首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study aimed to evaluate adipose tissue blood flow (ATBF) by means of laser-Doppler flowmetry (LDF) in humans. Lower body negative pressure (LBNP) and straining known to affect epidermal blood flow through the autonomic nervous system were performed in 11 lean and 11 obese female volunteers. ATBF changes were compared between both groups and also discriminated from skin blood flow (SBF) responses of the immediate vicinity. Additionally, LDF measurements were compared with flow measurements using (133)xenon washout in 10 lean subjects during whole body cooling. LDF estimations of SBF and ATBF showed a positive correlation to (133)Xe during cooling. SBF and ATBF were reduced to the same extent in both lean and obese subjects during LBNP. Straining induced divergent changes in SBF and ATBF: initially SBF decreased while ATBF increased, but toward the end of straining SBF increased above baseline and ATBF returned down to baseline level. Those changes were similar in both weight groups. Interestingly, only in obese subjects, both LBNP and straining were followed by ATBF augmentation, while SBF levels remained stable. In conclusion, LDF compares with (133)Xe washout in monitoring ATBF during tonic perfusion changes. Its strength, however, lies in the detection of rapid flow alterations within the subcutaneous tissue, allowing the evaluation of reflex responses of the subcutaneous microcirculation. Interestingly, those rapid changes in SBF and ATBF can be both concordant and discordant. With regard to ATBF, vasoconstrictor components of the reflex responses were similar in lean and obese subjects, whereas vasodilatory responses were more pronounced in obese volunteers.  相似文献   

2.
3.
According to Fick's principle, any metabolic or hormonal exchange through a given tissue depends on the product of the blood flow to that tissue and the arteriovenous difference. The proper function of adipose tissue relies on adequate adipose tissue blood flow (ATBF), which determines the influx and efflux of metabolites as well as regulatory endocrine signals. Adequate functioning of adipose tissue in intermediary metabolism requires finely tuned perfusion. Because metabolic and vascular processes are so tightly interconnected, any disruption in one will necessarily impact the other. Although altered ATBF is one consequence of expanding fat tissue, it may also aggravate the negative impacts of obesity on the body's metabolic milieu. This review attempts to summarize the current state of knowledge on adipose tissue vascular bed behavior under physiological conditions and the various factors that contribute to its regulation as well as the possible participation of altered ATBF in the pathophysiology of metabolic syndrome.  相似文献   

4.
A method is described which permits continuous estimation of adipose tissue blood flow (ATBF) in anesthetized female rats. The method is basesd on continuous monitoring of the elimination of 133Xe after labeling of the animal by intraperitoneal injection. From 2 to 6 h after the beginning of the elimination period close to 100% of the measured activity is shown to be located in adipose tissue, mainly in the parametrial fat. About 18% of the elimination is by way of intertissue diffusion, 82% of the perfusing blood. Changes in ATBF can readily be detected. The coefficient of variation for ATBF determinations is 9-11%. Changes in ATBF can be determined with great accuracy. Average ATBF per g tissue for fed and 48-h fasted rats were 0.105 and 0.122 ml-g-1-min-1, respectively. Total ATBF was lower in fasted than in fed rats (1.05 vs. 1.43 ml-min-1 for parametrial plus retroperitoneal fat). Intravenous administration of glucose (250 mg/h) decreased ATBF significantly in fed but not in fasted rats.  相似文献   

