首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystal structure of rhodopsin: implications for vision and beyond   总被引:1,自引:0,他引:1  
A heptahelical transmembrane bundle is a common structural feature of G-protein-coupled receptors (GPCRs) and bacterial retinal-binding proteins, two functionally distinct groups of membrane proteins. Rhodopsin, a photoreceptor protein involved in photopic (rod) vision, is a prototypical GPCR that contains 11-cis-retinal as its intrinsic chromophore ligand. Therefore, uniquely, rhodopsin is a GPCR and also a retinal-binding protein, but is not found in bacteria. Rhodopsin functions as a typical GPCR in processes that are triggered by light and photoisomerization of its ligand. Bacteriorhodopsin is a light-driven proton pump with an all-trans-retinal chromophore that photoisomerizes to 13-cis-retinal. The recent crystal structure determination of bovine rhodopsin revealed a structure that is not similar to previously established bacteriorhodopsin structures. Both groups of proteins have a heptahelical transmembrane bundle structure, but the helices are arranged differently. The activation of rhodopsin involves rapid cis-trans photoisomerization of the chromophore, followed by slower and incompletely defined structural rearrangements. For rhodopsin and related receptors, a common mechanism is predicted for the formation of an active state intermediate that is capable of interacting with G proteins.  相似文献   

2.
Rhodopsin is the best-understood member of the large G protein-coupled receptor (GPCR) superfamily. The G-protein amplification cascade is triggered by poorly understood light-induced conformational changes in rhodopsin that are homologous to changes caused by agonists in other GPCRs. We have applied the "antibody imprint" method to light-activated rhodopsin in native membranes by using nine monoclonal antibodies (mAbs) against aqueous faces of rhodopsin. Epitopes recognized by these mAbs were found by selection from random peptide libraries displayed on phage. A new computer algorithm, FINDMAP, was used to map the epitopes to discontinuous segments of rhodopsin that are distant in the primary sequence but are in close spatial proximity in the structure. The proximity of a segment of the N-terminal and the loop between helices VI and VIII found by FINDMAP is consistent with the X-ray structure of the dark-adapted rhodopsin. Epitopes to the cytoplasmic face segregated into two classes with different predicted spatial proximities of protein segments that correlate with different preferences of the antibodies for stabilizing the metarhodopsin I or metarhodopsin II conformations of light-excited rhodopsin. Epitopes of antibodies that stabilize metarhodopsin II indicate conformational changes from dark-adapted rhodopsin, including rearrangements of the C-terminal tail and altered exposure of the cytoplasmic end of helix VI, a portion of the C-3 loop, and helix VIII. As additional antibodies are subjected to antibody imprinting, this approach should provide increasingly detailed information on the conformation of light-excited rhodopsin and be applicable to structural studies of other challenging protein targets.  相似文献   

3.
The supramolecular organization of the visual pigment rhodopsin in the photoreceptor membrane remains contentious. Specifically, whether this G protein-coupled receptor functions as a monomer or dimer remains unknown, as does the presence or absence of ordered packing of rhodopsin molecules in the photoreceptor membrane. Completely opposite opinions have been expressed on both issues. Herein, using small-angle neutron and X-ray scattering approaches, we performed a comparative analysis of the structural characteristics of the photoreceptor membrane samples in buffer, both in the outer segment of photoreceptor cells, and in the free photoreceptor disks. The average distance between the centers of two neighboring rhodopsin molecules was found to be ~5.8 nm in both cases. The results indicate an unusually high packing density of rhodopsin molecules in the photoreceptor membrane, but molecules appear to be randomly distributed in the membrane without any regular ordering.  相似文献   

