首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bacteria producing 1-aminocyclopropane-1-carboxylate (ACC) deaminase modulate plant ethylene levels. Decreased ethylene levels increase plant tolerance to environmental stresses and promote legume nodulation. On the contrary, the role of ethylene in mycorrhizal symbiosis establishment is still controversial. In this work, the ACC deaminase-producing strain Pseudomonas putida UW4 AcdS+ and its mutant AcdS(-), impaired in ACC deaminase synthesis, were inoculated alone or in combination with the AM fungus Gigaspora rosea on cucumber. Mycorrhizal and bacterial colonization as well as plant growth and morphometric parameters were measured. The influence of each microorganism on the photosynthetic efficiency was evaluated on the second and fourth leaf. The strain AcdS+, but not the AcdS(-) mutant, increased AM colonization and arbuscule abundance. The mycorrhizal fungus, but not the bacterial strains, promoted plant growth. However, the AcdS+ strain, inoculated with G. rosea, induced synergistic effects on plant biomass, total root length and total leaf projected area. Finally, the photosynthetic performance index was increased by the strain UW4 AcdS+ inoculated in combination with G. rosea BEG9. These results suggest a key role of this enzyme in the establishment and development of AM symbiosis.  相似文献   

3.
The symbiotic plasmid (pSym) of Rhizobium leguminosarum bv. trifolii 4S5, which carries Tn5-mob, was successfully transferred into Agrobacterium tumefaciens A136 by using a conjugation method. The resulting transconjugants induced the development of ineffective nitrogen-fixing nodules on the roots of white clover seedlings. Depending on the manner in which the pSym was retained, the transconjugants were divided into two groups of strains, Afp and Afcs. pSym was retained as a plasmid in the Afp strains but was integrated into the int gene encoding a phage-related integrase on the linear chromosome of A. tumefaciens A136 in strain Afcs1 (one of the Afcs strains) to form a symbiosis island. Conjugation was performed between strain Afcs1 and R. leguminosarum bv. trifolii H1 (a pSym-cured derivative of wild-type strain 4S), and the Rhizobium H1tr strains were screened as transconjugants. Eighteen of the H1tr strains induced effective nitrogen-fixing nodules on the roots of the host plants. pSym was transferred into all of the transconjugants, except for strain H1tr1, at the same size as pSym of strain 4S5. In strain H1tr1, pSym was integrated into the chromosome as a symbiosis island. These data suggest that pSym can exist among Rhizobium and Agrobacterium strains both as a plasmid and as a symbiosis island with transposon mediation.  相似文献   

4.
Abstract. Paramecium bursaria , a freshwater protozoan, typically harbors hundreds of symbiotic algae ( Chlorella sp.) in its cytoplasm. The relationship between host paramecia and symbiotic algae is stable and mutually beneficial in natural environments. We recently collected an aposymbiotic strain of P. bursaria . Infection experiments revealed that the natural aposymbiotic strain (Ysa2) showed unstable symbiosis with Chlorella sp. The algae aggregated at the posterior region of the host, resulting in aposymbiotic cell production after cell division. Cross-breeding analyses were performed to determine the heritability of the aposymbiotic condition. In crosses of Ysa2 with symbiotic strains of P. bursaria , F1 progeny were able to form stable symbioses with Chlorella sp. However, unstable symbiosis, resembling Ysa2 infection, occurred in some F2 progeny of sibling crosses between symbiotic F1 clones. Infection experiments using aposymbiotic F2 cells showed that these F2 subclones have limited ability to reestablish the symbiosis. These results indicate that the maintenance of stable symbiosis is genetically controlled and heritable, and that Ysa2 is a mutant lacking the mechanisms to establish stable symbiosis with Chlorella sp.  相似文献   

