首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major sites for Rho-kinase on the myosin phosphatase target subunit (MYPT1) are Thr695 and Thr850. Phosphorylation of Thr695 inhibits phosphatase activity but the role of phosphorylation at Thr850 is not clear and is evaluated here. Phosphorylation of both Thr695 and Thr850 by Rho-kinase inhibited activity of the type 1 phosphatase catalytic subunit. Rates of phosphorylation of the two sites were similar and efficacy of inhibition following phosphorylation was equivalent for each site. Phosphorylation of each site on MYPT1 was detected in A7r5 cells, but Thr850 was preferred by Rho-kinase and Thr695 was phosphorylated by an unidentified kinase(s).  相似文献   

2.
Phosphorylation of myosin II plays an important role in many cell functions, including smooth muscle contraction. The level of myosin II phosphorylation is determined by activities of myosin light chain kinase and myosin phosphatase (MP). MP is composed of 3 subunits: a catalytic subunit of type 1 phosphatase, PPlc; a targeting subunit, termed myosin phosphatase target subunit, MYPT; and a smaller subunit, M20, of unknown function. Most of the properties of MP are due to MYPT and include binding of PP1c and substrate. Other interactions are discussed. A recent discovery is the existence of an MYPT family and members include, MYPT1, MYPT2, MBS85, MYPT3 and TIMAP. Characteristics of each are outlined. An important discovery was that the activity of MP could be regulated and both activation and inhibition were reported. Activation occurs in response to elevated cyclic nucleotide levels and various mechanisms are presented. Inhibition of MP is a major component of Ca2+-sensitization in smooth muscle and various molecular mechanisms are discussed. Two mechanisms are cited frequently: (1) Phosphorylation of an inhibitory site on MYPT1, Thr696 (human isoform) and resulting inhibition of PP1c activity. Several kinases can phosphorylate Thr696, including Rho-kinase that serves an important role in smooth muscle function; and (2) Inhibition of MP by the protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17). Examples where these mechanisms are implicated in smooth muscle function are presented. The critical role of RhoA/Rho-kinase signaling in various systems is discussed, in particular those vascular smooth muscle disorders involving hypercontractility.  相似文献   

3.
It was determined that the myosin phosphatase (MP) activity and content of myosin phosphatase target subunit 1 (MYPT1) were correlated in subcellular fractions of human hepatocarcinoma (HepG2) cells. In control cells MYPT1 was localized in the cytoplasm and in the nucleus, as determined by confocal microscopy. Treatment of HepG2 cells with 50 nM okadaic acid (OA), a cell-permeable phosphatase inhibitor, induced several changes: 1) a marked redistribution of MYPT1 to the plasma membrane associated with an increased level of phosphorylation of MYPT1 at Thr695. Both effects showed only a slight influence with the Rho-kinase inhibitor, Y-27632; 2) an increase in phosphorylation of MYPT1 at Thr850 associated with its accumulation in the perinuclear region and nucleus. These effects were markedly reduced by Y-27632; 3) an increased phosphorylation of the 20 kDa myosin II light chain at Ser19 associated with an increased location of myosin II at the cell center. These effects were partially counteracted by Y-27632; 4) an increase in stress fiber formation and a decrease in cell migration, both OA-induced effects were blocked by Y-27632. In HepG2 lysates, OA (5-100 nM) did not affect MP activity but inhibited PP2A activity. These results indicate that OA induces differential phosphorylation and translocation of MYPT1, dependent on PP2A and, to varying extents, on ROK. These changes are associated with an increased level of myosin II phosphorylation and attenuation of hepatic cell migration.  相似文献   