4.
Activation of G protein-coupled receptors by agonists involves significant movement of transmembrane domains (TMD) following agonist binding. The underlying structural mechanism by which receptor activation takes place is largely unknown but can be inferred by detecting variability within the environment of the ligand-binding pocket, which is a water-accessible crevice surrounded by the seven TMD helices. Using the substituted-cysteine accessibility method, we identified the residues within the third TMD of the wild-type angiotensin II (AT1) receptor that contribute to the formation of the binding site pocket. Each residue within the Ile103-Tyr127 region was mutated one at a time to a cysteine. Treating the A104C, N111C, and L112C mutant receptors with the charged sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA) strongly inhibited ligand binding, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT1 receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD3 reporter cysteines engineered in a constitutively active AT1 receptor. Indeed, two additional mutants (S109C and V116C) were found to be sensitive to MTSEA treatment. Our results suggest that constitutive activation of the AT1 receptor causes a minor counterclockwise rotation of TMD3, thereby exposing residues, which are not present in the inactive state, to the binding pocket. This pattern of accessibility of residues in the TMD3 of the AT1 receptor parallels that of homologous residues in rhodopsin. This study identified key elements of TMD3 that contribute to the activation of class A G protein-coupled receptors through structural rearrangements.  相似文献   

5.
Entry of enveloped animal viruses into their host cells always depends on a step of membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. VSV-induced membrane fusion occurs at a very narrow pH range, between 6.2 and 5.8, suggesting that His protonation is required for this process. To investigate the role of His in VSV fusion, we chemically modified these residues using diethylpyrocarbonate (DEPC). We found that DEPC treatment inhibited membrane fusion mediated by VSV in a concentration-dependent manner and that the complete inhibition of fusion was fully reversed by incubation of modified virus with hydroxylamine. Fluorescence measurements showed that VSV modification with DEPC abolished pH-induced conformational changes in G protein, suggesting that His protonation drives G protein interaction with the target membrane at acidic pH. Mass spectrometry analysis of tryptic fragments of modified G protein allowed the identification of the putative active His residues. Using synthetic peptides, we showed that the modification of His-148 and His-149 by DEPC, as well as the substitution of these residues by Ala, completely inhibited peptide-induced fusion, suggesting the direct participation of these His in VSV fusion.  相似文献   

6.
Krishna AG  Menon ST  Terry TJ  Sakmar TP 《Biochemistry》2002,41(26):8298-8309
The crystal structure of rhodopsin revealed a cytoplasmic helical segment (H8) extending from transmembrane (TM) helix seven to a pair of vicinal palmitoylated cysteine residues. We studied the structure of model peptides corresponding to H8 under a variety of conditions using steady-state fluorescence, fluorescence anisotropy, and circular dichroism spectroscopy. We find that H8 acts as a membrane-surface recognition domain, which adopts a helical structure only in the presence of membranes or membrane mimetics. The secondary structural properties of H8 further depend on membrane lipid composition with phosphatidylserine inducing helical structure. Fluorescence quenching experiments using brominated acyl chain phospholipids and vesicle leakage assays suggest that H8 lies within the membrane interfacial region where amino acid side chains can interact with phospholipid headgroups. We conclude that H8 in rhodopsin, in addition to its role in binding the G protein transducin, acts as a membrane-dependent conformational switch domain.  相似文献   