5.
6.
Changes in the concentrations of individual flavonoids and polyamines (PAs) in Scots pine (Pinus sylvestris L.) cotyledonary seedlings were studied during the establishment of an ectomycorrhizal (ECM) symbiosis with two Suillus variegatus strains in vitro. Both flavonoids and PAs were analysed after 3, 7, and 14 d in dual culture, and changes in concentrations were compared with growth of the seedlings. Both S. variegatus strains caused similar responses in Scots pine seedlings. Free putrescine accumulated immediately but only transiently after inoculation. This was followed by continuous accumulation of PA conjugates in needles and stems, and free spermidine and spermine in roots, which was accompanied by mycorrhiza formation and improved growth. The fungi induced lateral root formation and main root and primary needle elongation. Inoculation caused no qualitative changes in flavonoid composition, while quantitative changes in flavonols, catechins, and condensed tannins were observed in shoots during mycorrhiza formation. These results indicate that in this in vitro system conjugated PAs and specific flavonoids, generally related to the plant's defence reactions, did not play a major role in the regulation of the establishment of the ectomycorrhizal (ECM) symbiosis in Scots pine roots. The results also clearly show that positive growth responses in shoots and roots due to S. variegatus were supported by different and highly specific changes in the synthesis of both primary and secondary metabolites in these parts of the seedling.  相似文献   

7.
Alfalfa (Medicago sativa) is one of the most important crops used in Uruguay for livestock feeding. Seedling diseases, particularly damping-off, are a critical factor which limits its establishment. Three native Pseudomonas fluorescens strains, UP61.2, UP143.8 and UP148.2, previously isolated from Lotus corniculatus, were evaluated to determine their efficacy as biological control agents for alfalfa seedling diseases in the field. Their compatibility with the alfalfa-Sinorhizobium meliloti symbiosis was also assessed. In growth chamber conditions seed inoculation with Pseudomonas strains did not affect different parameters of alfalfa-rhizobium symbiosis as shown by nodulation rate and shoot dry weight of plants. The presence of the commercial inoculant strains of S. meliloti did not impair colonization by the P. fluorescens and vice versa. In field trials the dynamics of rhizobial rhizospheric populations were not affected by the presence of P. fluorescens. Each P. fluorescens strain successfully colonized alfalfa roots at adequate densities for biocontrol activity. Results showed that P. fluorescens strains provided a 10–13% increase in the number of established plants relative to the control, an intermediate result compared to the fungicide treatment (24%). The alfalfa above-ground biomass was increased by 13% and 15–18% in the presence of the fungicide and P. fluorescens strains, respectively. Therefore, results from this study demonstrated that the three P. fluorescens strains provided effective control against soil-borne pathogens and suggest a potential use in the development of a commercial inoculant to be applied for the control of legume seedling diseases.  相似文献   

8.
We isolated two bacterial strains from an experimentally lead (Pb)-polluted soil in Hungary, 10 years after soil contamination. These strains represented the two most abundant cultivable bacterial groups in such soil, and we tested their influence on Trifolium pratense L. growth and on the functioning of native mycorrhizal fungi under Pb toxicity in a second Pb-spiked soil. Our results showed that bacterial strain A enhanced plant growth, nitrogen and phosphorus accumulations, nodule formation, and mycorrhizal infection, demonstrating its plant-growth-promoting activity. In addition, strain A decreased the amount of Pb absorbed by plants, when expressed on a root weight basis, because of increased root biomass due to the production of indoleacetic acid. The positive effect of strain A was not only evident after a single inoculation but also in dual inoculation with arbuscular mycorrhizal fungi. Strain A also exhibited higher tolerance than strain B when cultivated under increasing Pb levels in the spiked soil. Molecular identification unambiguously placed strain A within the genus Brevibacillus. We showed that it is important to select the most tolerant and efficient bacterial strain for co-inoculation with arbuscular mycorrhizal fungi to promote effective symbiosis and thus stimulate plant growth under adverse environmental conditions, such as heavy-metal contamination.  相似文献   

