首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Signaling by epidermal growth factor receptor (EGFR) is controlled by endocytosis. However, mechanisms of EGFR endocytosis remain poorly understood. Here, we found that the EGFR mutant lacking known ubiquitylation, acetylation and clathrin adaptor AP‐2‐binding sites (21KRΔAP2) was internalized at relatively high rates via the clathrin‐dependent pathway in human duodenal adenocarcinoma HuTu‐80 cells. RNA interference analysis revealed that this residual internalization is strongly inhibited by depletion of Grb2 and the E2 ubiquitin‐conjugating enzyme UbcH5b/c, and partially affected by depletion of the E3 ubiquitin ligase Cbl and ubiquitin‐binding adaptors, indicating that an ubiquitylation process is involved. Several new ubiquitin conjugation sites were identified by mass spectrometry in the 21KRΔAP2 mutant, suggesting that cryptic ubiquitylation may mediate endocytosis of this mutant. Total internal reflection fluorescence microscopy imaging of HuTu‐80 cells transfected with labeled ubiquitin adaptor epsin1 demonstrated that the ubiquitylation‐deficient EGFR mutant was endocytosed through a limited population of epsin‐enriched clathrin‐coated pits (CCPs), although with a prolonged CCP lifetime. Native EGFR was recruited with the same efficiency into CCPs containing either AP‐2 or epsin1 that were tagged with fluorescent proteins by genome editing of MDA‐MD‐231 cells. We propose that two redundant mechanisms, ubiquitylation and interaction with AP‐2, contribute to EGFR endocytosis via CCPs in a stochastic fashion.   相似文献   

2.
    
The roles of EGF receptor (EGFR) kinase activity and ubiquitination in EGFR endocytosis have been controversial. The adaptor protein and ubiquitin ligase Cbl has reportedly been required. Consistently, we now report that siRNA-mediated knock-down of c-Cbl and Cbl-b significantly slowed clathrin-dependent internalization of activated wild-type (wt) EGFR by inhibiting recruitment of the EGFR to clathrin-coated pits. However, a chimeric protein consisting of wt-EGFR, a C-terminal linker and four linearly connected ubiquitins was found to interact with Eps15 and epsin 1 and to be constitutively endocytosed in a clathrin-dependent manner. Interestingly, endocytosis of this fusion protein did not require binding of EGF. Nor was kinase activity required, and the fusion protein was endocytosed in the presence of an EGFR kinase inhibitor, which efficiently counteracted tyrosine phosphorylation. This demonstrates that ubiquitination over-rides the requirement for kinase activity in recruitment of the EGFR to clathrin-coated pits.  相似文献   

3.
    
The neuronal glycine transporter GLYT2 belongs to the neurotransmitter:sodium:symporter (NSS) family and removes glycine from the synaptic cleft, thereby aiding the termination of the glycinergic signal and achieving the reloading of the presynaptic terminal. The task fulfilled by this transporter is fine tuned by regulating both transport activity and intracellular trafficking. Different stimuli such as neuronal activity or protein kinase C (PKC) activation can control GLYT2 surface levels although the intracellular compartments where GLYT2 resides are largely unknown. Here, by biochemical and immunological techniques in combination with electron and confocal microscopy, we have investigated the subcellular distribution of GLYT2 in rat brainstem tissue, and characterized the vesicles that contain the transporter. GLYT2 is shown to be present in small and larger vesicles that contain the synaptic vesicle protein synaptophysin, the recycling endosome small GTPase Rab11, and in the larger vesicle population, the vesicular inhibitory amino acid transporter VIAAT. Rab5A, the GABA transporter GAT1, synaptotagmin2 and synaptobrevin2 (VAMP2) were not present. Coexpression of a Rab11 dominant negative mutant with recombinant GLYT2 impaired transporter trafficking and glycine transport. Dual immunogold labeling of brainstem synaptosomes showed a very close proximity of GLYT2 and Rab11. Therefore, the intracellular GLYT2 resides in a subset of endosomal membranes and may traffic around several compartments, mainly Rab11-positive endosomes.  相似文献   