4.
Reversible phosphorylation of the retinoblastoma protein (pRb) is an important regulatory mechanism in cell cycle progression. The role of protein phosphatases is less understood in this process, especially concerning the regulatory/targeting subunits involved. It is shown that pretreatment of THP-1 leukemic cells with calyculin-A (CL-A), a cell-permeable phosphatase inhibitor, attenuated daunorubicin (DNR)-induced cell death and resulted in increased pRb phosphorylation and protection against proteolytic degradation. Protein phosphatase-1 catalytic subunits (PP1c) dephosphorylated the phosphorylated C-terminal fragment of pRb (pRb-C) slightly, whereas when PP1c was complexed to myosin phosphatase target subunit-1 (MYPT1) in myosin phosphatase (MP) holoenzyme dephosphorylation was stimulated. The pRb-C phosphatase activity of MP was partially inhibited by anti-MYPT1(1-296) implicating MYPT1 in targeting PP1c to pRb. MYPT1 became phosphorylated on both inhibitory sites (Thr695 and Thr850) upon CL-A treatment of THP-1 cells resulting in the inhibition of MP activity. MYPT1 and pRb coprecipitated from cell lysates by immunoprecipitation with either anti-MYPT1 or anti-pRb antibodies implying that pRb-MYPT1 interaction occurred at cellular levels. Surface plasmon resonance-based experiments confirmed binding of pRb-C to both PP1c and MYPT1. In control and DNR-treated cells, MYPT1 and pRb were predominantly localized in the nucleus exhibiting partial colocalization as revealed by immunofluorescence using confocal microscopy. Upon CL-A treatment, nucleo-cytoplasmic shuttling of both MYPT1 and pRb, but not PP1c, was observed. The above data imply that MP, with the targeting role of MYPT1, may regulate the phosphorylation level of pRb, thereby it may be involved in the control of cell cycle progression and in the mediation of chemoresistance of leukemic cells.  相似文献   

5.
Myosin II phosphorylation-dependent cell motile events are regulated by myosin light-chain (MLC) kinase and MLC phosphatase (MLCP). Recent studies have revealed myosin phosphatase targeting subunit (MYPT1), a myosin-binding subunit of MLCP, plays a critical role in MLCP regulation. Here we report the new regulatory mechanism of MLCP via the interaction between 14-3-3 and MYPT1. The binding of 14-3-3beta to MYPT1 diminished the direct binding between MYPT1 and myosin II, and 14-3-3beta overexpression abolished MYPT1 localization at stress fiber. Furthermore, 14-3-3beta inhibited MLCP holoenzyme activity via the interaction with MYPT1. Consistently, 14-3-3beta overexpression increased myosin II phosphorylation in cells. We found that MYPT1 phosphorylation at Ser472 was critical for the binding to 14-3-3. Epidermal growth factor (EGF) stimulation increased both Ser472 phosphorylation and the binding of MYPT1-14-3-3. Rho-kinase inhibitor inhibited the EGF-induced Ser472 phosphorylation and the binding of MYPT1-14-3-3. Rho-kinase specific siRNA also decreased EGF-induced Ser472 phosphorylation correlated with the decrease in MLC phosphorylation. The present study revealed a new RhoA/Rho-kinase-dependent regulatory mechanism of myosin II phosphorylation by 14-3-3 that dissociates MLCP from myosin II and attenuates MLCP activity.  相似文献   

6.
Characterization of cardiac MYPT2 (an isoform of the smooth muscle phosphatase [MP] target subunit, MYPT1) is described. Several features of MYPT2 and MYPT1 were similar, including: a specific interaction with the catalytic subunit of type 1 phosphatase, delta isoform (PP1cdelta); interaction of MYPT2 with the small heart-specific MP subunit; interaction of the C-terminal region of MYPT2 with the active form of RhoA; phosphorylation by Rho-kinase at an inhibitory site, Thr646 and thiophosphorylation at Thr646 inhibited activity of the MYPT2-PP1cdelta complex. MYPT2 activated PP1cdelta activity, using light chains from smooth and cardiac muscle, by reducing K(m) and increasing k(cat). The extent of activation (k(cat)) was greater than for MYPT1 and could reflect distinct N-terminal sequences in the two MYPT isoforms. Adenovirus-mediated gene transfer of MYPT2 and PP1cdelta reduced the phosphorylation level of cardiac light chains following stimulation with A23187. Overexpression of MYPT2 and PP1cdelta blocked the angiotensin II-induced sarcomere organization in cultured cardiomyocytes. Electron microscopy indicated locations of MYPTs, at, or close to, the Z-line, the A band and mitochondria. Similarity of the two MYPT isoforms suggests common enzymatic mechanisms and regulation. Cardiac myosin is a substrate for the MYPT2 holoenzyme, but the Z-line location raises the possibility of other substrates.  相似文献   

7.
Herein, we provide evidence that in chicken smooth muscle, G-protein stimulation by a Rho-kinase pathway leads to an increase in myosin light chain phosphorylation. Additionally, G-protein stimulation did not increase MYPT1 phosphorylation at Thr695 or Thr850, and CPI-17, was not expressed in chicken smooth muscle. However, PHI-1 was present in chicken smooth muscle tissues. Both agonist and GTP(gamma)S stimulation result in an increase in PHI-1 phosphorylation, which is inhibited by inhibitors to both Rho-kinase (Y-27632) and (PKC) GF109203x. These data suggest that PHI-1 may act as a CPI-17 analog in chicken smooth muscle and inhibit myosin phosphatase activity during G-protein stimulation to produce Ca2+ sensitization.  相似文献   

