首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 745 毫秒
1.
【目的】鉴定雄性棉铃虫Helicoverpa armigera成虫触角性信息素感器嗅觉受体神经元的功能、形态及中枢投射路径。【方法】利用单感器记录技术记录棉铃虫嗅觉受体神经元对性信息素的反应,同时采用荧光染料作为示踪剂染色标记嗅觉受体神经元;使用免疫组织化学方法处理相应的脑组织,标记脑内触角叶的神经纤维球结构;用激光扫描共聚焦显微镜获取图像数据,使用图形软件ZEN和Amira 4.1.1进行三维结构重建。【结果】记录到雄性棉铃虫成虫触角上长毛形感器对主要性信息素成分Z11-16∶Ald产生明显的电生理反应,并成功染色标记了该感器内的嗅觉受体神经元。染色标记显示该感器内具有两个嗅觉受体神经元,其轴突通过触角神经分别投射触角叶内的云状体神经纤维球和普通神经纤维球。【结论】单感器记录与神经元示踪两技术结合能够用于鉴定昆虫触角嗅觉受体神经元的功能、形态和投射至神经纤维球的路径。与赖氨酸钴方法比较,使用荧光染料法进行神经元示踪,操作更简便,且易于进行三维空间分析,为调查棉铃虫其他嗅觉神经元的投射路径以明确外周气味受体感受与中枢系统的联系提供了有力技术支持。  相似文献   

2.
大多数昆虫主要通过气味认知感知外界环境的变化,维持生命活动。探究昆虫气味认知的嗅觉系统神经结构及分子机制,对于完善气味认知神经生物学理论及利用其原理进行仿生学研究等有重要的科学意义。近年,关于昆虫气味认知科学研究有了很大的进展。本文从昆虫神经生物学的视角详细综述了近年关于昆虫气味认知的嗅觉神经结构、分子机制及气味信号的神经传导途径等方面的基本理论及最新研究成果。综述结果显示:昆虫对气味的认知是通过嗅觉神经系统的触角感器、触角叶(AL)、蕈形体(MB)等脑内多层信号处理神经结构来实现的。当外界气味分子进入触角感器内后,由感器内特定的气味识别蛋白(OBP)将气味分子运载到达嗅觉感受神经元(ORN)树突膜上的受体位点,气味分子与表达特定气味的受体(OR)结合产生电信号,并以动作电位的形式通过ORN的轴突传到脑内的触角叶。在触角叶经过嗅觉纤维球对气味信息选择性加工处理,再由投射神经元(PNs)将初步的识别和分类的气味信息传到蕈形体和外侧角(LH)等神经中枢,实现对气味的识别和认知。虽然,近年昆虫气味认知神经生物学的研究有了很大的进步,但是,我们认为目前的研究成果还不能完全阐明昆虫气味认知的神经机制,还有很多问题,例如,触角叶上众多的嗅觉纤维球是如何对嗅觉感受神经元传入的气味信息进行编码处理的?等有待进一步深入研究。为了搞清这些疑难问题,我们认为需要提高现有的实验技术水平,加强电生理学和分子神经生物学相结合的实验研究,从分子水平探究气味认知的神经机制可能是未来研究的热点。  相似文献   

3.
蘑菇体(革形体)是昆虫脑内非常重要的一个结构,构成蘑菇体的冠和叶在不同目昆虫中高度分化,其结构虽然保守,但形态上的变化在一定程度上反映了昆虫的进化地位.冠是触角叶嗅觉投射神经元的主要投射区,叶通过输出神经元联系蘑菇体与其它脑区.冠和叶在嗅觉记忆中不可或缺,垂直叶(α叶)支持长时记忆,中叶(γ叶)支持短时记忆.蘑菇体对嗅觉记忆的形成尤其是记忆的再现(提取)具有重要作用.乙酰胆碱(Ach)、γ-氨基丁酸(GABA)和一氧化氮(NO)等是蘑菇体嗅觉突触传递的主要神经递质.蘑菇体内的第二信使系统cAMP-PKA途径和NI-cGMP途径在嗅觉学习和记忆中起基础性作用.  相似文献   