4.
Ubiquitin is an important tag in membrane transport. From studies in yeast, monoubiquitin has been considered sufficient to elicit uptake of cell surface transporters and receptors into endosomes. Two articles in the current issue of Traffic (Hawryluk et al. and Barriere et al.) indicate that stronger binding is required to retain and concentrate cargo in endocytic microdomains of the plasma membrane. High avidity interactions can be obtained by tandemly arrayed ubiquitin interaction motifs (UIM), in proteins such as the endocytic adaptors epsin and Eps15, interacting with polyubiquitin or by UIM-containing proteins binding several ubiquitins brought together through oligomerization of receptors. A controversial issue has been where such interactions take place. One view is that the association of epsin with ubiquitinated cargo is negatively regulated by its interaction with clathrin (Chen H and De Camilli P. Proc Natl Acad Sci USA 2005;102:2766-2771). This contention is now challenged by the articles of Hawryluk et al. and Barriere et al. Hawryluk et al. demonstrate that epsin and Eps15 consistently co-localize with clathrin but never with caveolin.  相似文献   

5.
The neuronal glycine transporter GLYT2 is a plasma membrane protein that removes the neurotransmitter glycine from the synaptic cleft, thereby aiding the pre-synaptic terminal reloading and the termination of the glycinergic signal. Missense mutations in the gene encoding GLYT2 (SLC6A5) cause hyperekplexia in humans. The activity of GLYT2 seems to be highly regulated. In this report, we demonstrate that GLYT2 is associated with membrane rafts in the plasma membrane of brainstem terminals and neurons. The transporter is localized to Triton X-100-insoluble light synaptosomal membranes together with flotillin-1, a marker protein for membrane rafts, in a methyl-β-cyclodextrin (MβCD)-sensitive manner. In brainstem primary neurons, the GLYT2 punctuate pattern visualized by confocal microscopy was modified by cholesterol depletion with MβCD, unlike other non-raft neuronal markers. GLYT2-associated gold particles were observed by electron microscopy on purified rafts from brainstem synaptosomes. Furthermore, either in brainstem terminals and cultured neurons, the pharmacological reduction of the levels of raft components, cholesterol and sphingomyelin, impairs both the association of GLYT2 with membrane rafts and its transport activity. Thus, GLYT2 may require membrane raft location for optimal function, and therefore the lipid environment may constitute a new mechanism to modulate GLYT2.  相似文献   

6.
Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein   总被引:6,自引:2,他引:6  
Epsin 1 engages several core components of the endocytic clathrin coat, yet the precise mode of operation of the protein remains controversial. The occurrence of tandem ubiquitin-interacting motifs (UIMs) suggests that epsin could recognize a ubiquitin internalization tag, but the association of epsin with clathrin-coat components or monoubiquitin is reported to be mutually exclusive. Here, we show that endogenous epsin 1 is clearly an integral component of clathrin coats forming at the cell surface and is essentially absent from caveolin-1-containing structures under normal conditions. The UIM region of epsin 1 associates directly with polyubiquitin chains but has extremely poor affinity for monoubiquitin. Polyubiquitin binding is retained when epsin synchronously associates with phosphoinositides, the AP-2 adaptor complex and clathrin. The enrichment of epsin within clathrin-coated vesicles purified from different tissue sources varies and correlates with sorting of multiubiquitinated cargo, and in cultured cells, polyubiquitin, rather than non-conjugable monoubiquitin, promotes rapid internalization. As epsin interacts with eps15, which also contains a UIM region that binds to polyubiquitin, epsin and eps15 appear to be central components of the vertebrate poly/multiubiquitin-sorting endocytic clathrin machinery.  相似文献   

7.
    
