首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional activity of the exoglycan complex (EGC) polysaccharides from Rhizobium leguminosarum bv. viciae 250a and its nitrogen-resistant mutant M-71 capable of inducing the formation of nitrogen-fixing nodules on pea roots against a high-nitrogen background (4.8 mM NO3-) was studied in vegetation tests. For this purpose, the bacterial inoculum washed free of its own exoglycans was supplemented with EGC of this or another strain grown in the presence of 6 or 20 mM nitrate. The best symbiotic characteristics (nodule number and nitrogenase activity, mass of the roots and aerial parts of plants) were recorded when the inoculum cells and exoglycans were obtained from strain M-71 grown in the presence of 20 mM nitrate. When the plants were inoculated with the cells (grown at 6 mM nitrate) + EGC (obtained at 6 mM nitrate) of this strain, the nodulation characteristics and the effectiveness of symbiosis decreased 1.5-2-fold. Partial recovery of the symbiotic potential of strain M-71 was observed when EGC (obtained at 20 mM nitrate) was substituted for its exoglycans (obtained at 6 mM nitrate). In the presence of exoglycans of the parent strain 250a (obtained at 6 or 20 mM nitrate), the mutant formed a substantially lesser number of nodules with a very low nitrogen-fixing activity. In turn, the mutant exoglycans synthesized in medium with either high or low nitrate nitrogen concentration did not recover the fix+ phenotype of strain 250a capable of forming symbiosis with pea plants only against a low-nitrogen background. When studying the relative content of high-molecular-weight exopolysaccharide components and low-molecular-weight glycans in the exoglycan complex, it was established that, in strain 250a (grown at 6 and 20 mM nitrate), as well as in its mutant M-71 (grown at 6 mM nitrate), exopolysaccharides prevailed, accounting for 72-75% of the sum of both types of glycopolymers, while low-molecular-weight glycans accounted for 25-28%. In contrast, in the EGC of strain M-71 obtained at 20 mM nitrate, which was the most active inducer of the formation of the symbiotrophic system by strain M-71 in the presence of a high mineral nitrogen concentration, low-molecular-weight glycans were the main component, accounting for 61% of total glycopolymers, while the polysaccharide content was 39%. Low-molecular-weight exoglycans are supposed to be involved in maintaining the physiological activity and the symbiotic status of rhizobia under unfavorable environmental conditions.  相似文献   

2.
Kosenko  L. V.  Mandrovskaya  N. M.  Krugova  E. D. 《Microbiology》2004,73(3):350-355
The functional activity of the exoglycan complex (EGC) polysaccharides from Rhizobium leguminosarum bv. viciae 250a and its nitrogen-resistant mutant M-71, capable of inducing the formation of nitrogen-fixing nodules on pea roots against a high-nitrogen background (4.8 mM NO3 ), was studied in vegetation tests. For this purpose, the bacterial inoculum washed free of its own exoglycans was supplemented with EGC of the same or another strain grown in the presence of 6 or 20 mM nitrate. The best symbiotic characteristics (nodule number and nitrogenase activity, mass of the roots and aerial parts of plants) were recorded when the inoculum cells and exoglycans were obtained from strain M-71 grown in the presence of 20 mM nitrate. When the plants were inoculated with the cells (grown at 6 mM nitrate) + EGC (obtained at 6 mM nitrate) of this strain, the nodulation characteristics and the effectiveness of symbiosis decreased 1.5- to 2-fold. Partial recovery of the symbiotic potential of strain M-71 was observed when EGC (obtained at 20 mM nitrate) was substituted for its exoglycans (obtained at 6 mM nitrate). In the presence of exoglycans of the parent strain 250a (obtained at 6 or 20 mM nitrate), the mutant formed a substantially lesser number of nodules with a very low nitrogen-fixing activity. In turn, the mutant exoglycans synthesized in medium with either high or low nitrate nitrogen concentration did not recover the fix+ phenotype of strain 250a, capable of forming symbiosis with pea plants only against a low-nitrogen background. In study of the relative content of high-molecular-weight exopolysaccharide components and low-molecular-weight glycans in the exoglycan complex, it was established that, in strain 250a (grown at 6 and 20 mM nitrate), as well as in its mutant M-71 (grown at 6 mM nitrate), exopolysaccharides prevailed, accounting for 72–75% of the sum of both types of glycopolymers, while low-molecular-weight glycans accounted for 25–28%. In contrast, in the EGC of strain M-71 obtained at 20 mM nitrate, which was the most active inducer of the formation of the symbiotrophic system by strain M-71 in the presence of a high mineral nitrogen concentration, low-molecular-weight glycans were the main component, accounting for 61% of total glycopolymers, while the polysaccharide content was 39%. Low-molecular-weight exoglycans are supposed to be involved in maintaining the physiological activity and the symbiotic status of rhizobia under unfavorable environmental conditions.  相似文献   

