首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nessessary condition for normal functioning of mitochondria is the maintenance of certain numbers of intact mtDNA molecules. In the present study, we investigasted changes in the number of mtDNA copies in brain and spleen cells of mice subjected to irradiation. For the first time, we observed the irradiation-induced output of mtDNA fragments into brain and spleen cell cytosol. In the cytosol of these cells, examined in mice 5 h after 5 Gy irradiation, 1841 h.p. mtDNA fragments were detected able to persist for at 3 weeks. In addition, larger fragments of mtDNA (10,090 b.p.) were detected in the cytosol of brain cells of irradiated mice. The occurrence of mtDNA fragments in the cytosol of brain cells is accompanied with an increase in the number of mtDNA copies in the mitochondrial matrix. The induction of mtDNA replication in brain cells of irradiated animals may be considered as a compensatory reaction in response to mtDNA damage. A sharp decrease in the amount of mtDNA copies in the mitochondrial matrix of spleen cells on the first day after irradiation may be considered as apoptosis development. However, the compensatory reaction in brain cells was also noticed but in later terms.  相似文献   

2.
3.
Zhou X  Li N  Wang Y  Wang Y  Zhang X  Zhang H 《Mitochondrion》2011,11(6):886-892
There have been a small number of reports of radiation-induced mtDNA damage, and mtDNA supercoiling formation change induced by ionizing radiation has not been investigated before. This study evaluated mtDNA damage and supercoiling formation change after X-irradiation. The human breast cancer cell line, MCF-7 cells were used for analysis. Modified supercoiling-sensitive real-time PCR approach was used to evaluate mitochondrial DNA supercoiling formation change and copy number; long-PCR method was applied for the quantification of mtDNA damage. MtDNA damage and formation change induced by high-dose irradiation was persistent in 24 h after irradiation and was not significant after low-dose irradiation. MtDNA copy number was slightly increased after high-dose irradiation and a transit increase was observed after low-dose irradiation. This is the first study to evaluate radiation-induced mitochondrial DNA supercoiling formation change using real-time PCR. Combined with data of ROS generation and dynamics of mitochondrial mass, our findings suggested that mtDNA is sensitive to radiation hazards, indicating mitochondrial biogenesis play an important role in radiation-induced cellular response.  相似文献   

4.
Alterations of the mitochondrial DNA (mtDNA) are implicated in various pathological conditions. In this study, we used denaturing high performance liquid chromatography (DHPLC) as a method to rapidly screen the entire mtDNA for mutations. Overlapping DNA fragments, amplified by one single cycling protocol from frozen pre-formulated PCR mixes, were subjected to DHPLC analysis. Single DHPLC injections of fragments yielded straightforward interpretation of results with a detection limit down to 1% mtDNA heteroplasmy. Furthermore, collection and re-amplification of low degree heteroduplex peak-fractions allowed sequence analysis of mtDNA mutations down to the detection limit of the DHPLC method. In order to demonstrate that the method has diagnostic value, we analyzed and confirmed known mtDNA mutations in patient samples.  相似文献   

5.
6.
Maintenance of mitochondrial DNA (mtDNA) during cell division is required for progeny to be respiratory competent. Maintenance involves the replication, repair, assembly, segregation, and partitioning of the mitochondrial nucleoid. MGM101 has been identified as a gene essential for mtDNA maintenance in S. cerevisiae, but its role is unknown. Using liquid chromatography coupled with tandem mass spectrometry, we identified Mgm101p as a component of highly enriched nucleoids, suggesting that it plays a nucleoid-specific role in maintenance. Subcellular fractionation, indirect immunofluorescence and GFP tagging show that Mgm101p is exclusively associated with the mitochondrial nucleoid structure in cells. Furthermore, DNA affinity chromatography of nucleoid extracts indicates that Mgm101p binds to DNA, suggesting that its nucleoid localization is in part due to this activity. Phenotypic analysis of cells containing a temperature sensitive mgm101 allele suggests that Mgm101p is not involved in mtDNA packaging, segregation, partitioning or required for ongoing mtDNA replication. We examined Mgm101p's role in mtDNA repair. As compared with wild-type cells, mgm101 cells were more sensitive to mtDNA damage induced by UV irradiation and were hypersensitive to mtDNA damage induced by gamma rays and H2O2 treatment. Thus, we propose that Mgm101p performs an essential function in the repair of oxidatively damaged mtDNA that is required for the maintenance of the mitochondrial genome.  相似文献   