The ability to localize proteins of interest in live cells through imaging inherently fluorescent protein tags has provided an unprecedented level of information on cellular organization. However, there are numerous cases where fluorescent tags alter the localization and/or function of the proteins to which they are appended. Clathrin-mediated endocytosis from the plasma membrane is a physiologically important process evolutionarily conserved from yeast to humans. Some proteins that are associated with the machinery of clathrin-mediated endocytosis have been tagged with fluorescent proteins. However, it has not yet been possible to study this process through a protein marker that is specific to this step and still fully functional when linked to a fluorescent protein. In this study, we present the first demonstration that one of these proteins, in this case a green fluorescent protein (GFP) fusion to α-adaptin, a marker of the adaptor protein-2 complex, functionally complements knockdown of endogenous protein through small interfering RNA silencing. GFP–α-adaptin, as well as the techniques used to test the fusion protein, represents an important contribution to the cell biologist's toolbox, which will permit a greater understanding of vesicle trafficking in live cells.  相似文献   

8.
    
The surface of Trypanosoma brucei is dominated by glycosyl-phosphatidylinositol (GPI)-anchored proteins, and endocytosis is clathrin dependent. The vast majority of internalized GPI-anchored protein is efficiently recycled, while the processes by which transmembrane domain (TMD) proteins are internalized and sorted are unknown. We demonstrate that internalization of invariant surface glycoprotein (ISG)65, a trypanosome TMD protein, involves ubiquitylation and also requires clathrin. We find a hierarchical requirement for cytoplasmic lysine residues in internalization and turnover, and a single position-specific lysine is sufficient for degradation, surface removal and attachment of oligoubiquitin chains. Ubiquitylation is context dependent as provision of additional lysine residues by C-terminal fusion of neuronal precursor cell-expressed developmentally downregulated protein (NEDD)8 fails to support ubiquitylation. Attachment of NEDD8 leads to degradation by a second ubiquitin-independent pathway. Moreover, degradation of ubiquitylated or NEDDylated substrate takes place in an acidic compartment and is proteosome independent. Significantly, in non-opisthokont lineages, Rsp5p or c-Cbl, the E3 ubiquitin ligases acting on endocytic cargo, are absent but Uba1 class genes are present and are required for cell viability and ISG65 ubiquitylation. Hence, ubiquitylation is an evolutionarily conserved mechanism for internalization of surface proteins, but aspects of the machinery differ substantially between the major eukaryotic lineages.  相似文献   

9.
  总被引:4,自引:1,他引:4  
The actin cytoskeleton has been implicated in the maintenance of discrete sites for clathrin-coated pit formation during receptor-mediated endocytosis in mammalian cells, and its function is intimately linked to the endocytic pathway in yeast. Here we demonstrate that staining for mammalian endocytic clathrin-coated pits using a monoclonal antibody against the AP2 adaptor complex revealed a linear pattern that correlates with the organization of the actin cytoskeleton. This vesicle organization was disrupted by treatment of cells with cytochalasin D, which disassembles actin, or with 2,3-butanedione monoxime, which prevents myosin association with actin. The linear AP2 staining pattern was also disrupted in HeLa cells that were induced to express the Hub fragment of the clathrin heavy chain, which acts as a dominant-negative inhibitor of receptor-mediated endocytosis by direct interference with clathrin function. Additionally, Hub expression caused the actin-binding protein Hip1R to dissociate from coated pits. These findings indicate that proper function of clathrin is required for coated pit alignment with the actin cytoskeleton and suggest that the clathrin–Hip1R interaction is involved in the cytoskeletal organization of coated pits.  相似文献   

10.
The AP-2 adaptor complex is widely viewed as a linchpin molecule in clathrin-mediated endocytosis, simultaneously binding both clathrin and receptors. This dual interaction couples cargo capture with clathrin coat assembly, but it has now been discovered that the association with cargo is tightly regulated. Remarkably, AP-2 is not obligatory for all clathrin-mediated uptake, and several alternate adaptors appear to perform similar sorting and assembly functions at the clathrin bud site.  相似文献   