8.
Ca(2+)/calmodulin (CaM)-dependent phosphorylation of myosin regulatory light chain (RLC) in smooth muscle by myosin light chain kinase (MLCK) and dephosphorylation by myosin light chain phosphatase (MLCP) are subject to modulatory cascades that influence the sensitivity of RLC phosphorylation and hence contraction to intracellular Ca(2+) concentration ([Ca(2+)](i)). We designed a CaM-sensor MLCK containing smooth muscle MLCK fused to two fluorescent proteins linked by the MLCK CaM-binding sequence to measure kinase activation in vivo and expressed it specifically in mouse smooth muscle. In phasic bladder muscle, there was greater RLC phosphorylation and force relative to MLCK activation and [Ca(2+)](i) with carbachol (CCh) compared with KCl treatment, consistent with agonist-dependent inhibition of MLCP. The dependence of force on MLCK activity was nonlinear such that at higher concentrations of CCh, force increased with no change in the net 20% activation of MLCK. A significant but smaller amount of MLCK activation was found during the sustained contractile phase. MLCP inhibition may occur through RhoA/Rho-kinase and/or PKC with phosphorylation of myosin phosphatase targeting subunit-1 (MYPT1) and PKC-potentiated phosphatase inhibitor (CPI-17), respectively. CCh treatment, but not KCl, resulted in MYPT1 and CPI-17 phosphorylation. Both Y27632 (Rho-kinase inhibitor) and calphostin C (PKC inhibitor) reduced CCh-dependent force, RLC phosphorylation, and phosphorylation of MYPT1 (Thr694) without changing MLCK activation. Calphostin C, but not Y27632, also reduced CCh-induced phosphorylation of CPI-17. CCh concentration responses showed that phosphorylation of CPI-17 was more sensitive than MYPT1. Thus the onset of agonist-induced contraction in phasic smooth muscle results from the rapid and coordinated activation of MLCK with hierarchical inhibition of MLCP by CPI-17 and MYPT1 phosphorylation.  相似文献   

9.
Rho kinase is known to control smooth muscle contractility by phosphorylating the 110 kDa myosin-targetting subunit (MYPT1) of the myosin-associated form of protein phosphatase 1 (PP1M). Phosphorylation of MYPT1 at Thr695 has previously been reported to inhibit the catalytic activity of PP1. Here, we show that the phosphorylation of Thr850 by Rho kinase dissociates PP1M from myosin, providing a second mechanism by which myosin phosphatase activity is inhibited.  相似文献   

10.
Agonist-induced activation of the RhoA/Rho kinase (ROCK) pathway results in inhibition of myosin phosphatase and maintenance of myosin light chain (MLC20) phosphorylation. We have shown that RhoA/ROCKII translocates and associates with heat shock protein (HSP)27 in the particulate fraction. We hypothesize that inhibition of the 130-kDa regulatory myosin-binding subunit (MYPT) requires its association with HSP27 in the particulate fraction. Furthermore, it is not certain whether regulation of MYPT by CPI-17 or by ROCKII is due to cross talk between RhoA and PKC-alpha. Presently, we examined the cross talk between RhoA and PKC-alpha in the regulation of MYPT phosphorylation in rabbit colon smooth muscle cells. Acetylcholine induced 1) sustained phosphorylation of PKC-alpha, CPI-17, and MYPT; 2) an increase in the association of phospho-MYPT with HSP27 in the particulate fraction; 3) a decrease in myosin phosphatase activity (66.21+/-3.52 and 42.19+/-3.85% nM/ml lysate at 30 s and 4 min); and 4) an increase in PKC activity (298.12+/-46.60% and 290.59+/-22.07% at 30 s and 4 min). Inhibition of RhoA/ROCKII by Y-27632 inhibited phosphorylation of MYPT and its association with HSP27. Both Y27632 and a negative dominant construct of RhoA inhibited phosphorylation of MYPT and CPI-17. Inhibition of PKCs or calphostin C or selective inhibition of PKC-alpha by negative dominant constructs inhibited phosphorylation of MYPT and CPI-17. The results suggest that 1) acetylcholine induces activation of both RhoA and/or PKC-alpha pathways, suggesting cross talk between RhoA and PKC-alpha resulting in phosphorylation of MYPT, inhibition of myosin phosphatase activity, and maintenance of MLC phosphorylation; and 2) phosphorylated MYPT is associated with HSP27 and translocated to the particulate fraction, suggesting a scaffolding role for HSP27 in mediating the association of the complex MYPT/RhoA-ROCKII. Thus both pathways (PKC and RhoA) converge on the regulation of myosin phosphatase activities and modulate sustained phosphorylation of MLC20.  相似文献   