3.
Summary X-ray absorption spectroscopy has been applied to the in vivo examination of copper-resistant yeast cells. The in vivo structure of the metal-binding site of the accumulated copper has been compared to that of the purified yeast thionein. Analysis of the EXAFS spectra performed on intact yeast cells indicates that the accumulated copper is univalent and is exclusively coordinated to sulfur atoms at a distance of 219 pin with an average coordination number of 2. In contrast, the purified protein indicates a univalent copper trigonally coordinated to sulfur at a distance of 221 pm. These discrepancies are discussed in terms of copper location in the resistant yeast cells.  相似文献   

4.
5.
Living organisms have developed refined and geneticaly controlled mechanisms of the copper metabolism and transport. ATP7A and ATP7B proteins play the key role in copper homeostasis in the organism. Both proteins are P-type Cu-transporting ATPases and use the energy of ATP hydrolysis to transfer the copper ions across the cellular membranes. Both proteins are localised in Golgi aparatus and involved in regulation of overall copper status in the body and their function is the export of excess copper from the cells and delivery of copper ions to Cu-dependent enzymes. Moreover in organism Cu-transporting ATPases are involved in absorption of dietary copper, Cu removal with the bile, placental copper transport and its secretion to the milk during lactation. Moreover it is known that Cu-transporting ATPases play a role in generation of anti-cancer drug resistance. Disturbances of ATP7A and ATP7B function caused by mutations lead to severe metabolic diseases Menkes and Wilson diseases, respectively.  相似文献   

6.
X-ray absorption studies of yeast copper metallothionein   总被引:3,自引:0,他引:3  
The local structures of the metal sites in copper metallothionein from Saccharomyces cerevisiae have been investigated by x-ray absorption spectroscopy at the copper and sulfur K edges. Analysis of the EXAFS (extended x-ray absorption fine structure) data indicates that each copper is trigonally coordinated to sulfur at a distance of 2.23 A. Cu-Cu interactions at 2.7 and 3.9 A have also been tentatively identified. Sulfur K edge data are compatible with cysteinyl thiolates bridging each of the eight Cu(I) ions. The data support a model for the copper cluster in yeast metallothionein consisting of a Cu8S12 core. EXAFS data on two specifically engineered carboxyl-terminal truncated mutants reveal that the copper coordination in the mutants is similar to that observed in the wild-type protein.  相似文献   

7.
Transition metal homeostasis: from yeast to human disease   总被引:1,自引:0,他引:1  
Transition metal ions are essential nutrients to all forms of life. Iron, copper, zinc, manganese, cobalt and nickel all have unique chemical and physical properties that make them attractive molecules for use in biological systems. Many of these same properties that allow these metals to provide essential biochemical activities and structural motifs to a multitude of proteins including enzymes and other cellular constituents also lead to a potential for cytotoxicity. Organisms have been required to evolve a number of systems for the efficient uptake, intracellular transport, protein loading and storage of metal ions to ensure that the needs of the cells can be met while minimizing the associated toxic effects. Disruptions in the cellular systems for handling transition metals are observed as a number of diseases ranging from hemochromatosis and anemias to neurodegenerative disorders including Alzheimer??s and Parkinson??s disease. The yeast Saccharomyces cerevisiae has proved useful as a model organism for the investigation of these processes and many of the genes and biological systems that function in yeast metal homeostasis are conserved throughout eukaryotes to humans. This review focuses on the biological roles of iron, copper, zinc, manganese, nickel and cobalt, the homeostatic mechanisms that function in S. cerevisiae and the human diseases in which these metals have been implicated.  相似文献   