11.
  总被引:4,自引:3,他引:4  
Cyclin G-associated kinase (GAK), also known as auxilin 2, is a potential regulator of clathrin-mediated membrane trafficking. It possesses a kinase domain at its N-terminus that can phosphorylate the clathrin adaptors AP-1 and AP-2 in vitro. The GAK C-terminus can act as a cochaperaone in vitro for Hsc70, a heat-shock protein required for clathrin uncoating. Here we show that the specificity of GAK is very similar to that of adaptor-associated kinase 1, another mammalian adaptor kinase. We used siRNA to investigate GAK's in vivo function. We discovered that early stages of clathrin-mediated endocytosis (CME) were partially inhibited when GAK expression was knocked down. This defect was specifically caused by GAK knockdown because it could be rescued by expressing a rat GAK gene that could not be silenced by one of the siRNAs. To identify the GAK activity required during CME, we mutated the kinase domain and the J domain of the rat gene. Only GAK with a functional J domain could rescue the defect, suggesting that GAK is important for clathrin uncoating. Furthermore, we demonstrated that GAK plays a role in the clathrin-dependent trafficking from the trans Golgi network.  相似文献   

12.
A mechanism for regulating the strength of synaptic inhibition is enabled by altering the number of GABA(A) receptors available at the cell surface. Clathrin and adaptor protein 2 (AP2) complex-mediated endocytosis is known to play a fundamental role in regulating cell surface GABA(A) receptor numbers. Very recently, we have elucidated that phospholipase C-related catalytically inactive protein (PRIP) molecules are involved in the phosphorylation-dependent regulation of the internalization of GABA(A) receptors through association with receptor beta subunits and protein phosphatases. In this study, we examined the implications of PRIP molecules in clathrin-mediated constitutive GABA(A) receptor endocytosis, independent of phospho-regulation. We performed a constitutive receptor internalization assay using human embryonic kidney 293 (HEK293) cells transiently expressed with GABA(A) receptor alpha/beta/gamma subunits and PRIP. PRIP was internalized together with GABA(A) receptors, and the process was inhibited by PRIP-binding peptide which blocks PRIP binding to beta subunits. The clathrin heavy chain, mu2 and beta2 subunits of AP2 and PRIP-1, were complexed with GABA(A) receptor in brain extract as analyzed by co-immunoprecipitation assay using anti-PRIP-1 and anti-beta2/3 GABA(A) receptor antibody or by pull-down assay using beta subunits of GABA(A) receptor. These results indicate that PRIP is primarily implicated in the constitutive internalization of GABA(A) receptor that requires clathrin and AP2 protein complex.  相似文献   

13.
The mu 2 subunit of the AP2 complex is known to be phosphorylated in vitro by a copurifying kinase, and it has been demonstrated recently that mu 2 phosphorylation is required for transferrin endocytosis (Olusanya, O., P.D. Andrews, J.R. Swedlow, and E. Smythe. 2001. Curr. Biol. 11:896-900). However, the identity of the endogenous kinase responsible for this phosphorylation is unknown. Here we identify and characterize a novel member of the Prk/Ark family of serine/threonine kinases, adaptor-associated kinase (AAK)1. We find that AAK1 copurifies with adaptor protein (AP)2 and that it directly binds the ear domain of alpha-adaptin in vivo and in vitro. In neuronal cells, AAK1 is enriched at presynaptic terminals, whereas in nonneuronal cells it colocalizes with clathrin and AP2 in clathrin-coated pits and at the leading edge of migrating cells. AAK1 specifically phosphorylates the mu subunit in vitro, and stage-specific assays for endocytosis show that mu phosphorylation by AAK1 results in a decrease in AP2-stimulated transferrin internalization. Together, these results provide strong evidence that AAK1 is the endogenous mu 2 kinase and plays a regulatory role in clathrin-mediated endocytosis. These results also lend support to the idea that clathrin-mediated endocytosis is controlled by cycles of phosphorylation/desphosphorylation.  相似文献   

14.
The human X-linked recessive copper deficiency disorder, Menkes disease, is caused by mutations in the ATP7A (MNK) gene, which encodes a transmembrane copper-transporting P-type ATPase (MNK). The MNK protein is localised to the Golgi apparatus and relocalises to the plasma membrane when copper levels are elevated. Previous studies have identified a C-terminal di-leucine endocytic motif (L1487L1488) in MNK, thought to direct it into the clathrin-mediated endocytic pathway. To determine whether MNK is internalised via clathrin-dependent endocytosis, this pathway was blocked in MNK-overexpressing HeLa cells by the transient expression of dominant negative dynamin and Eps15 mutants. MNK internalisation was not inhibited in such cells. MNK internalisation was inhibited in cells treated with hypertonic sucrose that not only blocked clathrin-mediated endocytosis but also fluid-phase endocytosis. These studies, together with earlier studies on the requirement for L1487L1488, suggest that MNK can utilise both clathrin-dependent and clathrin-independent endocytosis in HeLa cells.  相似文献   

15.
    