9.
Coral reef ecosystems are based on coral–zooxanthellae symbiosis. During the initiation of symbiosis, majority of corals acquire their own zooxanthellae (specifically from the dinoflagellate genus Symbiodinium) from surrounding environments. The mechanisms underlying the initial establishment of symbiosis have attracted much interest, and numerous field and laboratory experiments have been conducted to elucidate this establishment. However, it is still unclear whether the host corals selectively or randomly acquire their symbionts from surrounding environments. To address this issue, we initially compared genetic compositions of Symbiodinium within naturally settled about 2-week-old Acropora coral juveniles (recruits) and those in the adjacent seawater as the potential symbiont source. We then performed infection tests using several types of Symbiodinium culture strains and apo-symbiotic (does not have Symbiodinium cells yet) Acropora coral larvae. Our field observations indicated apparent preference toward specific Symbiodinium genotypes (A1 and D1-4) within the recruits, despite a rich abundance of other Symbiodinium in the environmental population pool. Laboratory experiments were in accordance with this field observation: Symbiodinium strains of type A1 and D1-4 showed higher infection rates for Acropora larvae than other genotype strains, even when supplied at lower cell densities. Subsequent attraction tests revealed that three Symbiodinium strains were attracted toward Acropora larvae, and within them, only A1 and D1-4 strains were acquired by the larvae. Another three strains did not intrinsically approach to the larvae. These findings suggest the initial establishment of corals–Symbiodinium symbiosis is not random, and the infection mechanism appeared to comprise two steps: initial attraction step and subsequent selective uptake by the coral.  相似文献   

10.
Nod factors (Lipo-chitooligosaccharides, or LCOs) act as bacteria-to-plant signal molecules that modulate early events of the Bradyrhizobium-soybean symbiosis. It is known that low root zone temperature inhibits the early stages of this symbiosis; however, the effect of low soil temperature on bacteria-to-plant signaling is largely uninvestigated. We evaluated the effect of low growth temperatures on the production kinetics of Nod factor (LCO) by B. japonicum. Two strains of B. japonicum, 532C and USDA110, were tested for ability to synthesize Nod Bj-V (C(18:1), MeFuc) at three growth temperatures (15, 17 and 28 degrees C). The greatest amounts of the major Nod factor, Nod Bj-V (C(18:1), MeFuc), were produced at 28 degrees C for both strains. At 17 and 15 degrees C, the Nod factor production efficiency, per cell, of B. japonicum 532C and USDA110 was markedly decreased with the lowest Nod factor concentration per cell occurring at 15 degrees C. Strain 532C was more efficient at Nod factor production per cell than strain USDA 110 at all growth temperatures. The biological activity of the extracted Nod factor was unaffected by culture temperature. This study constitutes the first demonstration of reduced Nod factor production efficiency (per cell production) under reduced temperatures, suggesting another way that lower temperatures inhibit establishment of the soybean N(2) fixing symbiosis.  相似文献   

11.
Colonization of the light-emitting organ of the Hawaiian squid Euprymna scolopes is initiated when the nascent organ of a newly hatched squid becomes inoculated with Vibrio fischeri cells present in the ambient seawater. Although they are induced for luminescence in the light organ, these symbiotic strains are characteristically non-visibly luminous (NVL) when grown in laboratory culture. The more typical visibly luminous (VL) type of V. fischeri co-occurs in Hawaiian seawater with these NVL strains; thus, two phenotypically distinct groups of this species potentially have access to the symbiotic niche, yet only the NVL ones are found there. In laboratory inoculation experiments, VL strains, when presented in pure culture, showed the same capability for colonizing the light organ as NVL strains. However, in experiments with mixed cultures composed of both VL and NVL strains, the VL ones were unable to compete with the NVL ones and did not persist within the light organ as the symbiosis became established. In addition, NVL strains entered light organs that had already been colonized by VL strains and displaced them. The mechanism underlying the symbiotic competitiveness exhibited by NVL strains remains unknown; however, it does not appear to be due to a higher potential for siderophore activity. While a difference in luminescence phenotype between VL and NVL strains in culture is not likely to be significant in the symbiosis, it has helped identify two distinct groups of V. fischeri that express different colonization capabilities in the squid light organ. This competitive difference provides a useful indication of important traits in light organ colonization.  相似文献   

