首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this qualitative study of the pattern of bile acid excretion in cholestasis, methods are described for the isolation of bile acids from large volumes of urine and plasma. The bile acids were subjected to a group separation and identified by combined gas chromatography-mass spectrometry. The techniques were developed to allow identification of the minor components of the bile acid mixture. Four bile acids that have not previously been described in human urine and plasma were detected, namely 3beta, 7alpha-dihydroxy-5beta-cholan-24-oic acid, 3alpha, 6alpha-dihydroxy-5beta-cholan-24-oic acid (hyodeoxycholic acid), 3alpha, 6alpha, 7alpha-trihydroxy-5beta-cholan-24-oic acid (hyocholic acid) and 3alpha, 7beta, 12alpha-trihydroxy-5beta-cholan-24-oic acid. In addition three C27 steroids were found; 26-hydroxycholesterol and a trihydroxy cholestane, probably 5 beta-cholestane-3alpha, 7alpha, 26-triol were found in the sulphate fraction of plasma and urine. In the plasma sample, a sulphate conjugate of 24-hydroxycholesterol was found. The presence of these compounds probably reflects the existence of further pathways for bile acid metabolism. It is not yet known whether this is a consequence of the cholestasis or whether they are also present in normal man, at much lower concentrations.  相似文献   

2.
Bile salts of the coelacanth, Latimeria chalumnae, Smith, have been analyzed and shown to have three bile alcohols, latimerol, 5 alpha-cyprinol, and 5 alpha-cholestane-3 beta, 7 alpha,-12 alpha,25,26-pentol, two C24 bile acids, chenodeoxycholic acid and cholic acid, one C26 bile acid, probably 3 beta, 7 alpha, 12 alpha-trihydroxy-27-nor-5 alpha-cholestan-26-oic acid, and two C27 bile acids, 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-cholestan-26-oic acid and 3 beta,7 alpha,12 alpha-trihydroxy-5 alpha-cholestan-26-oic acid as determined by gas-liquid chromatography and gas-liquid chromatography-mass spectrometry.  相似文献   

3.
1. Bile salts of the green turtle Chelonia mydas (L.) were analysed as completely as possible. 2. They consist of taurine conjugates of 3 alpha, 7 alpha, 12 alpha, 22 xi-tetrahydroxy-5 beta-cholestan-26-oic acid (tetrahydroxysterocholanic acid) and 3 alpha 12 alpha, 22 xi-trihydroxy-5 beta-cholestan-26-oic acid, with minor amounts of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5beta-cholan-24-oic acid (cholic acid), 3alpha, 12 alpha-dihydroxy-5beta-cholan-24-oic acid (deoxycholic acid) and possibly other bile acids. 3. Cholic acid and deoxycholic acid represent the first known examples of bile acids common to chelonians and other animal forms: they may indicate independent evolution in chelonians to C24 bile acids. 4. The discovery of a 7-deoxy C27 bile acid is the first evidence that C27 bile acids or their conjugates have an enterohepatic circulation.  相似文献   

4.
Duodenal bile, urine, plasma, and feces from a child with hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency were analyzed by fast atom bombardment mass spectrometry and gas chromatography-mass spectrometry to investigate the formation and excretion of abnormal bile acids and bile alcohols. The biliary bile salts consisted of glycocholic acid (25%) and of sulfated and glycine conjugated di- and trihydroxycholenoic acids (55%), two C27 bile acids, and eleven sulfated bile alcohols (mainly tetrols, 20%), all having 3 beta,7 alpha-dihydroxy-delta 5 or 3 beta,7 alpha,12 alpha-trihydroxy-delta 5 ring structures. In plasma, sulfated cholenoic acids constituted 65% and unconjugated 3 beta,7 alpha-dihydroxy-5-cholestenoic acid 25% of the total level, 71 micrograms/ml. The urinary excretion of the former was 30.4 mg/day and that of unsaturated bile alcohol sulfates, mainly pentols, 7 mg/day. The predominant bile acid in feces was an unconjugated epimer of 3 beta,7 alpha,12 alpha-trihydroxy-5-cholenoic acid, and small amounts of cholic acid were present. The minimum total excretion was 11.3 mg/day. Treatment with chenodeoxycholic acid resulted in marked clinical improvement and normalized liver function tests. Further studies are needed to define the mechanism of action. Plasma bile acids decreased to 1.6 micrograms/ml and urinary excretion to 3.4 mg/day. Chenodeoxycholic and ursodeoxycholic acids became predominant in all samples. The fecal excretion of unsaturated cholenoic acid sulfates increased to 40 mg/day compared to 89 mg/day of saturated bile acids. The results provide further support for a defective hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency, and indicate that the 3 beta-hydroxy-delta 5 bile acids are formed via 7 alpha-hydroxycholesterol. The formation of glycocholic acid may be due to an incomplete enzyme defect or to transformation of the 3 beta-hydroxy-delta 5 structure by bacterial and hepatic enzymes during an enterohepatic circulation.  相似文献   