AAK1, the adaptor-associated kinase 1, phosphorylates the μ2 subunit of AP2 and regulates the recruitment of AP2 to tyrosine-based internalization motifs found on membrane-bound receptors. AAK1 overexpression specifically inhibits the AP2-dependent internalization of transferrin receptor and LDL-receptor related protein by functionally sequestering AP2 (Conner and Schmid. J Cell Biol 2003; 162: 773). However, while AAK1 stably associates with AP2 and specifically targets the μ2 subunit in vitro , μ2 phosphorylation in vivo was not altered by overexpression of either wild-type or kinase-inactive AAK1. These results suggested that AAK1 might be tightly regulated in the cell. Here, we report that AAK1 is an atypical kinase that is rate limited by its stable association with AP2 and that clathrin stimulates μ2 phosphorylation by AAK1. Efficient stimulation of AAK1 by clathrin involves multiple interactions between several domains on AAK1 and both heavy and light chains on clathrin. Importantly, incubation of AAK1 with clathrin cages resulted in even greater stimulation when compared to that of unassembled clathrin triskelia. Collectively, our observations indicate that clathrin function is not limited to structural and/or mechanical roles in endocytic vesicle formation: the stimulatory effects of clathrin on AAK1 activity argue that it also plays a regulatory role by modulating the activity of AP2 complexes through activation of AAK1. We suggest a model in which AAK1 is specifically activated in coated pits to enhance cargo recruitment and efficient internalization.  相似文献   

16.
AP-2 complexes are key components in clathrin-mediated endocytosis (CME). They trigger clathrin assembly, interact directly with cargo molecules, and recruit a number of endocytic accessory factors. Adaptor-associated kinase (AAK1), an AP-2 binding partner, modulates AP-2 function by phosphorylating its mu2 subunit. Here, we examined the effects of adenoviral-mediated overexpression of WT AAK1, kinase-dead, and truncation mutants in HeLa cells, and show that AAK1 also regulates AP-2 function in vivo. WT AAK1 overexpression selectively blocks transferrin (Tfn) receptor and LRP endocytosis. Inhibition was kinase independent, but required the full-length AAK1 as truncation mutants were not inhibitory. Although changes in mu2 phosphorylation were not detected, AAK1 overexpression significantly decreased the phosphorylation of large adaptin subunits and the normally punctate AP-2 distribution was dispersed, suggesting that AAK1 overexpression inhibited Tfn endocytosis by functionally sequestering AP-2. Surprisingly, clathrin distribution and EGF uptake were unaffected by AAK1 overexpression. Thus, AP-2 may not be stoichiometrically required for coat assembly, and may have a more cargo-selective function in CME than previously thought.  相似文献   

17.
Nonvisual arrestins (arr) modulate G protein-coupled receptor (GPCR) desensitization and internalization and bind to both clathrin (CL) and AP-2 components of the endocytic coated pit (CP). This raises the possibility that endocytosis of some GPCRs may be a consequence of arr-induced de novo CP formation. To directly test this hypothesis, we examined the behavior of green fluorescent protein (GFP)-arr3 in live cells expressing beta2-adrenergic receptors and fluorescent CL. After agonist stimulation, the diffuse GFP-arr3 signal rapidly became punctate and colocalized virtually completely with preexisting CP spots, demonstrating that activated complexes accumulate in previously formed CPs rather than nucleating new CP formation. After arr3 recruitment, CP appeared larger: electron microscopy analysis revealed an increase in both CP number and in the occurrence of clustered CPs. Mutant arr3 proteins with impaired binding to CL or AP-2 displayed reduced recruitment to CPs, but were still capable of inducing CP clustering. In contrast, though constitutively present in CPs, the COOH-terminal moiety of arr3, which contains CP binding sites but lacks receptor binding, did not induce CP clustering. Together, these results indicate that recruitment of functional arr3-GPCR complexes to CP is necessary to induce clustering. Latrunculin B or 16 degrees C blocked CP rearrangements without affecting arr3 recruitment to CP. These results and earlier studies suggest that discrete CP zones exist on cell surfaces, each capable of supporting adjacent CPs, and that the cortical actin membrane skeleton is intimately involved with both the maintenance of existing CPs and the generation of new structures.  相似文献   

