an electrophoretic mobility of 0.000628 cm2/Vs. The biosynthesized nanoparticles revealed antimicrobial property against gram negative as well as gram positive bacterial strains.  相似文献   

17.
We investigated the effects of a buckwheat protein product (BWP), soy protein isolate (SPI) and casein on the plasma cholesterol level and fecal steroid excretion in rats fed on a cholesterol-free diet. The consumption of BWP suppressed plasma cholesterol by enhancing the fecal excretion of both neutral and acidic steroids. These effects of BWP were stronger than those of SPI.  相似文献   

18.
The objective of this work was to evaluate soy protein isolate (SPI) and acylated soy protein (SPA) as spray-drying encapsulation carriers for oral pharmaceutical applications. SPI acylation was performed by the Schotten–Baumann reaction. SPA, with an acylation rate of 41%, displayed a decrease in solubility in acidic conditions, whereas its solubility was unaffected by basic conditions. The drug encapsulation capacities of both SPI and SPA were tested with ibuprofen (IBU) as a model poorly soluble drug. IBU-SPI and IBU-SPA particles were obtained by spray-drying under eco-friendly conditions. Yields of 70 to 87% and microencapsulation efficiencies exceeding 80% were attained for an IBU content of 20 to 40% w/w, confirming the excellent microencapsulation properties of SPI and the suitability of the chemical modification. The in vitro release kinetics of IBU were studied in simulated gastrointestinal conditions (pH 1.2 and pH 6.8, 37°C). pH-sensitive release patterns were observed, with an optimized low rate of release in simulated gastric fluid for SPA formulations, and a rapid and complete release in simulated intestinal fluid for both formulations, due to the optimal pattern of pH-dependent solubility for SPA and the molecular dispersion of IBU in soy protein. These results demonstrate that SPI and SPA are relevant for the development of pH-sensitive drug delivery systems for the oral route.  相似文献   

19.
In Schwann cells, connexin 32 (Cx32) can oligomerize to form intracellular gap junction channels facilitating a shorter pathway for metabolite diffusion across the layers of the myelin sheath. The mechanisms of Cx32 intracellular channel regulation have not been clearly defined. However, Ca(2+), pH, and the phosphorylation state can regulate Cx32 gap junction channels, in addition to the direct interaction of protein partners with the carboxyl-terminal (CT) domain. In this study, we used different biophysical methods to determine the structure and characterize the interaction of the Cx32CT domain with the protein partners synapse-associated protein 97 (SAP97) and calmodulin (CaM). Our results revealed that the Cx32CT is an intrinsically disordered protein that becomes α-helical upon binding CaM. We identified the GUK domain as the minimal SAP97 region necessary for the Cx32CT interaction. The Cx32CT residues affected by the binding of CaM and the SAP97 GUK domain were determined as well as the dissociation constants for these interactions. We characterized three Cx32CT Charcot-Marie-Tooth disease mutants (R219H, R230C, and F235C) and identified that whereas they all formed functional channels, they all showed reduced binding affinity for SAP97 and CaM. Additionally, we report that in RT4-D6P2T rat schwannoma cells, Cx32 is differentially phosphorylated and exists in a complex with SAP97 and CaM. Our studies support the importance of protein-protein interactions in the regulation of Cx32 gap junction channels and myelin homeostasis.  相似文献   

20.
 本文研究了不同底物(N_2,H_2,N_2O,NaN_3,C_2H_2)对棕色固氮菌固氮酶及其钼铁蛋白荧光光谱的影响。结果表明,上述底物均能络合在钼铁蛋白及固氮酶上,但络合程度不同,从而为固氮酶系统有多个不同的底物络合中心,底物络合中心在钼铁蛋白分子上,铁蛋白对钼铁蛋白有变构作用,提供了光谱学证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号