8.
The high toxicity of copper ions for Candida valida growth was established at pH-auxostat regime. The value of mu max decreased even at the residual Cu2+ concentration 1.0 mg/l. The inhibition constant (Ki) that characterized a copper ion concentration at which yeast specific growth rate was halved was equal to 7.7 mg/l. A linear dependence of 1/mu max on a residual concentration of copper ions indicates that yeast growth inhibition is due to inhibition of one enzymic reaction which is the most sensitive to copper. Yeast growth inhibition by copper was accompanied by accumulation of Cu2+ ions in biomass, a decrease in nucleic acid and true protein contents, and changes in amino acid composition of protein. The amounts of cystine and cysteine in protein increased and tryptophane content decreased with inhibition of yeast growth. Yeast growth inhibition by copper did not affect the lipid content but significantly reduced the degree of unsaturation due to a decrease in the amounts of polyunsaturated linoleic and alpha-linolenic acids.  相似文献   

9.
Delivering copper within plant cells   总被引:12,自引:0,他引:12  
Two genes recently identified in Arabidopsis thaliana may be involved in sequestering free copper ions in the cytoplasm and delivering copper to post-Golgi vesicles. The genes COPPER CHAPERONE and RESPONSIVE TO ANTAGONIST1 are homologous to copper-trafficking genes from yeast and humans. This plant copper-delivery pathway is required to create functional ethylene receptors. The pathway may also facilitate the transport of copper from senescing leaf tissue. In addition, several other genes have been identified recently that may have a role in copper salvage during senescence.  相似文献   

10.
11.
Negative ion electrospray (ESI) fragmentation spectra derived from anion-adducted glycans were evaluated for structural determination of N-linked glycans and found to be among the most useful mass spectrometric techniques yet developed for this purpose. In contrast to the more commonly used positive ion spectra that contain isobaric ions formed by losses from different regions of the molecules and often lead to ambiguous deductions, the negative ion spectra contain ions that directly reflect structural features such as the branching pattern, location of fucose, and the presence of bisecting GlcNAc. These structural features are sometimes difficult to determine by traditional methods. Furthermore, the spectra give structural information from mixtures of isomers and from single compounds. The method was evaluated with well-characterized glycans from IgG and used to explore structures of N-linked glycans released from serum glycoproteins with the aim of identifying biomarkers for cancer. Quantities of glycans were measured by ESI and by matrix-assisted laser desorption ionization mass spectrometry; each technique produced virtually identical results for the neutral desialylated glycans.  相似文献   

12.
The polyene antibiotic candicidin is a potent membrane active agent, the action of which can be inhibited by the presence of certain ions. The destruction of the selective permeability of yeast membranes by candicidin allows small molecules to leak into the environment. Loss of intracellular potassium ions inhibits yeast glycolysis. This inhibition may be reversed by extracellular concentrations of potassium or ammonium ions. Monovalent ions did not prevent antibiotic absorption or protect yeast growth from the action of the antibiotic. Divalent ions did not protect yeast glycolysis from the action of candicidin, but were able to reduce antibiotic-induced membrane damage and allowed yeast growth in the presence of antibiotic. It is suggested that divalent ions may interact with membrane sterols creating steric hindrance to subsequent candicidin absorption.  相似文献   

13.
从酿酒酵母基因组DNA中克隆到金属硫蛋白启动子(PCUP1)片段,将绿色荧光蛋白(GFP)基因置于PCUP1的调控下,构建重组质粒pCUP9K-GFP,并通过氯化锂法转化毕赤酵母,获得工程菌株。工程菌细胞及其发酵液中可检出GFP荧光,表明PCUP1能启动外源基因GFP转录,使工程菌表达并分泌GFP。研究发现,工程菌培养液中分别加入10μmol/L的铜、铬、镉和砷离子后,铜处理组GFP荧光强度明显增加,其余三种离子对工程菌荧光强度影响不大;用铜离子诱导后,工程菌发酵上清液的荧光强度明显增强,并与铜离子浓度(0~1mmol/L)呈正相关。研究表明,该工程菌中启动子PCUP1受铜离子诱导,GFP的表达对铜离子具有剂量依赖性,在一定浓度范围内,GFP荧光强度与铜离子浓度呈正相关。  相似文献   

14.
In this work, we report a study of the effects of zinc and copper ions on the heat-induced aggregation of beta-lactoglobulin (BLG). Kinetics investigations on aggregates growth by light scattering measurements and on secondary structure changes by FTIR absorption measurements show the different role played by the two metals during the whole process. In particular, the presence of zinc in solution promotes the formation of aggregates of BLG at a lower temperature than copper. Then, at fixed temperature, formation of a large amount of aggregates, of large dimension, is observed for Zn-BLG in shorter time; on the contrary, the presence of copper in solution does not affect the aggregation process while the secondary structure changes and the formation of different stronger intermolecular H-bonds, which probably lead to build a network of bonds that takes towards gelation. Our studies show how time evolution of aggregation process of BLG is dramatically affected by the presence of metal ions in solution and structural protein modifications are induced by different divalent metal ions.  相似文献   