18.
Despite the importance of clathrin-mediated endocytosis (CME) for cell biology, it is unclear if all components of the machinery have been discovered and many regulatory aspects remain poorly understood. Here, using Saccharomyces cerevisiae and a fluorescence microscopy screening approach we identify previously unknown regulatory factors of the endocytic machinery. We further studied the top scoring protein identified in the screen, Ubx3, a member of the conserved ubiquitin regulatory X (UBX) protein family. In vivo and in vitro approaches demonstrate that Ubx3 is a new coat component. Ubx3-GFP has typical endocytic coat protein dynamics with a patch lifetime of 45 ± 3 sec. Ubx3 contains a W-box that mediates physical interaction with clathrin and Ubx3-GFP patch lifetime depends on clathrin. Deletion of the UBX3 gene caused defects in the uptake of Lucifer Yellow and the methionine transporter Mup1 demonstrating that Ubx3 is needed for efficient endocytosis. Further, the UBX domain is required both for localization and function of Ubx3 at endocytic sites. Mechanistically, Ubx3 regulates dynamics and patch lifetime of the early arriving protein Ede1 but not later arriving coat proteins or actin assembly. Conversely, Ede1 regulates the patch lifetime of Ubx3. Ubx3 likely regulates CME via the AAA-ATPase Cdc48, a ubiquitin-editing complex. Our results uncovered new components of the CME machinery that regulate this fundamental process.  相似文献   

19.
Rat hippocampal glutamatergic terminals possess NMDA autoreceptors whose activation by low micromolar NMDA elicits glutamate exocytosis in the presence of physiological Mg(2+) (1.2 mM), the release of glutamate being significantly reduced when compared to that in Mg(2+)-free condition. Both glutamate and glycine were required to evoke glutamate exocytosis in 1.2 mM Mg(2+), while dizocilpine, cis-4-[phosphomethyl]-piperidine-2-carboxylic acid and 7-Cl-kynurenic acid prevented it, indicating that occupation of both agonist sites is needed for receptor activation. D-serine mimicked glycine but also inhibited the NMDA/glycine-induced release of [(3H]D-aspartate, thus behaving as a partial agonist. The NMDA/glycine-induced release in 1.2 mM Mg(2+) strictly depended on glycine uptake through the glycine transporter type 1 (GlyT1), because the GlyT1 blocker N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine hydrochloride, but not the GlyT2 blocker Org 25534, prevented it. Accordingly, [(3)H]glycine was taken up during superfusion, while lowering the external concentration of Na(+), the monovalent cation co-transported with glycine by GlyT1, abrogated the NMDA-induced effect. Western blot analysis of subsynaptic fractions confirms that GlyT1 and NMDA autoreceptors co-localize at the pre-synaptic level, where GluN3A subunits immunoreactivity was also recovered. It is proposed that GlyT1s coexist with NMDA autoreceptors on rat hippocampal glutamatergic terminals and that glycine taken up by GlyT1 may permit physiological activation of NMDA pre-synaptic autoreceptors.  相似文献   

20.
An alginate was isolated from commercially cultured Nemacystus decipiens which had been harvested in Yonashiro Town (Okinawa, Japan). The yield of the alginate was 1.6% (w/w of wet alga), and the uronic acid, ash and moisture contents of the alginate were 86.0%, 12.0%, and 2.3% (w/w), respectively. The molecular mass of the alginate was estimated to be about 1.5×105. The infrared spectrum and optical rotation of the alginate were in agreement with those of the standard alginate. D-Mannuronic acid and L-guluronic acid were identified by 1H- and 13C-NMR spectroscopy, the molar ratio of both sugar residues being estimated to be 0.72:1.00.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号