7.
Arrestins quench the signaling of a wide variety of G protein-coupled receptors by virtue of high-affinity binding to phosphorylated activated receptors. The high selectivity of arrestins for this particular functional form of receptor ensures their timely binding and dissociation. In a continuing effort to elucidate the molecular mechanisms responsible for arrestin's selectivity, we used the visual arrestin model to probe the functions of its N-terminal beta-strand I comprising the highly conserved hydrophobic element Val-Ile-Phe (residues 11-13) and the adjacent positively charged Lys(14) and Lys(15). Charge elimination and reversal in positions 14 and 15 dramatically reduce arrestin binding to phosphorylated light-activated rhodopsin (P-Rh*). The same mutations in the context of various constitutively active arrestin mutants (which bind to P-Rh*, dark phosphorylated rhodopsin (P-Rh), and unphosphorylated light-activated rhodopsin (Rh*)) have minimum impact on P-Rh* and Rh* binding and virtually eliminate P-Rh binding. These results suggest that the two lysines "guide" receptor-attached phosphates toward the phosphorylation-sensitive trigger Arg(175) and participate in phosphate binding in the active state of arrestin. The elimination of the hydrophobic side chains of residues 11-13 (triple mutation V11A, I12A, and F13A) moderately enhances arrestin binding to P-Rh and Rh*. The effects of triple mutation V11A, I12A, and F13A in the context of phosphorylation-independent mutants suggest that residues 11-13 play a dual role. They stabilize arrestin's basal conformation via interaction with hydrophobic elements in arrestin's C-tail and alpha-helix I as well as its active state by interactions with alternative partners. In the context of the recently solved crystal structure of arrestin's basal state, these findings allow us to propose a model of initial phosphate-driven structural rearrangements in arrestin that ultimately result in its transition into the active receptor-binding state.  相似文献   

8.
Helical membrane proteins are more tightly packed and the packing interactions are more diverse than those found in helical soluble proteins. Based on a linear correlation between amino acid packing values and interhelical propensity, we propose the concept of a helix packing moment to predict the orientation of helices in helical membrane proteins and membrane protein complexes. We show that the helix packing moment correlates with the helix interfaces of helix dimers of single pass membrane proteins of known structure. Helix packing moments are also shown to help identify the packing interfaces in membrane proteins with multiple transmembrane helices, where a single helix can have multiple contact surfaces. Analyses are described on class A G protein-coupled receptors (GPCRs) with seven transmembrane helices. We show that the helix packing moments are conserved across the class A family of GPCRs and correspond to key structural contacts in rhodopsin. These contacts are distinct from the highly conserved signature motifs of GPCRs and have not previously been recognized. The specific amino acid types involved in these contacts, however, are not necessarily conserved between subfamilies of GPCRs, indicating that the same protein architecture can be supported by a diverse set of interactions. In GPCRs, as well as membrane channels and transporters, amino acid residues with small side-chains (Gly, Ala, Ser, Cys) allow tight helix packing by mediating strong van der Waals interactions between helices. Closely packed helices, in turn, facilitate interhelical hydrogen bonding of both weakly polar (Ser, Thr, Cys) and strongly polar (Asn, Gln, Glu, Asp, His, Arg, Lys) amino acid residues. We propose the use of the helix packing moment as a complementary tool to the helical hydrophobic moment in the analysis of transmembrane sequences.  相似文献   

9.
The effect of cholesterol on rod outer segment disk membrane structure and rhodopsin activation was investigated. Disk membranes with varying cholesterol concentrations were prepared using methyl-beta-cyclodextrin as a cholesterol donor or acceptor. Cholesterol exchange followed a simple equilibrium partitioning model with a partition coefficient of 5.2 +/- 0.8 in favor of the disk membrane. Reduced cholesterol in disk membranes resulted in a higher proportion of photolyzed rhodopsin being converted to the G protein-activating metarhodopsin II (MII) conformation, whereas enrichment of cholesterol reduced the extent of MII formation. Time-resolved fluorescence anisotropy measurements using 1,6-diphenyl-1,3,5-hexatriene showed that increasing cholesterol reduced membrane acyl chain packing free volume as characterized by the parameter f(v). The level of MII formed showed a positive linear correlation with f(v) over the range of 4 to 38 mol % cholesterol. In addition, the thermal stability of rhodopsin increased with mol % of cholesterol in disk membranes. No evidence was observed for the direct interaction of cholesterol with rhodopsin in either its agonist- or antagonist-bound form. These results indicate that cholesterol mediates the function of the G protein-coupled receptor, rhodopsin, by influencing membrane lipid properties, i.e. reducing acyl chain packing free volume, rather than interacting specifically with rhodopsin.  相似文献   

