首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang L  Luo XP 《生理学报》2011,63(2):124-130
热性癫痫发作是儿童常见病,能损害认知功能,而突触可塑性和再可塑性(metaplasticity)是维系大脑认知功能的重要神经基础.本文通过脑片灌流和细胞外场电位记录术研究了热性癫痫发作大鼠海马齿状回外侧支的突触可塑性和再可塑性.制作对照组和热性癫痫发作组大鼠的脑切片后,记录电极置于齿状回外侧支的外分子层获取兴奋性突触后...  相似文献   

2.
The aim of the present study was to investigate the possible role of hydrogen sulfide (H(2)S) in the pathogenesis of recurrent febrile seizures (FS) in rats. On a rat model of recurrent FS, the ultrastructure of hippocampal neurons, the plasma level of H(2)S, the expressions of cystathionine b-synthase (CBS) and c-fos, and the development of mossy fiber sprouting (MFS) in hippocampus were examined after treatment with NaHS, a donor of H(2)S, or hydroxylamine (HA), an inhibitor of CBS. We found that the plasma level of H(2)S increased significantly, the expressions of CBS and c-fos increased markedly, and MFS was evident in hippocampus in FS group. NaHS alleviated the neuronal damage of recurrent FS rats, decreased the expression of c-fos, and inhibited MFS obviously. HA aggravated the neuronal damage of recurrent FS rats, further increased the expression of c-fos, and enhanced the mossy fiber outgrowth. The results showed that endogenous H(2)S system was involved in the development of FS. Exogenous H(2)S may exert beneficial effect on the pathogenesis of FS-related brain damage.  相似文献   

3.
The accumulation of labeled GABA into brain and brain nerve endings was studied in the adult rat after i.p. injection of large doses of neurotransmitter (740 mg/Kg). In the first 5–30 minutes after the injection the exogenous neurotransmitter reaches a stable plasma level of around 5 mM. The accumulation of radioactive GABA into the brain presents a latency of a few minutes from the time of the injection. Thereafter, the accumulation of the neurotransmitter is almost linear with time. Once in the brain tissue labeled GABA is in part broken down. The exogenous neurotransmitter is taken up in GABA-ergic nerve endings with a steep increase between 20 and 30 minutes after the injection. From a quantitative point of view, the data show that the brain accumulation of labeled GABA at 30 minutes post injection is minimal in the respect of the steady state average concentration of the endogenous neurotransmitter (0.014%). However, the amount of radioactive GABA which accumulates in the nerve endings, at the same post injection time, is around 7% of the endogenous neurotransmitter in that comparment. The data thus show a selective enrichment of exogenous systemic GABA in a physiologically important compartment of the brain.  相似文献   

4.
Several lines of evidence suggested that the first gamma-aminobutyric acid B receptor to be cloned required an additional factor for functional expression. GABA(B1) was retained within the endoplasmic reticulum and failed to couple to signal transduction pathways on stimulation with agonists. In radioligand binding experiments it was found that although the affinity of antagonists showed a close agreement between rat brain membranes and membranes expressing the cloned receptor, agonist ligands were significantly weaker at recombinant receptors. Using the C-terminal tail as bait, a yeast two-hybrid screen was run against a human brain cDNA library and identified a second receptor, GABA(B2), as a major interacting protein. This interaction was confirmed by coimmunoprecipitation as well as extensive colocalization studies. Coexpression of the two seven-transmembrane proteins generated a fully functional receptor, which was expressed at the cell surface confirming the importance of receptor heterodimerization for GABA(B) receptor activity.  相似文献   

5.
NMDA receptors play a critical role in various aspects of CNS function. Hence, it is important to identify mechanisms that regulate NMDA receptor activity. We have shown previously that insulin rapidly potentiates NMDA receptor activity in both native and recombinant expression systems. Here we report that insulin causes a transient phosphorylation of NR2A and NR2B NMDA receptor subunits on tyrosine residues. Rat hippocampal slices were exposed to 1 microM insulin for 20 and 60 min and then solubilized. NR2A and NR2B subunits were immunoprecipitated and probed for tyrosine phosphorylation. Insulin incubation of hippocampal slices for 20 min elicited an increase in tyrosine phosphorylation to 176 +/- 16% (NR2A) and 203 +/- 15% (NR2B) of control levels. In contrast, 60 min of insulin incubation did not alter NR2 tyrosine phosphorylation levels (NR2A: 85 +/- 13% of control; NR2B: 93 +/- 10% of control). Although the consequence of insulin-stimulated tyrosine phosphorylation is unknown, it is possible that this site(s) is responsible for insulin potentiation of NMDA receptor activity. This possibility is consistent with our earlier finding that insulin potentiates hippocampal NMDA receptor activity after 20 min, but not after 60 min, of insulin exposure.  相似文献   