5.
We recently showed that previously unknown di- and trihydroxylated C21-bile acids are major degradation products of sitosterol and campesterol in bile-fistulated female Wistar rats. Using a mixture of 4-14C- and 22-3H-labeled cholesterol it was shown that such C21-bile acids are formed also from cholesterol in amounts up to about 25% of the total formation of bile acids. The C21-bile acids were formed from labeled cholesterol also in perfused rat liver, demonstrating that the liver is the site of synthesis. The major trihydroxylated C21-bile acids in bile were identified, by means of mass spectrometry, NMR, stereospecific dehydrogenases, and reagents, as 5 beta-pregnan-3 alpha, 11 beta, 15 beta-triol-21-oic acid and 5 beta-pregnan-3 alpha, 11 beta, 15 alpha-triol-21-oic acid. The corresponding 11-oxo-isomers were also present. A minor trihydroxylated C21-bile acid was identified as 5 beta-pregnan-3 alpha, 11 beta, 16-triol-21-oic acid. The major dihydroxylated C21-bile acid was identified by the same means as 5 alpha-pregnan-3 alpha, 12 alpha-diol-21-oic acid. Male rats converted 4-14C-cholesterol into C21-bile acids less efficiently than did female rats. None of the C21-bile acids from male rats contained a 15-hydroxyl group. It is speculated that the novel C21-bile acids are formed both from cholesterol and from plant sterols by an initial hydroxylation at C21 followed by peroxisomal or mitochondrial beta-oxidation. The presence of a hydroxyl group at C15 may facilitate this reaction. The above formation of C21-bile acids shows that mammalian liver is able to degrade the side chain of cholesterol beyond the C24 stage, even in the absence of a blocking group at C24. C21-bile acids, or one of their precursors, are hydroxylated in the liver by a hitherto unknown 11 beta-hydroxylase. The possible physiological importance of the C21-bile acids is discussed.  相似文献   

6.
Peroxisomal beta-oxidation is an essential step in bile acid synthesis, since it is required for shortening of C27-bile acid intermediates to produce mature C24-bile acids. D-Bifunctional protein (DBP) is responsible for the second and third step of this beta-oxidation process. However, both patients and mice with a DBP deficiency still produce C24-bile acids, although C27-intermediates accumulate. An alternative pathway for bile acid biosynthesis involving the peroxisomal L-bifunctional protein (LBP) has been proposed. We investigated the role of LBP and DBP in bile acid synthesis by analyzing bile acids in bile, liver, and plasma from LBP, DBP, and LBP:DBP double knock-out mice. Bile acid biosynthesis, estimated by the ratio of C27/C24-bile acids, was more severely affected in double knock-out mice as compared with DBP-/- mice but was normal in LBP-/- mice. Unexpectedly, trihydroxycholestanoyl-CoA oxidase was inactive in double knock-out mice due to a peroxisomal import defect, preventing us from drawing any firm conclusion about the potential role of LBP in an alternative bile acid biosynthesis pathway. Interestingly, the immature C27-bile acids in DBP and double knock-out mice remained unconjugated in juvenile mice, whereas they occurred as taurine conjugates after weaning, probably contributing to the minimal weight gain of the mice during the lactation period. This correlated with a marked induction of bile acyl-CoA:amino acid N-acyltransferase expression and enzyme activity between postnatal days 10 and 21, whereas the bile acyl-CoA synthetases increased gradually with age. The nuclear receptors hepatocyte nuclear factor-4alpha, farnesoid X receptor, and peroxisome proliferator receptor alpha did not appear to be involved in the up-regulation of the transferase.  相似文献   