12.
Rhizobium leguminosarum by. trifolii (Rlt) establishes beneficial root nodule symbiosis with clover. Twenty Rlt strains differentially marked with antibiotic-resistance markers were investigated in terms of their competitiveness and plant growth promotion in mixed inoculation of clover in laboratory experiments. The results showed that the studied strains essentially differed in competition ability. These differences seem not to be dependent on bacterial multiplication in the vicinity of roots, but rather on complex physiological traits that affect competitiveness. The most remarkable result of this study is that almost half of the total number of the sampled nodules was colonized by more than one strain. The data suggest that multi-strain model of nodule colonization is common in Rhizobium-legume symbiosis and reflects the diversity ofrhizobial population living in the rhizosphere.  相似文献   

13.
Plants are resistant to almost all of the microorganisms with which they come in contact. In response to invasion by a fungus, bacterium, or a virus, many plants produce low molecular weight compounds, phytoalexins, which inhibit the growth of microorganisms. Phytoalexins are produced whether or not the invading microorganism is a pathogen. The production of phytoalexins appears to be a widespread mechanism by which plants attempt to defend themselves against pests. Molecules of microbial origin which trigger phytoalexin accumulation in plants are called elicitors. Structural polysaccharides from the mycelial walls of several fungi elicit phytoalexin accumlation in plants. Approximately 10 ng of the polysaccharide elicits the accumulation in plants of more than sufficient amounts of phytoalexin to stop the growth of microorganisms in vitro. The best characterized elicitors have been demonstrated to be β-1,3-glucans with branches to the 6 position of some of the glucosyl residues. Oligosaccharides, produced by partial acid hydrolysis of the mycelial wall glucans, are exceptionally active elicitors. The smallest oligosaccharide which is still an effective elicitor is composed of about 8 sugar residues. Bacteria also elicit phytoalexin accumulation in plants, but the Rhizobium symbionts of legumes presumably have a mechanism which allows them to avoid either eliciting phytoalexin accumulation or the effects of the phytoalexins if they are accumulated. The lectins of legumes bind to the lipopolysaccharides of their symbiont, but not of their non-symbiont, Rhizobium. It is not known whether the lectin-lipopolysaccharide interaction is involved with the establishment of symbiosis. However, evidence will be presented that suggests that lectins are, in fact, enzymes capable of modifying the structurs of the lipopolysaccharides of their symbiont, but not of their non-symbiont, Rhizobium. It will also be shown that the lipopolysaccharides isolated from different Rhizobium species and from different strains of individual Rhizobium species have different sugar compositions. Thus, the different strains of a single Rhizobium species are as different from one another as the different species of Salmonella and other gram-negative bacteria. This conclusion is substantiated by experiments demonstrating that antibodies to the lipopolysaccharide from a single Rhizobium strain can differentiate that strain from other strains of the same species as well as from other Rhizobium species. The role in symbiosis of the strain-specific O-antigens is unknown.  相似文献   

14.
目的对4株昭通乌天麻(Gastrodia elata)共生蜜环菌(Armillaria mella)的生理生化活性进行研究,并鉴定其分类地位。方法通过测定不同碳源和氮源对蜜环菌生长以及胞外酶活性的影响,掌握该蜜环菌生理生化特性,再结合rDNA-IGS序列分析方法进行鉴定。结果不同蜜环菌需要不同的碳源、氮源。3种胞外酶中木聚糖酶活性最大,其次是羧甲基纤维素酶,漆酶活性最小。供试蜜环菌与云南、贵州地区天麻共生蜜环菌以及猪苓共生蜜环菌的亲缘关系比较远。结论蜜环菌能否作为天麻共生菌与其分类地位无关。  相似文献   