7.
8.
Co-linear organization of Xenopus laevis and mouse mitochondrial genomes   总被引:4,自引:0,他引:4  
Cloned fragments of Xenopus laevis mitochondrial DNA and Pleurodeles waltlii mitochondrial cDNAs have been hybridized together and with mouse mtDNA. In the three cases cross-hybridization was observed. The overall organization of the X. laevis fragments appeared to be co-linear with the mouse mtDNA, most sequences being conserved except for the D-loop and the URF6 regions. The use of mouse mtDNA has enabled us to identified several mitochondrial genes in X. laevis and P. waltlii.  相似文献   

9.
In most yeast species, the mitochondrial DNA (mtDNA) has been reported to be a circular molecule. However, two cases of linear mtDNA with specific termini have previously been described. We examined the frequency of occurrence of linear forms of mtDNA among yeasts by pulsed-field gel electrophoresis. Among the 58 species from the genera Pichia and Williopsis that we examined, linear mtDNA was found with unexpectedly high frequency. Thirteen species contained a linear mtDNA, as confirmed by restriction mapping, and labeling, and electron microscopy. The mtDNAs from Pichia pijperi, Williopsis mrakii, and P. jadinii were studied in detail. In each case, the left and right terminal fragments shared homologous sequences. Between the terminal repeats, the order of mitochondrial genes was the same in all of the linear mtDNAs examined, despite a large variation of the genome size. This constancy of gene order is in contrast with the great variation of gene arrangement in circular mitochondrial genomes of yeasts. The coding sequences determined on several genes were highly homologous to those of the circular mtDNAs, suggesting that these two forms of mtDNA are not of distant origins.  相似文献   

10.
Several instances of mitochondrial DNA heterogeneity in grande and petite strains of Saccharomyces cerevisiae were examined. We have detected heterogeneity in the mtDNA from some of the progeny strains of a cross between two grande strains (D273-10B, MH41-7B) which differ in genome size and restriction cleavage pattern of their mtDNA. The progeny strains transmit restriction fragments characteristic of both parental strains from homologous regions of the mitochondrial genome, and this sequence heterogeneity is not eliminated by additional subcloning. Sequence diversity is more common in the mtDNA of petite than of grande strains of yeast. We have examined subclones of one petite strain to identify the origin of this variability. Many of the submolar restriction fragments persist in independent subclones of this petite after 15 and 30 cell divisions; some submolar fragments disappear, and some new fragments appear. We conclude that the observed sequence heterogeneity is due to molecular heterogeneity, i.e., to differences in the multiple copies of the petite mitochondrial genome, as well as to clonal heterogeneity. It is likely that tandem repeats on the same mtDNA molecule also differ, i.e., that there is intramolecular heterogeneity, and that this accounts for the stability of the heterogeneity. Continuing deletion is probably responsible for the appearance of “new” fragments in petite subclones.  相似文献   