5.
In the present study, the effect of endurance training alone and endurance training combined with recombinant human growth hormone (rhGH) administration on subcutaneous abdominal adipose tissue lipolysis was investigated. Sixteen healthy women [age 75 +/- 2 yr (mean +/- SE)] underwent a 12-wk endurance training program on a cycle ergometer. rhGH was administered in a randomized, double-blinded, placebo-controlled design in addition to the training program. Subcutaneous abdominal adipose tissue lipolysis was estimated by means of microdialysis combined with measurements of subcutaneous abdominal adipose tissue blood flow (ATBF; (133)Xe washout). Whole body fat oxidation was estimated simultaneously by indirect calorimetry. Before and after completion of the training program, measurements were performed both at rest and during 60 min of continuous cycling at a workload corresponding to 60% of pretraining peak oxygen uptake. Endurance training alone did not affect subcutaneous abdominal adipose tissue lipolysis either at rest or during exercise, as reflected by identical levels of interstitial adipose tissue glycerol, subcutaneous abdominal ATBF, and plasma nonesterified fatty acids before and after completion of the training program. Similarly, no effect on subcutaneous abdominal adipose tissue lipolysis was observed when combining endurance training with rhGH administration. However, in both the placebo and the GH groups, fat oxidation was significantly increased during exercise performed at the same absolute workload after completion of the training program. We conclude that the changed lipid metabolism during exercise observed after endurance training alone or after endurance training combined with rhGH administration is not due to alterations in subcutaneous abdominal adipose tissue metabolism in elderly women.  相似文献   

6.
Using near-infrared spectroscopy (NIRS) and the tracer indocyanine green (ICG), we quantified blood flow in calf muscle and around the Achilles tendon during plantar flexion (1-9 W). For comparison, blood flow in calf muscle was determined by dye dilution in combination with magnetic resonance imaging measures of muscle volume, and, for the peritendon region, blood flow was measured by (133)Xe washout. From rest to a peak load of 9 W, NIRS-ICG blood flow in calf muscle increased from 2.4+/-0.2 to 74+/-5 ml x 100 ml tissue(-1) x min(-1), similar to that measured by reverse dye (77+/-6 ml x 100 ml tissue(-1) x min(-1)). Achilles peritendon blood flow measured by NIRS-ICG rose with exercise from 2.2+/-0.5 to 15.1+/-0.2 ml x 100 ml(-1) x min(-1), which was similar to that determined by (133)Xe washout (2.0+/-0.6 to 14.6+/-0.3 ml x 100 ml tissue(-1) x min(-1)). This is the first study using NIRS and ICG to quantify regional tissue blood flow during exercise in humans. Due to its high spatial and temporal resolution, the technique may be useful for determining regional blood flow distribution and regulation during exercise in humans.  相似文献   

7.
Blood flow was measured in leg and torso skin of conscious or anesthetized sheep by using 15-micron radioactive microspheres (Qm) and the 133Xe washout method (QXe). There was a good relationship between Qm in the cutaneous compartment and QXe calculated from the fast component of the biexponential washout curves (QXe = 0.40.Qm + 6.2, r = 0.90, P less than 0.001) with QXe values substantially below those determined with microspheres. Only at low blood flow levels was there a tendency for QXe to overestimate capillary blood flow as assessed with microspheres, but at higher blood flow levels the 133Xe washout method resulted in values substantially below those determined with microspheres. The slope of the slow component of the washout curves was inversely related to the tissue-blood partition coefficient in the subcutaneous tissue (r = 0.52, P less than 0.001), indicating an influence of the amount of subcutaneous fat on the washout rate. QXe calculated from the slow component of the washout curves was not significantly correlated with Qm in the subcutaneous compartment (r = 0.19, P greater than 0.10). In leg skin with dilated arteriovenous anastomoses, QXe was generally higher than in torso skin and leg skin with constricted arteriovenous anastomoses, indicating that shunt blood flow increases the washout of 133Xe.  相似文献   