10.
The higher-order structure of G protein-coupled receptors (GPCRs) in membranes may involve dimerization and formation of even larger oligomeric complexes. Here, we have investigated the organization of the prototypical GPCR rhodopsin in its native membrane by electron and atomic force microscopy (AFM). Disc membranes from mice were isolated and observed by AFM at room temperature. In all experimental conditions, rhodopsin forms structural dimers organized in paracrystalline arrays. A semi-empirical molecular model for the rhodopsin paracrystal is presented validating our previously reported results. Finally, we compare our model with other currently available models describing the supramolecular structure of GPCRs in the membrane.  相似文献   

11.
Choi Y  Konopka JB 《Biochemistry》2006,45(51):15310-15317
The yeast alpha-factor pheromone receptor (Ste2) belongs to the family of G protein-coupled receptors (GPCRs) that contain seven transmembrane domains. To define the residues that are accessible to the cytoplasmic G protein, Cys scanning mutagenesis was carried out in which each of the residues that span the intracellular loops and the cytoplasmic end of transmembrane domain 7 was substituted with Cys. The 90 different Cys-substituted residues were then assayed for reactivity with MTSEA-biotin [[2-[(biotinoyl)amino]ethyl]methanethiosulfonate], which reacts with solvent-accessible sulfhydryl groups. As part of these studies we show that adding free Cys to stop the MTSEA-biotin reactions has potential pitfalls in that Cys can rapidly undergo disulfide exchange with the biotinylated receptor proteins at pH >or=7. The central regions of the intracellular loops of Ste2 were all highly accessible to MTSEA-biotin. Residues near the ends of the loops typically exhibited a drop in the level of reactivity over a consecutive series of residues that was inferred to be the membrane boundary. Interestingly, these boundary residues were enriched in hydrophobic residues, suggesting that they may form a hydrophobic pocket for interaction with the G protein. Comparison with accessibility data from a previous study of the extracellular side of Ste2 indicates that the transmembrane domains vary in length, consistent with some transmembrane domains being tilted relative to the plane of the membrane as they are in rhodopsin. Altogether, these results define the residues that are accessible to the G protein and provide an important structural framework for the interpretation of the role of Ste2 residues that function in G protein activation.  相似文献   

12.
Zinc deficiency and retinitis pigmentosa are both important factors resulting in retinal dysfunction and night blindness. In this study, we address the critical biochemical and structural relevance of zinc ions in rhodopsin and examine whether zinc deficiency can lead to rhodopsin dysfunction. We report the identification of a high-affinity zinc coordination site within the transmembrane domain of rhodopsin, coordinated by the side chains of two highly conserved residues, Glu(122) in transmembrane helix III and His(211) in transmembrane helix V. We also demonstrate that this zinc coordination is critical for rhodopsin folding, 11-cis-retinal binding, and the stability of the chromophore-receptor interaction, defects of which are observed in retinitis pigmentosa. Furthermore, a cluster of retinitis pigmentosa mutations is localized within and around this zinc binding site. Based on these studies, we believe that improvement in zinc binding to rhodopsin at this site within the transmembrane domain may be a pharmacological approach for the treatment of select retinitis pigmentosa mutations. Transmembrane coordination of zinc may also be an important common principle across G-protein-coupled receptors.  相似文献   