11.
Migration of fragmented mitochondrial DNA (mtDNA) to the nucleus has been shown to occur in multiple species including yeast, plants, and mammals. Several human diseases, including Pallister–Hall syndrome and mucolipidosis, can be initiated by mtDNA insertion mutagenesis of nuclear DNA. In yeast, we demonstrated that the rate of mtDNA fragments translocating to the nucleus increases during chronological aging. The yeast chronological lifespan (CLS) is determined by the survival of nondividing cell populations. Whereas yeast strains with elevated migration rates of mtDNA fragments to the nucleus showed accelerated chronological aging, strains with decreased mtDNA transfer rates to the nucleus exhibited an extended CLS. Although one of the most popular theories of aging is the free radical theory, migration of mtDNA fragments to the nucleus may also contribute to the chronological aging process by possibly increasing nuclear genomic instability in cells with advanced age.  相似文献   

12.
Plants contain large mitochondrial genomes, which are several times as complex as those in animals, fungi or algae. However, genome size is not correlated with information content. The mitochondrial genome (mtDNA) of Arabidopsis specifies only 58 genes in 367 kb, whereas the 184 kb mtDNA in the liverwort Marchantia polymorpha codes for 66 genes, and the 58 kb genome in the green alga Prototheca wickerhamii encodes 63 genes. In Arabidopsis’ mtDNA, genes for subunits of complex II, for several ribosomal proteins and for 16 tRNAs are missing, some of which have been transferred recently to the nuclear genome. Numerous integrated fragments originate from alien genomes, including 16 sequence stretches of plastid origin, 41 fragments of nuclear (retro)transposons and two fragments of fungal viruses. These immigrant sequences suggest that the large size of plant mitochondrial genomes is caused by secondary expansion as a result of integration and propagation, and is thus a derived trait established during the evolution of land plants.  相似文献   

13.
In patients with mitochondrial disease a continuously increasing number of mitochondrial DNA (mtDNA) mutations and polymorphisms have been identified. Most pathogenic mtDNA mutations are heteroplasmic, resulting in heteroduplexes after PCR amplification of mtDNA. To detect these heteroduplexes, we used the technique of denaturing high performance liquid chromatography (DHPLC). The complete mitochondrial genome was amplified in 13 fragments of 1–2 kb, digested in fragments of 90–600 bp and resolved at their optimal melting temperature. The sensitivity of the DHPLC system was high with a lowest detection of 0.5% for the A8344G mutation. The muscle mtDNA from six patients with mitochondrial disease was screened and three mutations were identified. The first patient with a limb-girdle-type myopathy carried an A3302G substitution in the tRNALeu(UUR) gene (70% heteroplasmy), the second patient with mitochondrial myopathy and cardiomyopathy carried a T3271C mutation in the tRNALeu(UUR) gene (80% heteroplasmy) and the third patient with Leigh syndrome carried a T9176C mutation in the ATPase6 gene (93% heteroplasmy). We conclude that DHPLC analysis is a sensitive and specific method to detect heteroplasmic mtDNA mutations. The entire automatic procedure can be completed within 2 days and can also be applied to exclude mtDNA involvement, providing a basis for subsequent investigation of nuclear genes.  相似文献   

14.
The damage and the change in the number of mitochondrial DNA (mtDNA) copies in brain and spleen tissues of gamma-irradiated mice were studied. The changes in the number of mitochondrial DNA (mtDNA) copies were assayed by the comparative analysis of the density values of long-extension PCR products of the mtDNA fragments (16 kb) and the cluster nuclear gene of beta-globin (8.7 kb). PCRs of mtDNA fragments and the nuclear gene of beta-globin were carried out simultaneously in one test-tube within total DNA. Our results showed that in brain and in spleen cells of mice exposed to gamma-radiation an increase in copy number (polyploidization) of mtDNA with regard to the nuclear gene beta-globin took place. The induction of polyploidization of mtDNA observed in cells of gamma-irradiated animals is regarded as the development of a compensatory reaction because of the energy deficiency due to the increased ATP consumption and structural alteration of genes controlling OXPHOS. The data enabled the assumption that because of the low efficiency of repair systems in mitochondria the induction of synthesis of new mtDNA copies on intact or little affected mtDNA templates may be the major mechanism for the retention of the mitochondrial genome which is constantly damaged by the endogenous ROS and is affected by ionizing radiation and/or other exogenous factors.  相似文献   