7.
According to current views, peroxisomal beta-oxidation is organized as two parallel pathways: the classical pathway that is responsible for the degradation of straight chain fatty acids and a more recently identified pathway that degrades branched chain fatty acids and bile acid intermediates. Multifunctional protein-2 (MFP-2), also called d-bifunctional protein, catalyzes the second (hydration) and third (dehydrogenation) reactions of the latter pathway. In order to further clarify the physiological role of this enzyme in the degradation of fatty carboxylates, MFP-2 knockout mice were generated. MFP-2 deficiency caused a severe growth retardation during the first weeks of life, resulting in the premature death of one-third of the MFP-2(-/-) mice. Furthermore, MFP-2-deficient mice accumulated VLCFA in brain and liver phospholipids, immature C(27) bile acids in bile, and, after supplementation with phytol, pristanic and phytanic acid in liver triacylglycerols. These changes correlated with a severe impairment of peroxisomal beta-oxidation of very long straight chain fatty acids (C(24)), 2-methyl-branched chain fatty acids, and the bile acid intermediate trihydroxycoprostanic acid in fibroblast cultures or liver homogenates derived from the MFP-2 knockout mice. In contrast, peroxisomal beta-oxidation of long straight chain fatty acids (C(16)) was enhanced in liver tissue from MFP-2(-/-) mice, due to the up-regulation of the enzymes of the classical peroxisomal beta-oxidation pathway. The present data indicate that MFP-2 is not only essential for the degradation of 2-methyl-branched fatty acids and the bile acid intermediates di- and trihydroxycoprostanic acid but also for the breakdown of very long chain fatty acids.  相似文献   

8.
We used capillary gas chromatography/mass spectrometry to demonstrate that a cell line derived from a well differentiated human hepatoblastoma, HepG2, synthesized and secreted the following bile acids (ng/10(7) cells/h): chenodeoxycholic acid (131.4), cholic acid (3.3), 3 alpha, 7 alpha-dihydroxy-5 beta-cholestan-26-oic acid (DHCA; 4.5), and 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestan-26-oic acid (THCA; 32.0). Deuterium from [7 beta-2H]7 alpha-hydroxycholesterol, which was added to the media, was incorporated into newly synthesized chenodeoxycholic acid, DHCA, and THCA, but not into cholic acid. Since THCA is a known precursor of cholic acid, these data suggest that HepG2 is specifically deficient in the side chain cleavage that transforms THCA into cholic acid. Greater than 90% of the bile acids synthesized and secreted by HepG2 were unconjugated. Conjugation could not be stimulated by the addition of glycine or taurine to the media. Approximately 30% of newly synthesized DHCA and THCA were sulfated. Chenodeoxycholic acid and cholic acid were not appreciably sulfated. In summary, cultured HepG2 cells synthesize bile acid, but in a pattern distinct from that of adult human liver. This cell line may be a model for studying pathways of human bile acid synthesis, conjugation, and sulfation.  相似文献   

9.
Three unconjugated C27 bile acids were found in plasma from healthy humans. They were isolated by liquid-solid extraction and anion-exchange chromatography and were identified by gas-liquid chromatography-mass spectrometry, microchemical reactions, and ultraviolet spectroscopy as 3 beta-hydroxy-5-cholestenoic, 3 beta,7 alpha-dihydroxy-5-cholestenoic, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acids. Their levels often exceeded those of the unconjugated C24 bile acids and the variations between individuals were smaller than for the C24 acids. The concentrations in plasma from 11 healthy subjects were 67.2 +/- 27.9 ng/ml (mean +/- SD) for 3 beta-hydroxy-5-cholestenoic acid, 38.9 +/- 25.6 ng/ml for 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 81.7 +/- 27.9 ng/ml for 7 alpha-hydroxy-3-oxo-4-cholestenoic acid. The levels of the individual acids were positively correlated to each other and not to the levels of the C24 acids. The cholestenoic acids were below the detection limit (20-50 ng/ml) in bile and C27 bile acids present in bile were not detected in plasma.  相似文献   