13.
The studies reported are concerned with the functional consequences of the chemical modifications of the lysines and carboxyl-containing amino acids of bovine rhodopsin. The 10 non-active-site lysine residues of rhodopsin can be completely dimethylated and partially acetimidated (8-9 residues) with no loss in the ability of the proteins to activate the G protein when photolyzed or to regenerate with 11-cis-retinal. These modifications do not alter the net charge on the protein. Surprisingly, heavy acetylation of these lysines (eight to nine residues) with acetic anhydride, which neutralizes the positive charges of the lysine residues, yields a modified rhodopsin fully capable of activating the G protein and being regenerated. It is concluded that the non-active-site lysine residues of rhodopsin are not importantly and directly involved in interactions with the G protein during photolysis. However, this is not to say that they are unimportant in maintaining the tertiary structure of the protein because heavy modification of these residues by succinylation and trinitrophenylation produces proteins incapable of G protein activation, although the succinylated protein still regenerated. The active-site lysine of rhodopsin was readily modified and prevented from regenerating with 11-cis-retinal and with o-salicylaldehyde and o-phthalaldehyde/mercaptoethanol, two sterically similar aromatic aldehyde containing reagents which react by entirely different mechanisms. It is suggested that rhodopsin contains an aromatic binding site within its active-site region. Monoethylation, but not monomethylation, of the active-site lysine also prevented regeneration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Human galanin is a 30 amino acid neuropeptide that elicits a range of biological activities by interaction with G protein-coupled receptors. We have generated a model of the human GALR1 galanin receptor subtype (hGALR1) based on the alpha carbon maps of frog rhodopsin and investigated the significance of potential contact residues suggested by the model using site-directed mutagenesis. Mutation of Phe186 within the second extracellular loop to Ala resulted in a 6-fold decrease in affinity for galanin, representing a change in free energy consistent with hydrophobic interaction. Our model suggests interaction between Phe186 of hGALR1 and Ala7 or Leu11 of galanin. Receptor subtype specificity was investigated by replacement of residues in hGALR1 with the corresponding residues in hGALR2 and use of the hGALR2-specific ligands hGalanin(2-30) and [D-Trp2]hGalanin(1-30). The His267Ile mutant receptor exhibited a pharmacological profile corresponding to that of hGALR1, suggesting that His267 is not involved in a receptor-ligand interaction. The mutation Phe115Ala resulted in a decreased binding affinity for hGalanin and for hGALR2-specific analogues, indicating Phe115 to be of structural importance to the ligand binding pocket of hGALR1 but not involved in direct ligand interaction. Analysis of Glu271Trp suggested that Glu271 of hGALR1 interacts with the N-terminus of galanin and that the Trp residue in the corresponding position in hGALR2 is involved in receptor subtype specificity of binding. Our model supports previous reports of Phe282 of hGALR1 interacting with Trp2 of galanin and His264 of hGALR1 interacting with Tyr9 of galanin.  相似文献   

15.
Suramin, a polysulfonated naphthylurea, is under investigation for the treatment of several cancers. It interferes with signal transduction through G(s), G(i), and G(o), but structural and kinetic aspects of the molecular mechanism are not well understood. Here, we have investigated the influence of suramin on coupling of bovine rhodopsin to G(t), where G-protein activation and receptor structure can be monitored by spectroscopic in vitro assays. G(t) fluorescence changes in response to rhodopsin-catalyzed nucleotide exchange reveal that suramin inhibits G(t) activation by slowing down the rate of complex formation between metarhodopsin-II and G(t). The metarhodopsin-I/-II photoproduct equilibrium, GTPase activity, and nucleotide uptake by G(t) are unaffected. Attenuated total reflection Fourier transform infrared spectroscopy shows that the structure of rhodopsin, metarhodopsin-II, and the metarhodopsin-II G(t) complex is also not altered. Instead, suramin dissociates G(t) from disk membranes in the dark, whereas metarhodopsin-II G(t) complexes are stable. F?rster resonance energy transfer suggests a suramin-binding site near Trp(207) on the G(t alpha) subunit (K(d) approximately 0.5 microM). The kinetic analyses and the structural data are consistent with a specific perturbation by suramin of the membrane attachment site on G(t alpha). Disruption of membrane anchoring may contribute to some of the effects of suramin exerted on other G-proteins.  相似文献   