11.
TNFα has multiple important cellular functions both in normal cells and in tumor cells. To explore the role of TNFα, we identified NUAK family, SNF1-like kinase 2 (NUAK2), as a TNFα-induced kinase by gene chip analysis. NUAK2 is known to be induced by various cellular stresses and involved in cell mortality, however, its substrate has never been identified. We developed original protocol of de novo screening for kinase substrates using an in vitro kinase assay and high performance liquid chromatography (HPLC). Using this procedure, we identified myosin phosphatase target subunit 1 (MYPT1) as a specific substrate for NUAK2. MYPT1 was phosphorylated at another site(s) by NUAK2, other than known Rho-kinase phosphorylation sites (Thr696 or Thr853) responsible for inhibition of myosin phosphatase activity. These data suggests different phosphorylation and regulation of MYPT1 activity by NUAK2.  相似文献   

12.
The present study characterized the signalling pathways initiated by the bioactive lipid, LPA (lysophosphatidic acid) in smooth muscle. Expression of LPA(3) receptors, but not LPA(1) and LPA(2), receptors was demonstrated by Western blot analysis. LPA stimulated phosphoinositide hydrolysis, PKC (protein kinase C) and Rho kinase (Rho-associated kinase) activities: stimulation of all three enzymes was inhibited by expression of the G(alphaq), but not the G(alphai), minigene. Initial contraction and MLC(20) (20 kDa regulatory light chain of myosin II) phosphorylation induced by LPA were abolished by inhibitors of PLC (phospholipase C)-beta (U73122) or MLCK (myosin light-chain kinase; ML-9), but were not affected by inhibitors of PKC (bisindolylmaleimide) or Rho kinase (Y27632). In contrast, sustained contraction, and phosphorylation of MLC(20) and CPI-17 (PKC-potentiated inhibitor 17 kDa protein) induced by LPA were abolished selectively by bisindolylmaleimide. LPA-induced activation of IKK2 {IkappaB [inhibitor of NF-kappaB (nuclear factor kappaB)] kinase 2} and PKA (protein kinase A; cAMP-dependent protein kinase), and degradation of IkappaBalpha were blocked by the RhoA inhibitor (C3 exoenzyme) and in cells expressing dominant-negative mutants of IKK2(K44A) or RhoA(N19RhoA). Phosphorylation by Rho kinase of MYPT1 (myosin phosphatase targeting subunit 1) at Thr(696) was masked by phosphorylation of MYPT1 at Ser(695) by PKA derived from IkappaB degradation via RhoA, but unmasked in the presence of PKI (PKA inhibitor) or C3 exoenzyme and in cells expressing IKK2(K44A). We conclude that LPA induces initial contraction which involves activation of PLC-beta and MLCK and phosphorylation of MLC(20), and sustained contraction which involves activation of PKC and phosphorylation of CPI-17 and MLC(20). Although Rho kinase was activated, phosphorylation of MYPT1 at Thr(696) by Rho kinase was masked by phosphorylation of MYPT1 at Ser(695) via cAMP-independent PKA derived from the NF-kappaB pathway.  相似文献   

13.
Agonist and depolarization-induced vascular smooth muscle contractions involve the activation of Rho-kinase pathway. However, there are no reports addressing the question whether this pathway is involved in NaF-induced vascular contractions. We hypothesized that Rho-kinase plays a role in vascular contraction evoked by sodium fluoride in rat aortae. In both physiological salt solution and calcium-free solution with 2 mM EGTA, cumulative addition of NaF increased vascular tension in concentration-dependent manners. Effects of Rho-kinase inhibitor (Y27632) on phosphorylation of myosin light chain (MLC20) and myosin targeting subunit (MYPT1(Thr696)) of myosin light chain phosphatase as well as NaF-induced contractions were determined using isolated tissue and the Western blot experiments. Y27632 inhibited NaF-induced contractions in a concentration-dependent manner. NaF increased phosphorylation of MLC20 and MYPT1(Thr696), which were also inhibited by Y27632. However, MLCK inhibitor (ML-7) or PKC inhibitor (Ro31-8220) did not inhibit the NaF-induced contraction. These results indicate that activation of Rho-kinase and the subsequent phosphorylation of MYPT1(Thr696) play important roles in NaF-induced contraction of rat aortae.  相似文献   