15.
The mitochondrial DNA (mtDNA) of the dimorphic fungus Candida albicans has a molecular size of 41 kilobase pairs as judged by summation of the fragment sizes produced by digestion with restriction endonucleases EcoRI, PvuII, and a combination of both enzymes. Five of the six EcoRI fragments comprising the mitochondrial genome have been cloned into the plasmid vector, pBR322. Restriction mapping revealed a circular map as predicted by previous observations with the electron microscope. The use of nick-translated, purified mtDNA to probe digests of mtDNA from other strains of C. albicans revealed a common restriction pattern. Use of nick-translated, cloned EcoRI fragments to probe digests of mtDNA revealed a large (at least 5 kilobase pairs), inverted duplication as well as a smaller (less than 0.4 kilobase pairs) region of related sequences.  相似文献   

16.
We have examined the restriction endonuclease cleavage patterns exhibited by the mitochondrial DNAs (mtDNA) of four chloramphenicol-resistant (CAPR) human x mouse hybrids and one CAPR cybrid derived from CAPR HeLa cells and CAPS mouse RAG cells. Restriction fragments of mtDNAs were separated by electrophoresis and transferred by the Southern technique to diazobenzyloxymethyl paper. The covalently bound DNA fragments were hybridized initially with 32P-labeled complementary RNA (cRNA) prepared from human mtDNA and, after removal of the human probe, hybridized with mouse [32P]cRNA prepared from mouse mtDNA. Three hybrids which preferentially segregated human chromosomes and the cybrid exhibited mtDNA fragments indistinguishable from mouse cells. One hybrid, ROH8A, which exhibited "reverse" chromosome segregation, contained only human mtDNA. The pattern of chromosome and mtDNA segregation observed in these hybrids and the cybrid support the hypothesis that a complete set of human chromosomes must be retained if a human-mouse hybrid is to retain human mitochondrial DNA.  相似文献   

17.
Recombinant DNA and hybridization techniques have been used to compare the organization of mitochondrial DNA (mtDNA) from normal (N) and Texas male sterile (T) cytoplasms of maize. Bam H1 restriction fragments of normal mtDNA were cloned and used in molecular hybridizations against Southern blots of Bam H1 digested N and T mtDNA. Fifteen of the 35 fragments were conserved in both N and T as indicated by hybridization to comigrating bands in their restriction patterns. Only three fragments produced autoradiographs whose differences could reasonably be attributed to single changes in the cleavage site of the enzyme while approximately half (17/35) of the clones resulted in more complicated differences between N and T. The autoradiographs produced by these 17 clones indicated multiple cleavage site changes and/or sequence rearrangements of the mtDNA. Patterns of six of these 17 clones indicated partial duplication of the sequence and two showed variation in the intensity of hybridization between N and T, which may be related to the molecular heterogeneity phenomenon found in maize mitochondrial genomes. The large proportion of changes observed between N and T mtDNA indicates that rearrangements may have played an important role in the evolution of the maize mitochondrial genome.  相似文献   

18.
The review considers the current problems of molecular phylogenetics based on mitochondrial and chromosomal DNA sequences. The emphasis is placed on mtDNA markers, which are widely employed in reconstructing molecular evolution, but often without a critical analysis of the physiological and biochemical features of mitochondria that affect the adequacy and reliability of the results. In addition to the factors that make mtDNA-based phylogenies difficult to interpret (unrecognized hybridization and introgression events, ancestral polymorphism, and nuclear paralogs of mtDNA sequences), attention is paid to the nonneutrality and unequal mutation rates of mtDNA genes and their fragments, violations of uniparental inheritance of mitochondria, recombination events, natural heteroplasmy, and mtDNA haplotypic diversity. These factors may influence the congruence of phylogenetic inferences and trees constructed for the same organisms with different mtDNA markers or with mitochondrial and nuclear markers. The review supports the viewpoint that mitochondrial genes and their fragments fail to provide reliable evolutionary markers when considered without a thorough study of the environmental conditions and life of the taxa. The influence of external conditions on the metabolism and physiology of mitochondria cannot be taken into account in full nor modeled well enough for phylogenetic applications. It is assumed that mtDNA is valuable as a phylogenetic marker primarily because its complete sequence may be analyzed to identify the apomorphic and synmorphic properties of a taxon and to search for informative nuclear paralogs of mtDNA for phylogeographical studies and estimations of relative evolution times.  相似文献   