4.
刘伟  王桂荣 《昆虫学报》2020,(12):1536-1545
灵敏、复杂的嗅觉对于昆虫的生存和繁殖至关重要。触角是昆虫主要的嗅觉器官,其表面覆盖着大量各种类型的嗅觉感受器,这些感受器能够感受环境中的挥发性化合物,并将感受到的化学信号转化为电信号。电信号首先经嗅觉受体神经元传递到大脑中的初级嗅觉中枢触角叶,不同来源的信号在此被初步整合加工,再经投射神经元投射到高级神经中枢蘑菇体和侧角叶,蘑菇体主要与后天的气味学习行为有关,而侧角叶主要负责先天的气味行为反应。本文以模式昆虫果蝇和鳞翅目昆虫为主,综述了昆虫嗅觉中枢系统对外周信号整合编码的研究进展。研究人员依靠黑腹果蝇Drosophila melanogaster遗传操作技术的便利在该领域取得了快速进展,系统阐释了初级嗅觉中枢对气味信息的整合与向下传递以及高级嗅觉中枢对这些信息的再次加工。由于遗传操作的限制,其他昆虫与果蝇相比研究进展较慢,目前研究主要局限于对鳞翅目昆虫中枢神经系统的结构解剖和触角叶内各类神经元的记录等。因此,我们建议展开以下研究:(1)利用模式昆虫果蝇,全面解析侧角叶对气味信息的编码,阐明其对各类气味特异行为反应的神经机制;(2)大力发展非模式昆虫的遗传操作技术,结合双光子钙离子成像等...  相似文献   

5.
昆虫嗅觉神经的计算机三维重建   总被引:3,自引:2,他引:1  
基于激光扫描共聚焦显微镜平台的计算机三维重建在昆虫嗅觉神经研究中发挥了重要作用。对经荧光标记的神经组织采集系列光学切片并进行三维重建,在双翅目、鳞翅目、膜翅目、蜚蠊目昆虫中均有进展。触角叶是昆虫的初级嗅觉中心,触角叶的解剖学图谱是识别不同种和雌雄虫间嗅球体特定功能的先决条件。了解构成嗅觉传输途径的主要神经元的形态和空间关系是理解气味信息在中枢神经系统编码的基础。三维重建昆虫的嗅觉神经,对于探讨昆虫嗅觉在其寄主选择、觅食以及寻找配偶等行为中的作用具有非常重要的意义。  相似文献   

6.
目的:研究昆虫触角感受器传入神经末梢在脑内投射的空间布局,揭示触角感觉信息传入的神经结构.方法:使用氯化镍神经元示踪标记技术,对双斑蟋触角感受嚣传入神经纤维进行可视化标记,观察研究触角传入神经末梢在脑内的走行形态及分布规律.结果:双斑蟋触角感受器传入神经纤维进入中脑后大量的神经末梢终止在同侧的触角叶和触角机械感觉运动中枢,部分神经纤维向前走行,其神经末梢终止在前脑,还有部分神经纤维向后下行,经同侧神经索,其神经末梢终止在食道下神经节.结论:双斑蟋触角感受器传入神经纤维进入脑后主要投射到触角叶和触角机械感觉运动中枢,少部分投射到前脑和食道下神经节.这种多重投射模式可能在双斑蟋嗅觉信息传递整合、触角运动调节、味觉和摄食活动等方面发挥重要作用.  相似文献   

7.
正研究棉铃虫Helicoverpa armigera嗅觉感受的神经机制,可为进一步研发棉铃虫引诱剂技术提供理论依据。单感器记录与神经元示踪技术相结合是研究昆虫嗅觉受体神经元的功能及其投射的神经纤维球的重要方法。为了鉴定棉铃虫雄性成虫触角性信息素感器嗅觉受体神经元的功能、形态及中枢投射路径,河南农业大学植物保护学院马百伟和赵新成及中国农业科学院植物保护研究所王桂荣等以雄性棉铃虫成虫为试虫,利用单感器记录技术记录其嗅觉受体神经元  相似文献   

