共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulation and over-expression of the fnr gene of Escherichia coli 总被引:33,自引:0,他引:33
2.
Actinobacillus pleuropneumoniae hlyX gene homology with the fnr gene of Escherichia coli. 总被引:7,自引:5,他引:7
下载免费PDF全文

The hlyX gene from Actinobacillus pleuropneumoniae, which confers a hemolytic phenotype on Escherichia coli, was sequenced, and its role in regulation of gene expression was investigated. No similarity was found between the hlyX sequence and sequences of known hemolysin or cytotoxin genes. However, the hlyX sequence was very similar to that of the fnr gene of Escherichia coli which encodes the global regulatory protein, FNR. Comparison of the deduced amino acid sequence of the hlyX gene product (HlyX) with that of FNR revealed a high degree of well-aligned sequence correlation throughout the polypeptide chain. For example, 23 of 24 amino acids in the DNA-binding region of FNR are identical in the corresponding region of HlyX. Four cysteine residues in the amino-terminal region are also conserved. The promoter region of hlyX is very similar to that of fnr. It has a putative -10 sequence which closely resembles the E. coli -10 consensus sequence. This sequence is overlapped by a potential operator which is very similar to the FNR-binding-site consensus sequence. Functional homology between HlyX and FNR was also demonstrated. Plasmids carrying hlyX complemented the nutritional lesion of an fnr deletion strain of E. coli. These data suggest that HlyX may regulate, rather than mediate, hemolytic activity in E. coli, but the possibility that HlyX is both a regulator of gene expression and a hemolysin cannot be excluded. 相似文献
3.
4.
Adaptive responses to oxygen limitation in Escherichia coli 总被引:19,自引:0,他引:19
5.
6.
7.
8.
9.
Increased a-lytic protease production from recombinant Escherichia coli grown with oxygen limitation
Production of a mutant of the enzyme a-lytic protease from recombinant E. coli JM109 increased from 50 units/l to 750 units/l as the dissolved oxygen was decreased from above 30% saturation to near zero during batch growth on a complex medium. This represents a 60-fold increase in specific protease production (units/g cell dry wt.). Limiting the oxygen supply decreased the maximum growth rate from 0.55 h -1 to 0.066 h -1 which may in turn regulate the synthesis of recombinant protease in this system so that increased levels of product are obtained. 相似文献
10.
The two promoters of Escherichia coli trxA gene were separately cloned into pKO100 as well as pJEL170. Galactokinase expression in cells containing the pKO100 derivatives was found to be negatively correlated with growth rate and was 6- to 20-fold higher in stationary cultures than in exponential cultures. The expression of trxA-galK was induced by amino acid starvation in a RelA(+) strain but not in an isogenic Rel(-) strain indicating that the control involves guanosine 3',5'-bispyrophosphate (ppGpp). RpoS, which appears to be essential for expression of most stationary phase expressed genes, is not required for trxA expression. Increased expression of relA, which increases ppGpp concentration, increases trxA expression. 相似文献
11.
The effects of several single-gene knockout mutants (pykF, ppc, pflA, pta, and adhE mutants) on the metabolic flux distribution in Escherichia coli were investigated under microaerobic condition. The intracellular metabolite concentrations and enzyme activities were measured, and the metabolic flux distribution was computed to study the metabolic regulation in the cell. The pflA, pta and ppc mutants produced large amount of lactate when using glucose as a carbon source under microaerobic condition. Comparing the flux distribution and the enzyme activities in the mutants, it was shown that the lactate production was promoted by the inactivation of pyruvate formate lyase and the resulting overexpression of lactate dehydrogenase. The flux through Pta-Ack pathways and the ethanol production were limited by the available acetyl coenzyme A. It was shown that the glycolysis was activated in pykF mutant in microaerobic culture. The glycolytic flux was related with Pyk activity except for pykF mutant. The cell growth rate was shown to be affected by the flux through phosphoenolpyruvate carboxylase. The quantitative regulation analysis was made based on the deviation indexes. 相似文献
12.
13.