8.
J C J?rgensen  P Sejrsen 《Peptides》1990,11(3):451-454
Neuropeptide Y-containing nerve fibers have previously been demonstrated to innervate the mammalian ovary. These nerve fibers innervate primarily the vasculature. In this study we have developed a method for in vivo measurement of the ovary blood flow rate by means of the 133Xe method. Using this technique we measured the ovary blood flow rate and investigated the dose-response relationship between close intraarterial-injected NPY and the ovary blood flow rate. A monoexponential washout curve for 133Xe was found for the whole washout process, ensuring that the blood flow rate at any time could be calculated from the curve. We found a mean blood flow rate in the nonpregnant rabbit ovary at 43.6 +/- 4.4 ml.(100 g)-1.min-1 (mean +/- SEM). Injection of NPY (20, 200, 2000 pM) in the aorta close to a. ovarica resulted in a dose-dependent decrease in the ovarian blood flow rate with a maximum reduction to 40.7 +/- 6.3% (mean +/- SEM) of the control blood flow rate. These findings make it likely that receptors able to interact with NPY are present in the vasculature of the rabbit ovary.  相似文献   

9.
Regulation of subcutaneous adipose tissue blood flow (ATBF) remains poorly elucidated in humans, especially during exercise. In the present study we tested the role of adenosine in the regulation of ATBF adjacent to active and inactive thigh muscles during intermittent isometric knee-extension exercise (1 s contraction followed by 2 s rest with workloads of 50, 100, and 150 N) in six healthy young women. ATBF was measured using positron emission tomography (PET) without and with unspecific adenosine receptor inhibitor theophylline infused intravenously. Adipose regions were localized from fused PET and magnetic resonance images. Blood flow in subcutaneous adipose tissue adjacent to active muscle increased from rest (1.0 ± 0.3 ml·100 g(-1)·min(-1)) to exercise (P < 0.001) and along with increasing exercise intensity (50 N = 4.1 ± 1.4, 100 N = 5.4 ± 1.8, and 150 N = 6.9 ± 3.0 ml·100 g(-1)·min(-1), P = 0.03 for the increase). In contrast, ATBF adjacent to inactive muscle remained at resting levels with all intensities (~1.0 ± 0.5 ml·100 g(-1)·min(-1)). During exercise theophylline prevented the increase in ATBF adjacent to active muscle especially during the highest exercise intensity (50 N = 4.3 ± 1.8 ml·100 g(-1)·min(-1), 100 N = 4.0 ± 1.5 ml·100 g(-1)·min(-1), and 150 N = 4.9 ± 1.8 ml·100 g(-1)·min(-1), P = 0.06 for an overall effect) but had no effect on blood flow adjacent to inactive muscle or adipose blood flow in resting contralateral leg. In conclusion, we report in the present study that 1) blood flow in subcutaneous adipose tissue of the leg is increased from rest to exercise in an exercise intensity-dependent manner, but only in the vicinity of working muscle, and 2) adenosine receptor antagonism attenuates this blood flow enhancement at the highest exercise intensities.  相似文献   

10.
Intrauterine growth retardation (IUGR) is associated with a central fat distribution and risk of developing type 2 diabetes in adults when exposed to a sedentary Western lifestyle. Increased lipolysis is an early defect of metabolism in IUGR subjects, but the sites and molecular mechanisms involved are unknown. Twenty IUGR and 20 control (CON) subjects, aged 20-30 years, were studied before and after 10 days of bed rest using the glucose clamp technique combined with measurements of in vivo metabolism by microdialysis technique and blood flow by (133)Xe washout technique in subcutaneous abdominal (SCAAT) and femoral (SCFAT) adipose tissue. Additionally, mRNA expression of lipases was evaluated in biopsies from SCAAT. Lipolysis in SCAAT was substantially higher in IUGR than in CON subjects despite markedly lower mRNA expression of lipases. Blood flow was higher in IUGR compared with CON in both SCAAT and SCFAT. Whole body insulin sensitivity did not differ between groups and decreased after bed rest. After bed rest, SCAAT lipolysis remained higher in IUGR compared with CON, and SCFAT lipolysis decreased in CON but not in IUGR. Prior to the development of whole body insulin resistance, young men with IUGR are characterized by increased in vivo adipose tissue lipolysis and blood flow with a paradoxically decreased expression of lipases compared with CON, and 10 days of physical inactivity underlined the baseline findings. Subjects with IUGR exhibit primary defects in adipose tissue metabolism.  相似文献   