15.
利用生物种间互做关系抑制农业害虫的暴发是生物防治的重要手段。为探讨二种交配型内共生球孢白僵菌与玉米之间的互惠关系及其形成的共生体在亚洲玉米螟控制中的生态效应,以玉米为宿主植物,以球孢白僵菌孢子悬浮液进行灌根,在温室内构建了二种交配型(MAT1-1-1型,B5;MAT1-2-1型,B2)球孢白僵菌-玉米共生体,并研究了共生体对玉米的生长、对亚洲玉米螟的产卵选择和幼虫发育及其对球孢白僵菌生物学特性的影响。结果显示:通过叶片离体培养、ITS基因和交配型基因MAT检测,均能检测到白僵菌的内生定殖;MAT1-2-1型B2菌株定殖检出率高,MAT1-1-1型B5菌株在混合型接种中定殖有优势。回收后的球孢白僵菌菌落直径和毒力无显著性变化,但其产孢量都显著提高其中回收B5处理组来源菌株的产孢量提高最显著。接种过球孢白僵菌的玉米植株地上部生长速度、生物量和地下根系生物量均优于对照组,其中根系干重明显增加,而地上植株干重也相对增加。MAT1-1-1型菌株B5对共生体玉米植株地上高度促生长贡献明显;MAT1-2-1型菌株B2对共生体玉米植株地下干重增加贡献明显。总体上球孢白僵菌内生定殖对玉米地下根系生物量影响大于对地上植株生物量的影响。在产卵选择性试验中,各处理组亚洲玉米螟的产卵量显著少于对照组。共生体对亚洲玉米螟产卵具有明显的趋避作用,MAT1-2-1型菌株B2对产卵的趋避作用明显,而MAT1-2-1型菌株B5的趋避作用较弱。在人工接种幼虫的试验中,处理组回收的亚洲玉米螟幼虫存活率均显著低于对照组,其中,B5组回收幼虫的存活率最低,仅为38.33%;处理组的化蛹率与对照组差异不显著,但B5组的回收幼虫化蛹率显著低于B2组和对照组,仅为34.77%,这说明MAT1-1-1型B5菌株对玉米螟幼虫发育抑制最明显。上述结果表明,不同交配型球孢白僵菌内生定殖效率有差异,在经过内生定殖后在产孢量方面有显著性提高,两个交配型菌株在联合应用时具有协同增效作用;两个交配型菌株均能够通过内生定殖与玉米形成共生体并促进玉米植株的生长,这显示球孢白僵菌和玉米之间已经建立具有互惠关系的共生体。这种共生体通过趋避亚洲玉米螟产卵、抑制幼虫存活和降低化蛹率等方面的潜力虽然不一样,但都有助于对亚洲玉米螟的可持续生态防治,也证明了共生体的建成有效提高了玉米的生态适应性,为利用球孢白僵菌内共生性实施亚洲玉米螟防控提供了新思路。  相似文献   

16.
The availability of a wide range of independent lines for the annual medic Medicago truncatula led us to search for natural variants in the symbiotic association with Sinorhizobium meliloti. Two homozygous lines, Jemalong 6 and DZA315.16, originating from an Australian cultivar and a natural Algerian population, respectively, were inoculated with two wild-type strains of S. meliloti, RCR2011 and A145. Both plant lines formed nitrogen-fixing (effective) nodules with the RCR2011 strain. However, the A145 strain revealed a nitrogen fixation polymorphism, establishing an effective symbiosis (Nod(+)Fix(+)) with DZA315.16, whereas only small, white, non-nitrogen fixing nodules (Nod(+)Fix(-)) were elicited on Jemalong 6. Cytological studies demonstrated that these non-fixing nodules are encircled by an endodermis at late stages of development, with no visible meristem, and contain hypertrophied and autofluorescent infection threads, suggesting the induction of plant defense reactions. The non-fixing phenotype is independent of growth conditions and determined by a single recessive allele (Mtsym6), which is located on linkage group 8.  相似文献   