14.
Our previous study demonstrated that heat shock augmented vascular contraction. In the present study, we hypothesized that heat shock augments myosin phosphatase target-subunit (MYPT1) phosphorylation resulting in augmented vascular contraction. Endothelium-denuded rat aortic rings were mounted in organ baths, exposed to heat shock (42 degrees C for 45 min), and subjected to contraction 4 h after the heat shock followed by Western blot analysis for MLC(20) (the 20 kDa light chains of myosin II) or MYPT1. The contractile responses in both control and heat shock-treated aorta were inhibited by Y27632, an inhibitor of Rho-kinase. The level of the MLC(20) and MYPT1(Thr855) phosphorylation in response to KCl was higher in heat shock-treated aorta than that in timed-control. The increased MYPT1(Thr855) phosphorylation was inhibited by Y27632 (1.0 microM) in parallel with inhibition of MLC(20) phosphorylation and vascular contraction. These results indicate that heat shock augments MYPT1 phosphorylation resulting in augmented vascular contraction.  相似文献   

15.
Myotonic dystrophy protein kinase (DMPK) and Rho-kinase are related. An important function of Rho-kinase is to phosphorylate the myosin-binding subunit of myosin phosphatase (MYPT1) and inhibit phosphatase activity. Experiments were carried out to determine if DMPK could function similarly. MYPT1 was phosphorylated by DMPK. The phosphorylation site(s) was in the C-terminal part of the molecule. DMPK was not inhibited by the Rho-kinase inhibitors, Y-27632 and HA-1077. Several approaches were taken to determine that a major site of phosphorylation was T654. Phosphorylation at T654 inhibited phosphatase activity. Thus both DMPK and Rho-kinase may regulate myosin II phosphorylation.  相似文献   

16.
Role of myosin light chain phosphorylation in the regulation of cytokinesis   总被引:1,自引:0,他引:1  
Phosphorylation of regulatory light chain (RMLC) of myosin II at Ser19/Thr18 is likely to play important roles in controlling the morphological changes seen during cell division of cultured mammalian cells. Phosphorylation of RMLC regulates the activity of myosin II, an essntial motor for cytokinesis, and phosphorylation of RMLC shows dramatic changes during mitosis. Two exzymes, myosin phosphatase and kinase, control phosphorvlation of RMLC. Myosin phosphatase is activated during mitosis, apparently as a result of mitosis-specific phosphorylation of the myosin phosphatase targeting subunit (MYPT). This activation of myosin phosphatase is likely to result in RMLC dephosphorylation, causing the disassemly of stress fibers and focal adhesions during prophase. The phosphorylation of MYPT is lost in cyotokinesis, which would decrease myosin phosphatase activity. At the same time, ROCK (Rho-kinase) probably phosphorylates MYPT at its inhibitory sites, further decreasing the activity of myosin phosphatase. These changes in MYPT phosphorylation would raise RMLC phosphorylation, leading to the activation of myosin II for cyotokinesis. RMLC phosphorylation is also regulated by several RMLC kinases including ROCK (Rho-kinase), MLCK and citron kinase, all of which are localized at cleavage furrows. Future studies should examine whether these multiple kinases are redundant or whether they control distinct aspects of cell division.  相似文献   

17.
Smooth muscle calcium sensitization reflects an inhibition of myosin light chain phosphatase (SMPP-1m) activity; however, the underlying mechanisms are not well understood. SMPP-1m activity can be modulated through phosphorylation of the myosin targeting subunit (MYPT1) by the endogenous myosin phosphatase-associated kinase, MYPT1 kinase (MacDonald, J. A., Borman, M. A., Muranyi, A., Somlyo, A. V., Hartshorne, D. J., and Haystead, T. A. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 2419-2424). Recombinant chicken gizzard MYPT1 (M130) was phosphorylated in vitro by a recombinant MYPT1 kinase, and the sites of phosphorylation were identified as Thr(654), Ser(808), and Thr(675). Introduction of recombinant MYPT1 kinase elicited a calcium-independent contraction in beta-escin-permeabilized rabbit ileal smooth muscle. Using an antibody that specifically recognizes MYPT1 phosphorylated at Thr(654) (M130 numbering), we determined that this calcium-independent contraction was correlated with an increase in MYPT1 phosphorylation. These results indicate that SMPP-1m phosphorylation by MYPT1 kinase is a mechanism of smooth muscle calcium sensitization.  相似文献   