11.
We measured whole body and regional lipolytic and adipose tissue blood flow (ATBF) sensitivity to epinephrine in 8 lean [body mass index (BMI): 21 +/- 1 kg/m(2)] and 10 upper body obese (UBO) women (BMI: 38 +/- 1 kg/m(2); waist circumference >100 cm). All subjects underwent a four-stage epinephrine infusion (0.00125, 0.005, 0.0125, and 0.025 microgram. kg fat-free mass(-1). min(-1)) plus pancreatic hormonal clamp. Whole body free fatty acid (FFA) and glycerol rates of appearance (R(a)) in plasma were determined by stable isotope tracer methodology. Abdominal and femoral subcutaneous adipose tissue lipolytic activity was determined by microdialysis and (133)Xe clearance methods. Basal whole body FFA R(a) and glycerol R(a) were both greater (P < 0.05) in obese (449 +/- 31 and 220 +/- 12 micromol/min, respectively) compared with lean subjects (323 +/- 44 and 167 +/- 21 micromol/min, respectively). Epinephrine infusion significantly increased FFA R(a) and glycerol R(a) in lean (71 +/- 21 and 122 +/- 52%, respectively; P < 0.05) but not obese subjects (7 +/- 6 and 39 +/- 10%, respectively; P = not significant). In addition, lipolytic and ATBF sensitivity to epinephrine was blunted in abdominal but not femoral subcutaneous adipose tissue of obese compared with lean subjects. We conclude that whole body lipolytic sensitivity to epinephrine is blunted in women with UBO because of decreased sensitivity in upper body but not lower body subcutaneous adipose tissue.  相似文献   

12.
Nocturnal subcutaneous adipose tissue blood flow rate was measured in the lower legs of 10 normal human subjects together with systemic arterial blood pressure, heart rate, and registration of sleep stages under ambulatory conditions. The 133Xe washout technique, portable CdTe(Cl) detectors, and a portable data storage unit were used for measurement of blood flow rates. The sleep recordings were performed with a portable computerized sleep analysis system. In accordance with the results of previous studies, a hyperemic blood flow rate phase (mean increase 140%) for 100 min was observed approximately 60 min after the subjects went to bed. The moment of onset of the hyperemic phase was closely related to the moment of onset of the first episode of deep sleep (stages 3 and 4). There was a significant (P < 0.01) overrepresentation of deep sleep in the hyperemic phase compared with adjacent phases, and rapid-eye-movement sleep predominantly occurred in the latter part of the night, when the subcutaneous blood flow rate was stable. The results of the present study are in accordance with current theories of the interrelationship between the thermoregulatory and the arousal state control systems and, thus, might suggest that the nightly subcutaneous hyperemia represents a thermoregulatory effector mechanism.  相似文献   

13.
To investigate the antilipolytic effect of insulin in skeletal muscle and adipose tissue in vivo, the rates of glycerol release from the two tissues were compared in 10 nonobese women during a two-step euglycemic hyperinsulinemic clamp. Tissue interstitial glycerol levels were determined by microdialysis, and tissue blood flow was assessed with the (133)Xe clearance technique. Absolute rates of glycerol release were estimated according to Fick's principle. In both adipose tissue and muscle, glycerol levels decreased significantly already during the low insulin infusion rate. The fractional release of glycerol (difference between interstitial glycerol and arterialized venous plasma glycerol) was reduced by more than one-half in adipose tissue (P < 0.0001) in response to insulin, whereas it remained unaltered in skeletal muscle. Muscle blood flow rates increased by 60% (P < 0.02) during insulin infusion; in adipose tissue, blood flow rates did not change significantly in response to insulin. The basal rate of glycerol release from skeletal muscle amounted to approximately 15% of that from adipose tissue. After insulin infusion, the rate of adipose tissue glycerol release was markedly suppressed, whereas in skeletal muscle the rate of glycerol mobilization did not change significantly in response to insulin. It is concluded that insulin does not inhibit the rate of lipolysis in skeletal muscle of nonobese women.  相似文献   