10.
Transport of a series of 3H-radiolabeled C23, C24, and C27 bile acid derivatives was compared and contrasted in HeLa cell lines stably transfected with rat Na+/taurocholate cotransporting polypeptide (ntcp) or organic anion transporting polypeptide 1 (oatp1) in which expression was under regulation of a zinc-inducible promoter. Similar uptake patterns were observed for both ntcp and oatp1, except that unconjugated hyodeoxycholate was a substrate of oatp1 but not ntcp. Conjugated bile acids were transported better than nonconjugated bile acids, and the configuration of the hydroxyl groups (alpha or beta) had little influence on uptake. Although cholic and 23 norcholic acids were transported by ntcp and oatp1, other unconjugated bile acids (chenodeoxycholic, ursodeoxycholic) were not. In contrast to ntcp, oatp1-mediated uptake of the trihydroxy bile acids taurocholate and glycocholate was four- to eightfold below that of the corresponding dihydroxy conjugates. Ntcp mediated high affinity, sodium-dependent transport of [35S]sulfobromophthalein with a Km similar to that of oatp1-mediated transport of [35S]sulfobromophthalein (Km = 3.7 vs. 3.3 muM, respectively). In addition, for both transporters, uptake of sulfobromophthalein and taurocholic acid showed mutual competitive inhibition. These results indicate that the substrate specificity of ntcp is considerably broader than previously suspected and caution the extrapolation of transport data obtained in vitro to physiological function in vivo.  相似文献   

11.
The bile acid in gallbladder bile of rabbits fed a normal diet or one containing 2% (w/w) cholesterol have been determined by gas chromatography-mass spectrometry. The predominant bile acids in normally fed rabbits were 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholan-24-oic acid (cholic acid), 3 alpha, 12 alpha-dihydroxy-5 alpha-cholan-24-oic acid (allodeoxycholic acid) and 3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid (deoxycholic acid) with very much smaller amounts of 3 alpha-hydroxy-5 beta-cholan-24-oic acid (lithocholic acid) and 3 alpha, 12 beta-dihydroxy-5 beta-cholan-24-oic acid. In the cholesterol-fed animals the lithocholate became a predominant bile acid. Sulphated bile acids accounted for less than 1% of the total bile acids. It is proposed that lithocholic acid may be a primary bile acid in the cholesterol-fed rabbit, formed by an alternative pathway of biosynthesis involving hepatic mitochondria.  相似文献   

12.
Hagey LR  Iida T  Ogawa S  Adachi Y  Une M  Mushiake K  Maekawa M  Shimada M  Mano N  Hofmann AF 《Steroids》2011,76(10-11):1126-1135
Three C(27) bile acids were found to be major biliary bile acids in the capuchinbird (Perissocephalus tricolor) and bare-throated bellbird (Procnias nudicollis), both members of the Cotingidae family of the order Passeriformes. The individual bile acids were isolated by preparative RP-HPLC, and their structures were established by RP-HPLC, LC/ESI-MS/MS and NMR as well as by a comparison of their chromatographic properties with those of authentic reference standards of their 12α-hydroxy derivatives. The most abundant bile acid present in the capuchinbird bile was the taurine conjugate of C(27) (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid, a diastereomer not previously identified as a natural bile acid. The four diastereomers of taurine-conjugated (24ξ,25ξ)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid could be distinguished by NMR and were resolved by RP-HPLC. The RRT of the diastereomers (with taurocholic acid as 1.0) were found to be increased in the following order: (24R,25R)<(24S,25R)<(24S,25S)<(24R,25S). Two epimers (25R and 25S) of C(27) 3α,7α-dihydroxy-5β-cholestan-27-oic acid were also present (as the taurine conjugates) in both bird species. Epimers of the two compounds could be distinguished by their NMR spectra and resolved by RP-HPLC with the (25S)-epimer eluting before the (25R)-epimer. Characterization of the taurine-conjugated (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid should facilitate their detection in peroxisomal disease and inborn errors of bile acid biosynthesis.  相似文献   

13.
A novel trihydroxylated C24 bile acid was isolated from the gallbladder bile of the Australian opossum, Trichosurus vulpecula (Lesson). This acid, for which the name vulpecholic acid is proposed, was identified as 1 alpha, 3 alpha, 7 alpha-trihydroxy-5 beta-cholan-24-oic. The structure proof included mass spectral and 1H and 13C nuclear magnetic resonance characterization of all crucial derivatives obtained by: oxidation of the methyl ester to a triketone with the enolizable 1,3-diketone function; methylation of this triketone to two isomeric methyl enol ethers; and reductive removal of oxygen functions from this triketone to give 5 beta-cholan-24-oic and 7-oxo-5 beta-cholan-24-oic acids. Vulpecholic acid was found in the bile in the unconjugated form; it accounted for more than 60% of the solid bile material. The marsupial T. vulpecula is the first example of a mammal secreting a 1 alpha-hydroxylated bile acid as well as the first example of a mammal secreting the major bile acid in a free form.  相似文献   

