首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential scanning calorimetry transitions for the irreversible thermal denaturation of yeast phosphoglycerate kinase at pH 7.0 are strongly scanning-rate dependent, suggesting that the denaturation is, at least in part, under kinetic control. To test this possibility, we have carried out a kinetic study on the thermal inactivation of the enzyme. The inactivation kinetics are comparatively fast within the temperature range of the calorimetric transitions and can be described phenomenologically by the equation dC/dt = -alpha C2/(beta + C), where C is the concentration of active enzyme at a given time, t, and alpha and beta are rate coefficients that depend on temperature. This equation, together with the values of alpha and beta (within the temperature range 50-59 degrees C) have allowed us to calculate the fraction of irreversibly denatured protein versus temperature profiles corresponding to the calorimetric experiments. We have found that (a) irreversible denaturation takes place during the time the protein spends in the transition region and (b) there is an excellent correlation between the temperatures of the maximum of the calorimetric transitions (Tm) and the temperatures (Th) at which half of the protein is irreversibly denatured. These results show that the differential scanning calorimetry transitions for the denaturation of phosphoglycerate kinase are highly distorted by the rate-limited irreversible process. Finally, some comments are made as to the use of equilibrium thermodynamics in the analysis of irreversible protein denaturation.  相似文献   

2.
3.
4.
5.
6.
Equations describing growth and respiration rate of animals during postembryonic development have been derived on the basis of thermodynamics of linear irreversible processes. The conditions for equation application are specified as well as the conditions when growth equation can be reduced to the von Bertalanffy equation and when the relationship between the mass-specific rate of oxygen consumption and body weight becomes an allometric relationship.  相似文献   

7.
8.
9.
A theoretical analysis of several protein denaturation models (Lumry-Eyring models) that include a rate-limited step leading to an irreversibly denatured state of the protein (the final state) has been carried out. The differential scanning calorimetry transitions predicted for these models can be broadly classified into four groups: situations A, B, C, and C′. (A) The transition is calorimetrically irreversible but the rate-limited, irreversible step takes place with significant rate only at temperatures slightly above those corresponding to the transition. Equilibrium thermodynamics analysis is permissible. (B) The transition is distorted by the occurrence of the rate-limited step; nevertheless, it contains thermodynamic information about the reversible unfolding of the protein, which could be obtained upon the appropriate data treatment. (C) The heat absorption is entirely determined by the kinetics of formation of the final state and no thermodynamic information can be extracted from the calorimetric transition; the rate-determining step is the irreversible process itself. (C′) same as C, but, in this case, the rate-determining step is a previous step in the unfolding pathway. It is shown that ligand and protein concentration effects on transitions corresponding to situation C (strongly rate-limited transitions) are similar to those predicted by equilibrium thermodynamics for simple reversible unfolding models. It has been widely held in recent literature that experimentally observed ligand and protein concentration effects support the applicability of equilibrium thermodynamics to irreversible protein denaturation. The theoretical analysis reported here disfavors this claim.  相似文献   

10.
Electro-osmosis and streaming-potential measurements were made across a testosterone-plug membrane, using water and aqueous solutions of d-glucose as permeants. The electrophoretic velocity of testosterone particles dispersed in these solutions was also measured, experiments being confined to the range where linear flux-force relationships hold. Phenomenological coefficients were evaluated by using these linear relations, and the results analyzed inthe light of the thermodynamics of irreversible processes. Saxen's relationship holds between electro-osmosis and streaming potential. Concentration dependence of the various phenomenological coefficients was also examined. Cross-phenomenological coefficients were found to decrease with increase in the concentration of d-glucose solutions. The results are explained on the basis of strong hydrogen-bonding between d-glucose and the surrounding water molecules. Such membrane parameters as pore size, average number of pores, and the membrane constant were evaluated. Electro-osmotic and electrophoretic data were used to estimate the zeta potential, in order to characterize the membrane-permeant interface. The dependence of the zeta potential on the concentration was also examined.  相似文献   

11.
12.
13.
14.
Differential scanning calorimetry has been performed with Palinurus vulgaris haemocyanin monomers and hexamers. The denaturation of the protein is irreversible. Both the temperature of the transition maximum and the enthalpy are lower for the monomer than for the hexamer. A scan rate dependence of the temperature of the maxima is found for both the monomer and the hexamer; for the hexamer at least, this can be explained in terms of a two-state kinetic model. Some comments are made as to the use of equilibrium thermodynamics in the analysis of irreversible scanning calorimetric traces.  相似文献   

15.
16.
We consider in this work the analysis of the excess heat capacity C(p)(ex) versus temperature profiles in terms of a model of thermal protein denaturation involving one irreversible step. It is shown that the dependences of ln C(p)(ex) on 1 T (T is the absolute temperature) obtained at various temperature scanning rates have the same form. Several new methods for estimation of parameters of the Arrhenius equation are explored. These new methods are based on the fitting of theoretical equations to the experimental heat capacity data, as well as on the analysis of the dependence d(ln C (p)(ex)) d ( 1 T ) on 1 T . We have applied the proposed methods to calorimetric data corresponding to the irreversible thermal denaturation of Torpedo californica acetylcholinesterase, cellulase from Streptomyces halstedii JM8, and lentil lectin. Criteria of validity for the one-step irreversible denaturation model are discussed.  相似文献   

17.
Summary In this paper we shall first calculate the energy dissipated by the nerve for the maintaining of the resting potential despite the passive ion flows, and secondly the energy dissipated for the conduction of the action potential. Both these estimates consist in calculating, in the considered case, the Rayleigh dissipation function wellknown from the thermodynamics of irreversible processes (Katchalsky and Curran, 1965). Our results, obtained using only trustworthy data from the literature, are in good agreement with direct nerve energetics measurements.  相似文献   

18.
A calorimetric study of the thermal denaturation of bovine serum albumin, RNAase and catalase in concentrated solutions (crystals) has been carried out. The results obtained for RNAase studied within the pH range 2.5-8.5 show that for concentrated solutions there is an interval of pH where, on cooling of the solution which had undergone denaturation, its renaturation is observed. In the case of concentrated and dilute solutions of RNAase these intervals coincide. The study of RNAase under such conditions at various heating rates shows that there is a range of rates in which the process of denaturation of concentrated solutions can be considered as reversible. The dependences of Td and Hd on pH and concentration of solutions have been determined. The denaturation enthalpy of concentrated solutions like in dilute ones, has been found to be independent of the pH of solutions, and the experimentally registered change has been proved to be the result of its dependence on temperature. A new method of determination of protein denaturation enthalpy under the conditions of intensive molecule aggregation is suggested. The forms of irreversibility as appearing in the calorimetric experiment were determined by comparing reversible and irreversible denaturation under continuous and step-heating regimes. It is shown that the decrease in Tmax and the narrowing of the heat absorption peak in the case of decreasing heating rates of protein solutions, observed under certain environmental conditions, results from the irreversibility of the denaturation process.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号