14.
Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men [insulin infusion rates: 10,000 (step I), 20,000 (step II), and 150,000 (step III) microU x min(-1) x m(-2)]. Glucose and glycerol concentrations were measured in arterial blood and also by microdialysis in interstitial fluid in periumbilical, subcutaneous adipose tissue and in quadriceps femoris muscle (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration difference was increased in T during the clamp but not in S subjects in both adipose tissue and muscle [adipose tissue: step I (n = 8), 0.48 +/- 0.18 mM (T), 0.23 +/- 0.11 mM (S); step II (n = 8), 0.19 +/- 0.09 (T), -0.09 +/- 0.24 (S); step III (n = 5), 0.47 +/- 0.24 (T), 0.06 +/- 0.28 (S); (T: P < 0.001, S: P > 0.05); muscle: step I (n = 4), 1. 40 +/- 0.46 (T), 0.31 +/- 0.21 (S); step II (n = 4), 1.14 +/- 0.54 (T), -0.08 +/- 0.14 (S); step III (n = 4), 1.23 +/- 0.34 (T), 0.24 +/- 0.09 (S); (T: P < 0.01, S: P > 0.05)]. Interstitial glycerol concentration decreased faster in T than in S subjects [half-time: T, 44 +/- 9 min (n = 7); S, 102 +/- 23 min (n = 5); P < 0.05]. In conclusion, training enhances insulin sensitivity of glucose uptake in subcutaneous adipose tissue and in skeletal muscle. Furthermore, interstitial glycerol data suggest that training also increases insulin sensitivity of lipolysis in subcutaneous adipose tissue. Insulin per se does not influence subcutaneous adipose tissue blood flow.  相似文献   

15.
Total renal blood flow (TRBF) and its intrarenal and intracortical distribution were measured before and during renal vasodilatation induced by acetylcholine infusion using the 133Xe washout, 86Rb uptake and radioactive microspheres distribution techniques. A good agreement was observed between TRBF calculated from 133Xe washout and measured with the electromagnetic flowmeter (FM). 86Rb-TRBF was lower than FM-TRBF and, due to the progressive reduction of renal 86Rb uptake, the difference increased with the increase of flow. With the alteration of TRBF the intrarenal distribution of 86Rb uptake did, however, not change significantly and, accordingly there was no redistribution of RBF either between the cortex and medulla, or among the individual cortical zones. The intracortical distribution of labelled microspheres showed, however, moderate flow dependent changes: with the rise of TRBF, due probably to the reduction of the steric hindrance, the estimated fractional perfusion of the inner cortical zones increased. The sum of the per cent 86Rb content of the innermost cortical zone (C4) and of the medulla exceeded the per cent microsphere content of zone C4. It is concluded that the medulla is perfused not exclusively with blood flowing from the juxtamedullar glomeruli. The regional flow values obtained from the 133Xe curves are not comparable with the results obtained by other methods and cannot be attributed to well defined areas of the kidney.  相似文献   

16.
A new Adaptive Thermal Modeling (ATM) method for the measurement of local tissue blood perfusion rate is introduced. The method is based on a two-phase numerical technique. The first phase includes a fast, finite difference scheme for solution of the transient temperature field. The second phase involves iterative corrections of the perfusion until the modeled temperatures coincide with those measured by the temperature sensors. The results obtained from computer generated "data", as well as from laboratory experiments demonstrate the potential capability of the ATM method to continuously measure local perfusion rates in heated tissues. Rigorous analysis of the technique is planned for the near future so that it can be applied to in vivo measurements of local tissue blood perfusions.  相似文献   