18.
Regulation of smooth muscle myosin phosphatase (SMPP-1M) is thought to be a primary mechanism for explaining Ca(2+) sensitization/desensitization in smooth muscle. Ca(2+) sensitization induced by activation of G protein-coupled receptors acting through RhoA involves phosphorylation of Thr-696 (of the human isoform) of the myosin targeting subunit (MYPT1) of SMPP-1M inhibiting activity. In contrast, agonists that elevate intracellular cGMP and cAMP promote Ca(2+) desensitization in smooth muscle through apparent activation of SMPP-1M. We show that cGMP-dependent protein kinase (PKG)/cAMP-dependent protein kinase (PKA) efficiently phosphorylates MYPT1 in vitro at Ser-692, Ser-695, and Ser-852 (numbering for human isoform). Although phosphorylation of MYPT1 by PKA/PKG has no direct effect on SMPP-1M activity, a primary site of phosphorylation is Ser-695, which is immediately adjacent to the inactivating Thr-696. In vitro, phosphorylation of Ser-695 by PKA/PKG appeared to prevent phosphorylation of Thr-696 by MYPT1K. In ileum smooth muscle, Ser-695 showed a 3-fold increase in phosphorylation in response to 8-bromo-cGMP. Addition of constitutively active recombinant MYPT1K to permeabilized smooth muscles caused phosphorylation of Thr-696 and Ca(2+) sensitization; however, this phosphorylation was blocked by preincubation with 8-bromo-cGMP. These findings suggest a mechanism of Ca(2+) desensitization in smooth muscle that involves mutual exclusion of phosphorylation, whereby phosphorylation of Ser-695 prevents phosphorylation of Thr-696 and therefore inhibition of SMPP-1M.  相似文献   

19.
Cell migration is important to the integrity of the gastrointestinal tract for the normal movement of cells from crypt to villi and the healing of wounds. Polyamines are essential to cell migration, mucosal restitution, and, hence, healing. Polyamine depletion by α-difluoromethyl ornithine (DFMO) inhibited migration by decreasing lamellipodia and stress fiber formation and preventing the activation of Rho-GTPases. Polyamine depletion increased the association of the thick F-actin cortex with phosphorylated myosin regulatory light chain (pMRLC). In this study, we determined why MRLC is constitutively phosphorylated as part of the actin cortex. Inhibition of myosin light chain kinase (MLCK) decreased RhoA and Rac1 activities and significantly inhibited migration. Polyamine depletion increased phosphorylation of MRLC (Thr18/Ser19) and stabilized the actin cortex and focal adhesions. The Rho-kinase inhibitor Y27632 increased spreading and migration by decreasing the phosphorylation of MRLC, remodeling focal adhesions, and by activating Rho-GTPases. Thus phosphorylation of MRLC appears to be the rate-limiting step during the migration of IEC-6 cells. In addition, increased localization of RhoA with the actin cortex in polyamine-depleted cells appears to activate Rho-kinase. In the absence of polyamines, activated Rho-kinase phosphorylates myosin phosphatase targeting subunit 1 (MYPT1) at serine-668 leading to its inactivation and preventing the recruitment of phosphatase (protein phosphastase, PP1cδ) to the actomyosin cortex. In this condition, MRLC is constitutively phosphorylated and cycling does not occur. Thus activated myosin binds F-actin stress fibers and prevents focal adhesion turnover, Rho-GTPase activation, and the remodeling of the cytoskeleton required for migration.  相似文献   

20.
Phosphorylation of CPI-17 by Rho-associated kinase (Rho-kinase) and its effect on myosin phosphatase (MP) activity were investigated. CPI-17 was phosphorylated by Rho-kinase to 0.92 mol of P/mol of CPI-17 in vitro. The inhibitory phosphorylation site was Thr(38) (as reported previously) and was identified using a point mutant of CPI-17 and a phosphorylation state-specific antibody. Phosphorylation by Rho-kinase dramatically increased the inhibitory effect of CPI-17 on MP activity. Thus, CPI-17 as a substrate of Rho-kinase could be involved in the Ca(2+) sensitization of smooth muscle contraction as a downstream effector of Rho-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号