15.
The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu–ySco1) were determined to 1.8- and 2.3-Å resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu–ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.  相似文献   

16.
A histidine oligopeptide (hexa-His) with the ability to chelate divalent heavy metal ions was displayed on the yeast cell surface for the purpose of enhanced adsorption of heavy metal ions. We genetically fused a hexa-His-encoding gene with the gene encoding the C-terminal half of alpha-agglutinin that includes a glycosylphosphatidylinositol anchor attachment signal sequence and attached the hexa-His peptide on the cell wall of Saccharomyces cerevisiae. This surface-engineered yeast adsorbed three to eight times more copper ions than the parent strain and was more resistant to copper (4 mM) than the parent (below 1 mM at pH 7.8). It was possible to recover about a half of the copper ions adsorbed by whole cells with EDTA treatment without disintegrating the cells. Thus, we succeeded in constructing a novel yeast cell with both tolerance to toxic contaminants and enhanced adsorption of metal ions onto the cell surface.  相似文献   

17.
The diazotrophic endophyte Herbaspirillum seropedicae Z78 was shown to possess a capsule containing two high-molecular-weight glycolipids, one of which was of a lipopolysaccharide nature. These glycolipids differed considerably in the fatty acid composition of their lipid components. The polysaccharide moiety of these glycans was composed of glucose, galactose, glucosamine, galactosamine, and a noncarbohydrate component, butanetetraol. In the culture liquid of H. seropedicae Z78, an extracellular polysaccharide and an extracellular form of lipopolysaccharide were revealed. Fatty acid composition of the extracellular lipopolysaccharide differed from that of the capsular glycoconjugates; the polysaccharide moiety of exoglycans contained only neutral sugars (mannose, glucose, and galactose) and a tetraatomic alcohol, butanetetraol. It is assumed that structural diversity of polysaccharide-containing polymers at the surface of H. seropedicae Z78 cells is conditioned by their different roles in plant colonization and formation of efficient symbiosis.  相似文献   

18.
The biosorption of lead, copper and zinc ions on Rhizopus arrhizus has been studied for three single-component and two binary systems. The equilibrium data have been analysed using the Freundlich adsorption model. The characteristic parameters for the Freundlich adsorption model have been determined and the competition coefficients for the competitive biosorption of Pb(II)-Cu(II) at pH 4.0 and 5.0, and Pb(II)-Zn(II) at pH 5.0 have been calculated. For the individual single-component isotherms, lead has the highest biosorption capacity followed by copper, then zinc. The capacity of lead in the two binary systems is always significantly greater than those of the other metal ions, in agreement with the single-component data. Only a partial selectivity for copper ions has been obtained at pH 4.0. Received: 21 June 1999 / Accepted: 2 November 1999  相似文献   

19.
The effect of copper was tested on the growth of many strains of yeast. Plate culture on density gradient agar of copper was used for estimating the growth response to copper. Growth in many strains was more strongly inhibited by the copper-aquo complex than by the copper-amino acid complex. Debaryomyces hansenii IFO 023 was found a suitable strain for the present study, because it was not resistant, not producing H2S, and copper absorption by this strain was similar to that of the resistant strain. Growth of yeast cells in medium containing copper was affected by pH and concentration of amino acid in medium. Absorption of copper into intact cells was almost saturated for the initial few minutes. It was also affected by the addition of amino acid to copper solution. Our results indicated that the growth response of yeast to copper was closely related to copper absorption into cells. About 60 percent of copper absorbed into cells was distributed in the soluble fraction of the cell homogenate which was obtained by centrifugation at 105,000 g for 60 min.  相似文献   

20.
It was determined whether it is possible to intensify the biosorption of copper ions from a copper sulfate solution with yeast Saccharomyces cerevisiae 1968 by introducing a metal headpiece into the solution and by applying an external magnetic field. The study was carried out in a magnetic field oriented both parallel and perpendicular to the axes of the rods (with parallel and perpendicular geometry of the system) that make up the headpiece. It was shown that the extent of intensification of the extraction of copper ions at different geometries of the system differs insignificantly and that the extraction of copper ions from the solution occurs by biosorption and cementation onto the metal headpiece.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号