8.
昆虫嗅觉系统结构与功能研究进展   总被引:1,自引:0,他引:1  
万新龙  杜永均 《昆虫学报》2015,58(6):688-698
昆虫的脑由前脑、中脑和后脑组成,其中前脑含有高级感觉中枢,如蘑菇体和中央复合体,控制昆虫的学习、记忆和运动等高级神经活动;中脑包含触角叶,是嗅觉神经中心;而后脑则通常不发达,主要包括内分泌神经元和控制进食与消化的运动神经元。不同于其他物种,昆虫由于其特殊的生活习性,听觉和视觉系统相对退化,主要依赖嗅觉来捕食、交流和求偶,因此嗅觉系统尤其发达。本文综述了目前对昆虫的脑部主要神经结构和功能(中央复合体、蕈形体和触角叶结构)以及昆虫脑部结构遗传变异(性别异构,不同发育时期、不同昆虫以及昆虫与其他动物的脑部结构差异)的研究进展,并总结了目前昆虫脑对信号的加工处理和识别机制的研究结果。  相似文献   

9.
蚊虫主要依赖嗅觉系统与外界环境进行化学信息交流。蚊虫通过嗅觉感受系统寻找食物、 配偶和产卵场所, 进而做出相应的行为反应。本文综述了近年来蚊虫嗅觉系统对气味信号神经传导机制的研究进展。蚊虫的嗅觉感器主要位于触角和下颚须, 触角上的毛形感器和锥形感器感受氨水、 乳酸、 羧酸类化合物等人体和其他动物释放的微量气味物质, 下颚须上的锥形感器则感受呼出的二氧化碳以及一些其他的挥发性物质; 蚊虫嗅觉感器内部有受体神经细胞, 其上分布有嗅觉受体蛋白, 蚊虫对外界环境的化学感受就是通过气味物质与这些受体蛋白互作而得以实现; 根据对不同气味物质的反应谱差异, 嗅觉神经细胞被分为不同的功能类型; 来自嗅觉神经细胞的神经信号进一步从外周传导至中枢神经中脑触角叶内的神经小球, 在此对信息进行初步的处理, 通过评估嗅觉神经细胞的反应和触角叶内的神经小球相应被激活的区域, 不同小球被分别命名; 最后, 神经信号继续整合, 由投射神经传向前脑, 最终引发一系列昆虫行为反应。这些研究从理论上剖析了气味信号在蚊虫嗅觉系统中的神经转导通路, 对于我们深刻理解蚊虫的嗅觉系统具有重要意义, 同时也有助于进一步理解其他昆虫甚至人类的气味识别机制及进行更深层次神经科学的探索。  相似文献   

10.
【目的】探索斜纹夜蛾Spodoptera litura触角叶结构及其神经元对植物气味和性信息素的神经识别机制。【方法】利用共聚焦激光技术扫描斜纹夜蛾成虫触角叶结构,同时采用多通道电生理技术(multi-unit recording,MR)记录斜纹夜蛾触角叶对6种寄主植物气味化合物(苯甲醛、苯甲醇、苯乙醛、水杨醛、乙酸叶醇酯和己烯醛)及性信息素顺9反11十四碳二烯乙酸酯和顺9反12十四碳二烯乙酸酯的反应;并在风洞中测定分析斜纹夜蛾对上述化合物的定向行为反应。【结果】共聚焦激光扫描结果显示,雄性和雌性斜纹夜蛾触角叶内分别密集地分布有67和66个神经纤维球;而雌性斜纹夜蛾触角叶内的纤维球总体积和平均体积都高于雄性。负责识别和追踪性信息素的扩大型纤维球复合体(macroglomerular complex,MGC)只在雄性斜纹夜蛾触角叶内发现。MR试验结果显示斜纹夜蛾触角叶内神经元具有3种自发放电模式:稀疏放电(不规则的放电频率)、温和放电(宽而慢的放电频率)和密集放电(暴发性的放电频率)。同时,斜纹夜蛾触角叶神经元对所有刺激的气味表现出3种反应类型:兴奋性、抑制性和无反应。神经元对气味的兴奋性和抑制性反应以及无反应取决于刺激化合物的结构和浓度。雌虫的触角叶神经元对性信息素和单一的植物气味表现出很小的反应,而雄虫对两种性信息素以及苯甲醛、苯甲醇、苯乙醛和水杨醛具有很强的兴奋性反应。斜纹夜蛾风洞试验也显示绝大部分的斜纹夜蛾雄虫都选择停留在性信息素和芳香族化合物上,这与MR的结果一致。【结论】神经元的反应强度和刺激化合物浓度之间的关系根据不同的神经元和刺激化合物而有所不同。在测试的浓度范围内,雄虫触角叶神经元对性信息素的反应强度随着浓度的增加而加强,但是除乙酸叶醇酯外,对其他植物气味的反应强度在测试的浓度范围内没有显著的变化。  相似文献   