16.
Incorporating specific structural information can be important for developing a realistic model of evolution for phylogenetic reconstruction of protein-coding genes. We analyzed 62 sequences of vertebrate rhodopsin. The bovine rhodopsin structure was used to label residue sites by surface accessibility, secondary structure, and transmembrane (TM) location. Residue sites with amino acid differences were identified; using maximum parsimony (MP), homoplasious residues were identified. Residues were analyzed for patterns that would indicate correlation of rate with secondary structure, surface accessibility, or position relative to the lipid bilayer. Surface residues, especially those residing in one of the seven TM helices, were significantly correlated with high rates of amino acid substitution. This category of residues, defined solely by protein structural characteristics, potentially defined a class enriched in homoplasious residues. MP analysis using all sites led to a tree with anomalies in the relationships of amphibian, mammalian, bird, and alligator species. Analysis excluding the structurally defined residue class recovered a more accurate phylogeny. A model is presented for including structural influences on rate in phylogenetic inference.  相似文献   

17.
The energy storage and the molecular rearrangements due to the primary photochemical event in rhodopsin are investigated by using quantum mechanics/molecular mechanics hybrid methods in conjunction with high-resolution structural data of bovine visual rhodopsin. The analysis of the reactant and product molecular structures reveals the energy storage mechanism as determined by the detailed molecular rearrangements of the retinyl chromophore, including rotation of the (C11-C12) dihedral angle from -11 degrees in the 11-cis isomer to -161 degrees in the all-trans product, where the preferential sense of rotation is determined by the steric interactions between Ala-117 and the polyene chain at the C13 position, torsion of the polyene chain due to steric constraints in the binding pocket, and stretching of the salt bridge between the protonated Schiff base and the Glu-113 counterion by reorientation of the polarized bonds that localize the net positive charge at the Schiff-base linkage. The energy storage, computed at the ONIOM electronic-embedding approach (B3LYP/6-31G*:AMBER) level of theory and the S0-->S1 electronic-excitation energies for the dark and product states, obtained at the ONIOM electronic-embedding approach (TD-B3LYP/6-31G*//B3LYP/6-31G*:AMBER) level of theory, are in very good agreement with experimental data. These results are particularly relevant to the development of a first-principles understanding of the structure-function relations in prototypical G-protein-coupled receptors.  相似文献   

18.
The antigenic structure of the bovine rhodopsin molecule was investigated by using a bovine rhodopsin-specific monoclonal antibody designated Rh 29. Competition assay with sealed intact disks and broken disks indicated that the antibody-binding region was localized in the intradiscal surface. An antigenic peptide obtained by a cyanogene bromide cleavage of rhodopsin was purified and determined as residues 2-39 in the amino acid sequence. Further analysis suggested that the antigenic determinant included at least residues 21-25. These results were consistent with the structural model for membrane topology of rhodopsin. The antigenicity of the rhodopsin was compared among several states. The antibody bound to both ammonyx LO-solubilized unbleached and bleached rhodopsin. In contrast, upon membrane-embedded rhodopsin, unbleached one was 100-times less antigenic than bleached one. The results suggested that the segment around the determinant of membrane-embedded rhodopsin should undergo a structural change upon absorption of light. Rh 29 detected a band corresponding to bovine, porcine and octopus opsins in immunoblotting. Protein blot of crayfish rhabdome did not show any reactive band. These bands except for crayfish reacted with concanavalin A as well. The N-terminal structure may, therefore, conserved between mammal and erthropoda and diverge between them and cepharopoda.  相似文献   

19.
Bovine rhodopsin is the prototypical G protein coupled receptor (GPCR). It was the first GPCR to be obtained in quantity and studied in detail. It is also the first GPCR for which detailed three dimensional structural information has been obtained. Reviewed here are the experiments leading up to the high resolution structure determination of rhodopsin and the most recent structural information on the activation and stability of this integral membrane protein.  相似文献   

20.
Bovine rhodopsin is the prototypical G protein coupled receptor (GPCR). It was the first GPCR to be obtained in quantity and studied in detail. It is also the first GPCR for which detailed three dimensional structural information has been obtained. Reviewed here are the experiments leading up to the high resolution structure determination of rhodopsin and the most recent structural information on the activation and stability of this integral membrane protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号