14.
Petroni A  Blasevich M  Uziel G 《Life sciences》2003,73(12):1567-1575
X-Adrenoleukodystrophy (X-ALD) is a peroxisomal disorder associated with the abnormal accumulation of very long chain fatty acids (VLCFA) in plasma and tissues. We have demonstrated that the androgen dihydrotestosterone (DHT) and 5 alpha-androstan-3 alpha,17 beta-diol (3 alpha-diol) have favorable effect on VLCFA metabolism. We have investigated the effect of androgens on peroxisomal beta-oxidation, the incorporation of labelled lignoceric acid into cholesterol esters and VLCFA elongation, in cultured skin-fibroblasts from control and X-ALD patients. The androgens significantly increased peroxisomal beta-oxidation in X-ALD fibroblasts although VLCFA levels were not normalized. The major effect was on the incorporation of labelled lignoceric acid into cholesterol esters, since the enhanced lignoceric acid incorporation into cholesterol ester fraction, which occurred in X-ALD fibroblasts, was reduced towards normal values. In contrast, the androgens had no effect on the elongation pathway.  相似文献   

15.
In order to define the effect of a side chain hydroxy group on bile acid (BA) physicochemical and biological properties, 23-hydroxylated bile acids were synthesized following a new efficient route involving the alpha-oxygenation of silylalkenes. 22-Hydroxylated bile acids were also studied. The synthesized bile acids included R and S epimers of 3 alpha,7 alpha,23-trihydroxy-5 beta-cholan-24-oic acid (23R epimer: phocaecholic acid), 3 alpha,12 alpha,23-trihydroxy-5 beta-cholan-24-oic (23R epimer: bitocholic acid), and 3 alpha,7 beta,23-trihydroxy-5 beta-cholan-24-oic acid. A 3 alpha,7 alpha,22-trihydroxy-5 beta-cholan-24-oic acid (haemulcholic acid) was also studied. The presence of a hydroxy group on the side chain slightly modified the physicochemical behavior in aqueous solution with respect to common BA: the critical micellar concentration (CMC) and the hydrophilicity were similar to naturally occurring trihydroxy BA such as cholic acid. The pKa value was lowered by 1.5 units with respect to common BA, being 3.8 for all the C-23 hydroxy BA. C-22 had a higher pKa (4.2) as a result of the increased distance of the hydroxy group from the carboxy group. When the C-23 hydroxylated BA were intravenously administered to bile fistula rats, they were efficiently recovered in bile (more than 80% unmodified) while the corresponding analogs, lacking the 23- hydroxy group, were almost completely glycine- or taurine-conjugated. On the other hand, the C-22 hydroxylated BA were extensively conjugated with taurine and less than 40% of the administered dose was secreted without being conjugated. In the presence of intestinal bacteria, they were mostly metabolized to the corresponding 7-dehydroxylated compound similar to common BA with the exception of bitocholic acid which was relatively stable. The presence of a hydroxy group at the C-23 position increased the acidity of the BA and this accounted for poor absorption within the biliary tree and efficient biliary secretion without the need for conjugation. 3 alpha,7 beta-23 R/S trihydroxy-5 beta-cholan-24-oic acids could improve the efficiency of ursodeoxycholic acid (UDCA) for gallstone dissolution or cholestatic syndrome therapy, as it is relatively hydrophilic and efficiently secreted into bile without altering the glycine and taurine hepatic pool.  相似文献   

16.
Group separations of unconjugated and conjugated bile acids and salts were performed using mixtures of conventional solvents by chromatography on columns of silicic acid. The results suggest that this method is useful for group separations of mono-, di-, and trihydroxycholan-24-oic acids and their conjugates with good recoveries. This method is advantageous for synthesis work, especially for the purification of conjugated and sulfated bile acids and salts, and is applicable for the group separation of glycine and taurine conjugates. The application of this method to human gallbladder bile salts is demonstrated.  相似文献   

17.
Identification of unconjugated bile acids in human bile   总被引:1,自引:0,他引:1  
Unconjugated bile acids in the bile of healthy and diseased humans were determined qualitatively and quantitatively by means of gas-liquid chromatography and gas-liquid chromatography-mass spectrometry, after their isolation by ion-exchange chromatography. In a healthy person and three patients with cholelithiasis, unconjugated bile acids comprised 0.1-0.4% of total biliary bile acids. The bile acid composition of the unconjugated fraction was quite different from that of the glycine- or taurine-conjugate fraction, in that it contained a relatively large proportion of unusual bile acids including C23 and C27 bile acids. In two patients with cerebrotendinous xanthomatosis, C22 and C23 bile acids were the major constituents of the biliary unconjugated bile acids, and comprised about 0.8% of total bile acids; no detectable amounts of C27 bile acids were found in their bile. The analysis of biliary unconjugated bile acids may be useful for the diagnosis of metabolic diseases concerning bile acids, particularly the accumulation or disappearance of unusual bile acids.  相似文献   