19.
Impairments of mitochondrial genome are associated with a wide spectrum of degenerative diseases, development of tumors, aging, and cell death. We studied the content of mitochondrial DNA (mtDNA) with mutations and the total content of mutations in the brain and the spleen of mice subjected to X-ray irradiation at a dose of 1–5 Gy at 8–28 days after treatment. In these mice, we studied the number of mutant copies of extracellular mtDNA (ec-mtDNA) and its total content in blood plasma. We estimated mutations in control and irradiated mice using cleavage of heteroduplexes prepared by hybridization of PCR amplicons of mtDNA (D-loop region) mediated by CEL-I endonuclease, an enzyme that specifically cleaves unpaired bases. Changes in the total number of mtDNA copies relative to nuclear DNA were assessed by real time PCR using the ND-4 and GAPDH genes, respectively. We found that the number of mutant mtDNA copies was significantly increased in the brain and the spleen of irradiated mice and reached the maximum level at the eighth day after treatment; it then decreased by the 28th day after treatment. In nuclear genes similar to mutagenesis, mutagenesis of mtDNA in the brain and spleen tissues linearly depended on irradiation dose. In contrast to mutant nuclear genes, most mutant mtDNA copies were eliminated in the brain and spleen tissues, whereas the total content of mtDNA did not change within 28 days after irradiation. Our data show that, during this period, a high level of ec-mtDNA with mutations was observed in DNA circulating in blood plasma with the maximum level found at the 14th day. We suppose that mutant mtDNA copies are eliminated from cells of animals subjected to irradiation during the posttreatment period. Higher content of ec-mtDNA in blood plasma can be considered as a potential marker of radiation damage to the body.  相似文献   

20.
As has been demonstrated recently, the transfer of genetic material from mitochondria to the nucleus and its integration into the nuclear genome is a continuous and dynamic process. Fragments of mitochondrial DNA (mtDNA) are incorporated in the nuclear genome as noncoding sequences, which are called nuclear mitochondrial pseudogenes (NUMT pseudogenes or NUMT inserts). In various eukaryotes, NUMT pseudogenes are distributed through different chromosomes to form a “library” of mtDNA fragments, providing important information on genome evolution. The escape of mtDNA from mitochondria is mostly associated with mitochondrial damage and mitophagy. Fragments of mtDNA may be integrated into nuclear DNA (nDNA) during repair of double-strand breaks (DSBs), which are caused by endogenous or exogenous agents. DSB repair of nDNA with a capture of mtDNA fragments may occur via nonhomologous end joining or a similar mechanism that involves microhomologous terminal sequences. An analysis of the available data makes it possible to suppose that the NUMT pseudogene formation rate depends on the DSB rate in nDNA, the activity of the repair systems, and the number of mtDNA fragments leaving organelles and migrating into the nucleus. Such situations are likely after exposure to damaging agents, first and foremost, ionizing radiation. Not only do new NUMT pseudogenes change the genome structure in the regions of their integration, but they may also have a significant impact on the actualization of genetic information. The de novo integration of NUMT pseudogenes in the nuclear genome may play a role in various pathologies and aging. NUMT pseudogenes may cause errors in PCR-based analyses of free mtDNA as a component of total cell DNA because of their coamplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号