L.A. Bjergbæk J.A.J. Haagensen S. Molin P. Roslev 《Journal of applied microbiology》2008,105(5):1310-1317
Aims: To investigate the effect of oxygen limitation, glucose-starvation and temperature on the susceptibility of Escherichia coli towards the quaternary ammonium biocide benzalkonium chloride (BAC). Methods and Results: The effect of BAC on planktonic and sessile cells were investigated using the gfp-tagged E. coli K-12 strain MG1655[pOX38Km]. Increasing temperature from 10°C to 30°C increased the bactericidal effect of BAC for both starved and nonstarved E. coli under aerobic and anaerobic conditions. The lowest minimum bactericidal concentration was observed for cells in anaerobic media at 30°C (30 mg l−1 BAC). Decreasing cell densities increased the decay rate for BAC-exposed cells for both starved and nonstarved E. coli. Biofilms of E. coli exposed to BAC in anaerobic medium showed a greater percentage of membrane-compromised cells than biofilms grown in aerobic medium. Image analyses of BAC-exposed biofilms showed that membrane-compromised cells were occasionally located in the interior structure of the biofilm microcolonies. Conclusions: Increasing temperatures and the absence of oxygen, and energy substrates increased the antimicrobial effect of BAC towards E. coli. Significance and Impact of the Study: The results are relevant for understanding the disinfection efficacy of quaternary ammonium compounds towards planktonic and sessile bacteria. 相似文献
14.
Shake-flask cultures are widely used for screening of high producing strains. To select suitable strains for production scale, cultivation parameters should be applied that provide optimal growth conditions. A novel method of measuring respiratory activity in shake-flask cultures was employed to analyze Escherichia coli fermentation under laboratory conditions. Our results suggest that the length of fermentation, choice of medium, and aeration do not normally satisfy the requirements for unlimited growth in shake flasks. Using glycerol rather than glucose as a carbon source greatly reduced the accumulation of overflow and fermentative metabolites when oxygen supply was unlimited. A rich buffered medium, Terrific Broth (TB), yielded 5 times more biomass compared to LB medium but also caused oxygen limitation in standard shake-flask cultures at shaking frequencies below 400 rpm. These results were used to optimize the production of benzoylformate decarboxylase from Pseudomonas putida in E. coli SG13009, resulting in a 10-fold increase in volumetric enzyme production. This example demonstrates how variation of medium composition and oxygen supply can be evaluated by the measurement of the respiratory activity. This can help to efficiently optimize screening conditions for E. coli. 相似文献
15.
B V Perel'man R S Shakulov Iu V Smirnov A F Lisenkov G V Astvatsaturiants 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1988,(1):36-40
Expression of the histidine operon in Escherichia coli cells in contrast to the one in Salmonella typhimurium is changed proportionally to cells growth rate on the different carbon sources. The specific activity of histidinol-dehydrogenase is repressed by addition of 19 amino acids both in Escherichia coli and Salmonella typhimurium independent of the growth medium used. Using of Escherichia coli and Salmonella typhimurium strains containing the heterologous histidine operons made possible to demonstrate the dependence of the histidine operon metabolic regulation to be determined by the operon itself but not by the specificity of the recipient cells. ppGpp was shown to be a positive regulator of the histidine operon expression in Escherichia coli. 相似文献
16.
17.
Iron content and FNR-dependent gene regulation in Escherichia coli 总被引:10,自引:0,他引:10
18.
19.
20.
We have tested the KEIO collection of 3985 different viable single gene knockouts in Escherichia coli to identify genes whose loss increases sensitivity to one or more of six different chemotherapeutic agents and mutagens: Bleomycin (BLM), Cisplatin (CPT), ICR-191 (ICR), 5-azacytidine (5AZ), Zebularine (ZEB), and 5-bromo-2′-deoxyuridine (5BdU). We discovered a set of 156 strains that display a significant increase in sensitivity to at least one of the agents tested. Each genotoxic agent generates a distinct “sensitivity profile” that is characteristic of the agent. Comparison with an independent study of sensitivity profiles for an extensive set of antibiotics pinpoints those effects that are relatively specific for each agent. In some cases engineered double mutants have greatly increased effects. These results provide insight into the mechanism of action of each agent, and define targets for the design of co-drugs that can potentiate these agents. An example is the finding that mutants lacking one of several genes in the folate biosynthetic pathway are hypersensitive to ZEB, leading to a demonstration of synergy between trimethoprim and ZEB. 相似文献