11.
李江辉  陈齐裕  陈茜  王亚红  杜永均 《昆虫学报》2010,53(12):1419-1423
【目的】本研究探讨用激光共聚焦扫描显微镜对昆虫触角叶内结构的扫描技术。【方法】选取鳞翅目斜纹夜蛾Spodoptera litura, 蜚蠊目美洲大蠊Periplaneta americana和鞘翅目松墨天牛Monochamus alternatus, 仔细解剖得到昆虫完整脑组织, 经过Lucifer yellow染色、戊二醛固定、梯度酒精脱水和透明等一系列处理后, 用激光共聚焦扫描显微镜对昆虫触角叶结构进行分层扫描。【结果】结果显示: 经该方法处理后在激发光488 nm下能清晰扫描出昆虫触角内典型结构神经纤维球, 并且可清晰看到这3种昆虫雄性触角叶结构内的扩大型神经纤维球复合体(macroglomerular complex, MGC), 而在相应雌性昆虫体内都没有此复合体。另外通过5 μm分层扫描得到斜纹夜蛾、美洲大蠊和松墨天牛的触角叶平均厚度分别为130, 235和115 μm, 神经纤维球数量分别为35, 59和39个。【结论】激光共聚焦扫描技术是获得昆虫触角叶内部结构的一个可行方法。  相似文献   

12.
昆虫嗅觉相关蛋白及嗅觉识别机理研究概述   总被引:1,自引:0,他引:1  
嗅觉是昆虫产生行为的基础之一,在长期进化的过程中昆虫形成了复杂的嗅觉系统,完成这一过程,需要有多种与嗅觉相关的蛋白参与,包括气味结合蛋白、化学感受蛋白、气味受体和感觉神经元膜蛋白等。了解昆虫感受外界信息的嗅觉机制可以帮助我们更好地理解昆虫识别配偶、天敌及寻找食物来源、产卵场地等行为特征,为进一步调控昆虫的行为、防控害虫侵袭、保护和利用有益昆虫奠定基础。本文综述了昆虫嗅觉相关的几类重要蛋白的生化特性和生理功能,并对昆虫气味分子的识别机制、气味分子在昆虫体内运输机制的最新研究进展进行了概述。  相似文献   

13.
昆虫非典型嗅觉受体Orco的功能和分子结构研究进展   总被引:2,自引:0,他引:2  
尹淑艳  周成刚  刘庆信 《昆虫学报》2013,56(10):1208-1216
嗅觉受体是参与昆虫嗅觉识别过程的一类重要蛋白。在昆虫的众多嗅觉受体中, 有一类受体明显不同于其他受体, 被称为Orco。该受体基因在不同昆虫种间高度保守, 且表达广泛。Orco在昆虫嗅觉识别过程中发挥关键作用。采用基因突变或RNAi等技术使Orco基因沉默后, 昆虫会出现严重的嗅觉缺陷, 但Orco本身不与气味配体结合, 它与传统嗅觉受体形成复合体Or-Orco, 促进传统嗅觉受体在神经元树突膜上的定位并维持其稳定性, 提高传统嗅觉受体对气味反应的效率。昆虫嗅觉受体的结构与脊椎动物的G蛋白偶联受体相似, 均有7个跨膜区, 但二者的膜拓扑结构相反, 昆虫嗅觉受体的N末端位于细胞质膜内, C末端在细胞质膜外, Orco与传统嗅觉受体通过保守的C末端区域相互作用形成一种新型的配体门控离子通道--Or-Orco复合体。阐明Orco在昆虫嗅觉识别中的功能机制, 可为开创基于昆虫嗅觉行为干扰的新的害虫防治措施提供基础。  相似文献   

14.
昆虫气味受体研究进展   总被引:3,自引:0,他引:3  
嗅觉在昆虫的多种行为中发挥关键作用。气味分子与嗅觉神经元树突上气味受体的结合,参与了昆虫嗅觉识别的初始过程。昆虫的嗅觉神经元表达两类气味受体: 一是传统气味受体,该类受体同源性较低,在少部分嗅觉神经元中表达; 二是Or83b家族受体,该类受体不感受气味,在不同昆虫间较为保守且在大多数嗅觉神经元中表达。目前,对于单个传统气味受体的气味分子配体特异性所知甚少; 对于Or83b家族受体,一般认为其可能具有将传统气味受体运送至嗅觉神经元树突膜上的功能。此外,有一些实验证据不支持昆虫气味受体为G蛋白偶联受体的观点。  相似文献   