18.
By HPLC, a taurine-conjugated bile acid with a retention time different from that of taurocholate was found to be present in the bile of the black-necked swan, Cygnus melanocoryphus. The bile acid was isolated and its structure, established by (1)H and (13)C NMR and mass spectrometry, was that of the taurine N-acyl amidate of 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid. The compound was shown to have chromatographic and spectroscopic properties that were identical to those of the taurine conjugate of authentic 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid, previously synthesized by us from ursodeoxycholic acid. By HPLC, the taurine conjugate of 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid was found to be present in 6 of 6 species in the subfamily Dendrocygninae (tree ducks) and in 10 of 13 species in the subfamily Anserinae (swans and geese) but not in other subfamilies in the Anatidae family. It was also not present in species from the other two families of the order Anseriformes. 3alpha,7alpha,15alpha-Trihydroxy-5beta-cholan-24-oic acid is a new primary bile acid that is present in the biliary bile acids of swans, tree ducks, and geese and may be termed 15alpha-hydroxy-chenodeoxycholic acid.  相似文献   

19.
To obtain information on the concentration and spectrum of bile acids in human cecal content, samples were obtained from 19 persons who had died an unnatural death from causes such as trauma, homicide, suicide, or drug overdose. Bile acid concentration was measured via an enzymatic assay for 3alpha-hydroxy bile acids; bile acid classes were determined by electrospray ionization mass spectrometry and individual bile acids by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. The 3alpha-hydroxy bile acid concentration (mumol bile acid/ml cecal content) was 0.4 +/- 0.2 mM (mean +/- SD); the total 3-hydroxy bile acid concentration was 0.6 +/- 0.3 mM. The aqueous concentration of bile acids (supernatant after centrifugation) was identical, indicating that most bile acids were in solution. By liquid chromatography mass spectrometry, bile acids were mostly in unconjugated form (90 +/- 9%, mean +/- SD); sulfated, nonamidated bile acids were 7 +/- 5%, and nonsulfated amidated bile acids (glycine or taurine conjugates) were 3 +/- 7%. By gas chromatography mass spectrometry, 10 bile acids were identified: deoxycholic (34 +/- 16%), lithocholic (26 +/- 10%), and ursodeoxycholic (6 +/- 9), as well as their primary bile acid precursors cholic (6 +/- 9%) and chenodeoxycholic acid (7 +/- 8%). In addition, 3beta-hydroxy derivatives of some or all of these bile acids were present and averaged 27 +/- 18% of total bile acids, indicating that 3beta-hydroxy bile acids are normal constituents of cecal content. In the human cecum, deconjugation and dehydroxylation of bile acids are nearly complete, resulting in most bile acids being in unconjugated form at submicellar and subsecretory concentrations.  相似文献   

20.
The concentrations of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid were determined in plasma from patients with different liver diseases and compared with those of unconjugated and conjugated C24 bile acids. The levels of the cholestenoic acids were similar in patients with extrahepatic cholestasis and in controls (median concentration 153 and 162 ng/ml, respectively), whereas significantly elevated levels were found in plasma from patients with primary biliary cirrhosis (median concentration 298 ng/ml) and alcoholic liver cirrhosis (median concentration 262 ng/ml). As expected, conjugated C24 bile acids were elevated in most patients whereas the corresponding unconjugated compounds were low in cholestasis and elevated in alcoholic liver cirrhosis. The levels of the individual C27 acids were usually positively correlated to each other and also to the levels of conjugated C24 bile acids in plasma from patients with liver cirrhosis. In contrast, there was no correlation between the levels of C27 acids and conjugated bile acids in patients with extrahepatic cholestasis. The levels of unconjugated C24 bile acids were not correlated to C27 acids or conjugated bile acids in any of the groups. The results indicate that there is a close metabolic relationship between the individual C27 acids, that they do not participate in an enterohepatic circulation, and that the liver is important for their elimination/metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号