17.
Photobacterium leiognathi forms a bioluminescent symbiosis with leiognathid fishes, colonizing the internal light organ of the fish and providing its host with light used in bioluminescence displays. Strains symbiotic with different species of the fish exhibit substantial phenotypic differences in symbiosis and in culture, including differences in 2-D PAGE protein patterns and profiles of indigenous plasmids. To determine if such differences might reflect a genetically based symbiont-strain/host-species specificity, we profiled the genomes of P. leiognathi strains from leiognathid fishes using PFGE. Individual strains from 10 species of leiognathid fishes exhibited substantial genomic polymorphism, with no obvious similarity among strains; these strains were nonetheless identified as P. leiognathi by 16S rDNA sequence analysis. Profiling of multiple strains from individual host specimens revealed an oligoclonal structure to the symbiont populations; typically one or two genomotypes dominated each population. However, analysis of multiple strains from multiple specimens of the same host species, to determine if the same strain types consistently colonize a host species, demonstrated substantial heterogeneity, with the same genomotype only rarely observed among the symbiont populations of different specimens of the same host species. Colonization of the leiognathid light organ to initiate the symbiosis therefore is likely to be oliogoclonal, and specificity of the P. leiognathi/leiognathid fish symbiosis apparently is maintained at the bacterial species level rather than at the level of individual, genomotypically defined strain types.  相似文献   

18.
Mutualistic symbiosis and nitrogen fixation of legume rhizobia play a key role in ecological environments. Although many different rhizobial species can form nodules with a specific legume, there is often a dominant microsymbiont, which has the highest nodule occupancy rates, and they are often known as the “most favorable rhizobia”. Shifts in the most favorable rhizobia for a legume in different geographical regions or soil types are not well understood. Therefore, in order to explore the shift model, an experiment was designed using successive inoculations of rhizobia on one legume. The plants were grown in either sterile vermiculite or a sandy soil. Results showed that, depending on the environment, a legume could select its preferential rhizobial partner in order to establish symbiosis. For perennial legumes, nodulation is a continuous and sequential process. In this study, when the most favorable rhizobial strain was available to infect the plant first, it was dominant in the nodules, regardless of the existence of other rhizobial strains in the rhizosphere. Other rhizobial strains had an opportunity to establish symbiosis with the plant when the most favorable rhizobial strain was not present in the rhizosphere. Nodule occupancy rates of the most favorable rhizobial strain depended on the competitiveness of other rhizobial strains in the rhizosphere and the environmental adaptability of the favorable rhizobial strain (in this case, to mild vermiculite or hostile sandy soil). To produce high nodulation and efficient nitrogen fixation, the most favorable rhizobial strain should be selected and inoculated into the rhizosphere of legume plants under optimum environmental conditions.  相似文献   

19.
20.
In order to study the effect of salt stress on the Rhizobium-common bean symbiosis, we investigated the response of both partners, separately and in symbiosis. The comparison of the behaviour of five cultivars of Phaseolus vulgaris differing in seed colour, growing on nitrates and different concentrations of NaCl, showed genotypic variation with respect to salt tolerance. Coco Blanc was the most sensitive cultivar, whereas SMV 29-21 was the most tolerant one. At the Rhizobium level, two strains previously selected for their salt tolerance were used: Rhizobium tropici strain RP163 and Rhizobium giardinii strain RP161. Their relative growth was moderately decreased at 250mM NaCl, but they were able to grow at a low rate in the presence of 342 mM NaCl. Their viability at the minimal inhibitory concentration was slightly affected. The effect of salinity on Rhizobium-plant association was studied by using the tolerant variety SMV 29-21 and the sensitive one Coco Blanc inoculated separately with both strains. In the absence of salinity, the strains induced a significantly higher number of nodules on the roots of the cultivar SMV 29-21 compared to those of Coco Blanc. Concerning effectiveness, both strains were similarly effective with SMV 29-21, but not with Coco Blanc. In the presence of salinity, Coco Blanc was more severely affected when associated with RP163 than with RP161. Salinity affected the nodulation development more than it affected the infection steps. Neither of the two strains was able to nodulate SMV 29-21 under saline conditions, in spite of the fact that this was considered the most salt-tolerant variety. The unsuccessful nodulation of SMV 29-21 could be related to the inhibition by salt of one or more steps of the early events of the infection process. In conclusion, N-fixing plants were found to be more sensitive to salt stress than those depending on mineral nitrogen. Evidence presented here suggests that a best symbiotic N2 fixation under salinity conditions could be achieved if both symbiotic partners, as well as the different steps of their interaction (early events, nodule formation, activity, etc.), are all tolerant to this stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号