15.
有瓣蝇类隶属于昆虫纲双翅目,其物种多样性高,适应能力强,生态类型丰富,与人类关系密切,是开展昆虫适应演化研究的理想类群。触角是有瓣蝇类最重要的嗅觉感受器官,在其精准寻找食源,高效完成交配、产卵等生活史环节中都起着获取外界信息的关键作用。目前已有大量对于有瓣蝇类触角感受器的研究,但这些研究对触角感受器形态名词的使用存在诸多差异、混乱和歧义,使得不同研究间难以相互参考。本文统一了之前研究中有瓣蝇类触角上常见的各类感受结构的不同名词;并结合其它昆虫类群的相关研究,综述了各类感受器在形态和功能方面的研究进展;探讨了该领域中尚待解决的问题。  相似文献   

16.
昆虫通过信息交流感受内外坏境的变化,影响着昆虫定位、搜索食物源、寻找产卵地点和选择配偶等行为。在昆虫中,触角分布着较多的嗅觉感受器,可以感知挥发性分子、气味和激素,是昆虫重要的嗅觉器官,参与信息交流。综述和展望昆虫触角转录组的研究进展,有利于促进害虫管理、害虫防治和社会性昆虫级型分化与劳动分工的研究,也能为昆虫触角后续研究和昆虫触角仿生的应用提供参考。  相似文献   

17.
长期以来,人们已经知道昆虫是借助于头部的一对触角来辨别生境中的各种化学信息。有关昆虫嗅觉方面的研究可追溯到1837年莱费伯首先发现昆虫雌雄间的通信联系依赖于雌蛾腹部释放出来的化学气味。一个多世纪以来,嗅觉机理的研究主要局限于阐述触角是嗅觉的主要感觉器宫,描述触角的形态以及化学分子和嗅觉器官间的相互关系。自从1957年舒奈德采用电生理方法将氯化银电极插入雄性家蚕触角两端,成功地记录了触角电位后,许多研究者广泛采用触角电  相似文献   

18.
昆虫对宿主植物的嗅觉定向   总被引:3,自引:0,他引:3  
雷宏 《生物学通报》1995,30(3):9-11
在混虫辨别宿主植物所利用的各种信息中,植物的气味是一个很重要的因素昆虫利用触角上的嗅觉感受器来感觉植物气味。触角电位是昆虫的触角感受到植物气味后所产生的神经反应,而嗅觉编码则是嗅觉感受器将植物的气味信息传至神经中枢的脉冲系列。本文从行为生理学的角度介绍了昆虫利用植物气味寻找宿主植物的过程。  相似文献   

19.
昆虫嗅觉可塑性研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
嗅觉是昆虫的主要感觉模式,在昆虫的重要行为活动如寻找配偶、定位寄主、选择产卵场所等中起着关键作用。昆虫通过触角等外周嗅觉器官感受外界的化学信号并转化为电信号,电信号传输到中枢神经系统进行加工整合,最后通过大脑发出指令调控自身关键的行为。昆虫需要在合适的时机对不同气味作出反应,从而保证其能够在不同生理状态下完成特定的行为。这就要求昆虫的嗅觉系统具有可塑性,即根据不同的生理状态,如日龄、取食状态、交配、节律等对相同气味作出不同的反应。本文综述了不同生理状态对昆虫嗅觉行为和嗅觉神经系统的影响,以及昆虫嗅觉可塑性产生的机制,为加深和扩展人们对昆虫嗅觉系统的认识和建立新的害虫防控策略提供参考。  相似文献   

20.
昆虫通过信息交流感受内外坏境的变化,影响着昆虫定位、搜索食物源、寻找产卵地点和选择配偶等行为。在昆虫中,触角分布着较多的嗅觉感受器,可以感知挥发性分子、气味和激素,是昆虫重要的嗅觉器官,参与信息交流。综述和展望昆虫触角转录组的研究进展,有利于促进害虫管理、害虫防治和社会性昆虫级型分化与劳动分工的研究,也能为昆虫触角后续研究和昆虫触角仿生的应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号