6.
Vagus nerve stimulation (VNS) is an effective adjunctive treatment for medically refractory epilepsy. In this study, we measured VNS-induced changes in hippocampal neurotransmitter levels and determined their potential involvement in the anticonvulsive action of VNS, to elucidate the mechanism of action responsible for the seizure suppressing effect of VNS in an animal model for limbic seizures. We used in vivo intracerebral microdialysis to measure VNS-induced changes in hippocampal extracellular concentrations of noradrenaline, dopamine, serotonin and GABA in freely moving, male Wistar rats. During the same experiment, the effect of VNS on pilocarpine-induced limbic seizures was assessed using video-EEG monitoring. The involvement of VNS-induced increases in hippocampal noradrenaline in the mechanims of action of VNS was evaluated by blocking hippocampal α(2)-receptors. VNS produced a significant increase in hippocampal noradrenaline concentration (69 ± 16% above baseline levels). VNS also increased the latency between pilocarpine infusion and the onset of epileptiform discharges, and reduced the duration and severity of pilocarpine-induced limbic seizures. A strong positive correlation was found between the noradrenergic and anticonvulsive effects of VNS. Blockade of hippocampal α(2 -receptors reversed the seizure-suppressing effect of VNS. VNS induces increases in extracellular hippocampal noradrenaline, which are at least partly responsible for its seizure-suppressing effect in a model for limbic seizures, and constitute a potential biomarker for the efficacy of VNS in temporal lobe epilepsy.  相似文献   

7.
Effects of GABA on the background and electrically stimulated activity of single neurons and population spikes were investigated in isolated hippocampal slices. Application of relatively large GABA concentrations (10(-3) mol/l and more) depressed an antidromic population spike, field EPSP and neuronal background activity. Low concentrations of GABA (less than 10(-3) mol/l) added to the bath increased the population spikes amplitude and the late component of field EPSP, facilitated single neurone responses, their background activity and epileptiform discharges. GABA-evoked depolarization was observed in the majority of the studied neurons. The duality of the GABA action on central neurons are discussed.  相似文献   

8.
9.
Chronic in vivo or in vitro application of GABA(A) receptor agonists alters GABA(A) receptor peptide expression and function. Furthermore, chronic in vitro application of N-methyl-D-aspartate (NMDA) agonists and antagonists alters GABA(A) receptor function and mRNA expression. However, it is unknown if chronic in vivo blockade of NMDA receptors alters GABA(A) receptor function and peptide expression in brain. Male Sprague-Dawley rats were chronically administered the noncompetitive NMDA receptor antagonist MK-801 (0.40 mg/kg, twice daily) for 14 days. Chronic blockade of NMDA receptors significantly increased hippocampal GABA(A) receptor alpha4 and gamma2 subunit expression while significantly decreasing hippocampal GABA(A) receptor alpha2 and beta2/3 subunit expression. Hippocampal GABA(A) receptor alpha1 subunit peptide expression was not altered. In contrast, no significant alterations in GABA(A) receptor subunit expression were found in cerebral cortex. Chronic MK-801 administration also significantly decreased GABA(A) receptor-mediated hippocampal Cl- uptake, whereas no change was found in GABA(A) receptor-mediated cerebral cortical Cl- uptake. Finally, chronic MK-801 administration did not alter NMDA receptor NR1, NR2A, or NR2B subunit peptide expression in either the cerebral cortex or the hippocampus. These data demonstrate heterogeneous regulation of GABA(A) receptors by glutamatergic activity in rat hippocampus but not cerebral cortex, suggesting a new mechanism of GABA(A) receptor regulation in brain.  相似文献   