17.
Inert gas isotopes are finding increasing application in the measurement of blood perfusion in the capillary beds of muscle, especially the myocardium. When measuring blood perfusion of the myocardium, washout curves are first produced by precordial monitoring of isotope activity following intracoronary artery injection of an inert gas isotope dissolved in saline. The washout curve data are then applied to a mathematical model to yield blood perfusion rate. Present models for this purpose either ignore any diffusive effects of gas movement (Kety-Schmidt model), or diffusive effects are accounted for by weighting the calculated perfusion value (Zierler's height-over-area technique). A new model is described here for convective and diffusive movement of an inert, nonpolar gas in myocardial tissue. A digital computer simulation of the model equations is used both to simply the model and to show agreement between the model response and experimental 133Xe washout curves from normal and infracted canine hearts. The model assumes that the tail of the washout curves (portion after roughly 1.5 minutes) is caused by a heterogeneous, diffusion-limited tissue structure. The model provides two parameters which can be adjusted to washout curve data using model-matching techniques. These are perfusion rate, and a parameter which is an index of the diffusive nature of the particular myocardial area under study.  相似文献   

18.
We evaluated the importance of cardiogenic gas mixing in the acini of 13 dogs during 2 min of apnea. 133Xe (1-2 mCi in 4 ml of saline) was injected into an alveolar region through an occluded pulmonary artery branch, and washout was measured by gamma scintillation scanning during continued occlusion or with blood flow reinstated. The monoexponential rate constant for Xe washout (XeW) was -0.4 +/- 0.08 (SE) min-1 at functional residual capacity (FRC) with no blood flow in the injected region. It decreased by more than half at lung volumes 500 ml above and 392 ml below FRC. With intact pulmonary blood flow, XeW was -1.0 +/- 0.08 (SE) min-1 at FRC, and it increased with decreasing lung volume. However, if calculated Xe uptake by the blood was subtracted from the XeW measured with blood flow intact, resulting values at FRC and at FRC + 500 ml were not different from XeW with no blood flow. Reasonable calculation of Xe blood uptake at 392 ml below FRC was not possible because airway closure, increased shunt, and other factors affect XeW. After death, no significant XeW could be measured, which suggests that XeW caused by molecular diffusion was small. We conclude that 1) the effect of heart motion on the lung parenchyma increases acinar gas mixing during apnea, 2) this effect diminishes above or below FRC, and 3) there is probably no direct effect of pulmonary vascular pulsatility on acinar gas mixing.  相似文献   

19.
We studied eight normal-weight male subjects to examine whether the lipolytic rate of deep subcutaneous and preperitoneal adipose tissues differs from that of superficial abdominal subcutaneous adipose tissue. The lipolytic rates in the superficial anterior and deep posterior subcutaneous abdominal adipose tissues and in the preperitoneal adipose tissue in the round ligament were measured by microdialysis and (133)Xe washout under basal, postabsorptive conditions and during intravenous epinephrine infusion (0.15 nmol. kg(-1). min(-1)). Both in the basal state and during epinephrine stimulation, the superficial subcutaneous adipose tissue had higher interstitial glycerol concentrations than the two other depots. Similarly, the calculated glycerol outputs from the superficial depot were significantly higher than those from the deep subcutaneous and the preperitoneal depots. Thus, it is concluded that the lipolytic rate of the superficial subcutaneous adipose tissue on the anterior abdominal wall is higher than that of the deep subcutaneous adipose tissue on the posterior abdominal wall and that of the preperitoneal adipose tissue in the round ligament.  相似文献   

20.
Human umbilical vessels are unique in lacking any innervation; thus endothelial cells may play the major role in local control and regulation of the blood flow. In the present study, we examined ultrathin sections of cultured human umbilical vein endothelial cells and tissue preparations of umbilical vein and artery, immunostained by the post-embedding colloidal gold double-labelling technique. We observed colocalization of atrial natriuretic peptide and neuropeptide Y, as well as colocalization of atrial natriuretic peptide and neuropeptide Y with other vasoactive substances, namely, vasoactive intestinal peptide, substance P, calcitonin gene-related peptide and arginine vasopressin. The functional significance of the colocalization of these vasoactive substances in the human umbilical vessel endothelial cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号