10.
gamma-Aminobutyric acid (GABA) receptor/channel rho 1 subunits are important components in inhibitory pathways in the central nervous system. However, the precise locations and roles of these receptors in the central nervous system are unknown. We studied the expression localization of GABA receptor/channel rho 1 subunit in mouse spinal cord and dorsal root ganglia (DRG). The immunohistochemistry results indicated that GABA receptor/channel rho 1 subunits were expressed in mouse spinal cord superficial dorsal horn (lamina I and lamina II) and in DRG. To understand the functions of the GABA receptor/channel rho 1 subunit in these crucial sites of sensory transmission in vivo, we generated GABA receptor/channel rho 1 subunit mutant mice (rho 1-/-). GABA receptor/channel rho 1 subunit expression in the rho 1-/- mice was eliminated completely, whereas the gross neuroanatomical structures of the rho 1-/- mice spinal cord and DRG were unchanged. Electrophysiological recording showed that GABA-mediated spinal cord response was altered in the rho 1-/- mice. A decreased threshold for mechanical pain in the rho 1-/- mice compared with control mice was observed with the von Frey filament test. These findings indicate that the GABA receptor/channel rho 1 subunit plays an important role in modulating spinal cord pain transmission functions in vivo.  相似文献   

11.
Impairment in the activity and expression of glutamate transporters has been found in experimental models of epilepsy in adult animals. However, there are few studies investigating alterations on glutamate transporters caused by epilepsy in newborn animals, especially in the early periods after seizures. In this study, alterations in the hippocampal glutamate transporters activity and immunocontent were investigated in neonatal rats (7 days old) submitted to kainate-induced seizures model. Glutamate uptake, glutamate transporters (GLT-1, GLAST, EAAC1) and glutamine synthetase (GS) were assessed in hippocampal slices obtained 12 h, 24 h, 48 h, 72 h and 60 days after seizures. Immunoreactivity for hippocampal GFAP, NeuN and DAPI were assessed 24 h after seizure. Behavioral analysis (elevated-plus maze and inhibitory avoidance task) was also investigated in the adult animals (60 days old). The decrease on glutamate uptake was observed in hippocampal slices obtained 24 h after seizures. The immunocontent of GLT-1 increased at 12 h and decreased at 24 h (+62% and −20%, respectively), while GLAST increased up to 48 h after seizures. No alterations were observed for EAAC1 and GS. It should be mentioned that there were no long-term changes in tested glutamate transporters at 60 days after kainate treatment. GFAP immunoreactivity increased in all hippocampal subfields (CA1, CA3 and dentate gyrus) with no alterations in NeuN and DAPI staining. In the adulthood, kainate-treated rats showed anxiety-related behavior and lower performance in the inhibitory avoidance task. Our findings indicate that acute modifications on hippocampal glutamate transporters triggered by a single convulsive event in early life may play a role in the behavioral alterations observed in adulthood.  相似文献   

12.
The aim of the study was to investigate the interaction between nitric oxygenase (NOS)/nitric oxide (NO) and heme oxygenase (HO)/carbon monoxide (CO) system in the pathogenesis of recurrent febrile seizures (FS). On a rat model of recurrent FS, the ultrastructure of hippocampal neurons was observed under electron microscopy, and expression of neuronal NOS (nNOS) in hippocampus and NO formation in plasma were examined after treatment with ZnPP-IX, an HO-1 inhibitor. In the ultrastructure of hippocampal neurons, the expression of HO-1 in hippocampus and CO formation in plasma were examined after treatment with L-NAME, a NOS inhibitor. We found that hippocampal neurons were injured after recurrent FS. The gene and protein expression of nNOS and HO-1 increased markedly in hippocampus in FS rats, while CO formation in plasma increased markedly and the concentration of NO in plasma increased slightly. ZnPP-IX could worsen the neuronal damage of recurrent FS rats. However, it further increased the expression of nNOS and endogenous production of NO obviously. L-NAME alleviated the neuronal damage of recurrent FS rats, but decreased the expression of HO-1 and CO formation. The results of this study suggested that endogenous NOS/NO and HO/CO systems might interact with each other and therefore play an important regulating role in recurrent FS brain damage.  相似文献   

13.
Lipid raft domains have attracted much recent attention as platforms for plasma membrane signalling complexes. In particular, evidence is emerging that shows them to be key regulators of G protein coupled receptor function. The G protein coupled gamma-aminobutyric acid receptor B (GABA(B) receptor) co-isolates with lipid raft domains from rat brain cerebellum. In the present study, we show that the GABA(B1a,2) receptor was also present in lipid raft domains when expressed ectopically in a Chinese hamster ovary cell line. Lipid raft-associated receptor was functionally active, displaying a concentration-dependent increase in GTPgammaS binding in response to the receptor agonist GABA. Compared with whole cell membranes, lipid raft-associated receptor displayed an increased EC(50) and a reduced magnitude of response to GABA. We conclude that lipid raft association is an intrinsic property of the GABA(B1a,2) receptor and is not cell-type specific. In addition, localisation to lipid raft domains may provide a mechanism to inhibit receptor function.  相似文献   

14.
In our previous experiments, severe cellular damages and neuronal cell loss were observed following 24h of alcohol withdrawal in primary cultures of rat cortical neurones pre-treated with ethanol (50-200 mM) repeatedly for 3 days. Increased NMDA induced cytosolic calcium responses and excitotoxicity were also demonstrated in the ethanol pre-treated cultures. Thus, the enhancement in functions of NMDA receptors was supposed to be involved in the adaptive changes leading to the neurotoxic effect of alcohol-withdrawal. In this study, we investigated the effect of the 3-day repeated ethanol (100 mM) treatment on the function and subunit composition of the NMDA receptors. Here, we demonstrate that the maximal inhibitory effect of ethanol was significantly increased after ethanol pre-treatment. Similarly, the inhibitory activity of the NR2B subunit selective antagonists threo-ifenprodil, CP-101,606 and CI-1041 was also enhanced. On the contrary, the efficiency of the channel blocker agent MK-801 and the glycine-site selective antagonist 5,7-dichlorokynurenic acid was the same as in control cultures. According to these observations, a shift in subunit expression in favour for the NR2B subunit was suggested. Indeed, we provided evidence for increased expression of the NR2B and the C1 and C2' cassette containing splice variant forms of the NR1 subunit proteins in ethanol pre-treated cultures in further experiments using a flow cytometry based immunocytochemical method. These changes may constitute the basis of the increased NMDA receptor functions and subsequently the enhanced sensitivity of ethanol pre-treated cortical neurones to excitotoxic insults resulting in increased neuronal cell loss after ethanol withdrawal. Such alterations may play a role in the neuronal adaptation to ethanol as well as in the development of alcohol dependence, and might cause neuronal cell loss in certain areas of the brain during alcohol withdrawal.  相似文献   

15.
Summary The neuronal origin of extracellular levels of dopamine (DA), acetylcholine (ACh), glutamate (Glu), aspartate (Asp) and gamma-aminobutyric acid (GABA) simultaneously collected from the neostriatum of halothane anaesthetized rats with in vivo microdialysis was studied. The following criteria were applied (1) sensitivity to K+-depolarization; (2) sensitivity to inhibition of synaptic inactivation mechanisms; (3) sensitivity to extracellular Ca2+; (4) neuroanatomical regionality; sensitivity to selective lesions and (5) sensitivity to chemical stimulation of the characterized pathways.It was found that: (1) Extracellular DA levels found in perfusates collected from the neostriatum fulfills all the above criteria and therefore the changes in extracellular DA levels measured with microdialysis reflect actual release from functionally active nerve terminals, and so reflect ongoing synaptic transmission. (2) Changes in neostriatal ACh levels reflect neuronal activity, provided that a ACh-esterase inhibitor is present in the perfusion medium. (3) Extracellular Glu, Asp and GABA could be measured in different perfusion media in the rat neostriatum and probably reflect metabolic as well as synaptic release. However, (4) the majority of the extracellular GABA levels found in perfusates collected from the neostriatum may reflect neuronal release, since GABA levels were increased, in a Ca2+-dependent manner, by K+-depolarization, and could be selectively decreased by an intrinsic neostriatal lesion. (5) It was not possible to clearly distinguish between the neuronal and the metabolic pools of Glu and Asp, since neostriatal Glu and Asp levels were only slightly increased by K+-depolarization, and no changes were seen after decortication. A blocker of Glu re-uptake, DHKA, had to be included in the perfusion medium in order to monitor the effect of K+-depolarization on Glu and Asp levels. Under this condition, it was found (6) that neostriatal Glu and Asp levels were significantly increased by K+-depolarization, although only increases in the Glu levels were sensitive to Ca2+ in the perfusion medium, suggesting that Glu but not Asp is released from vesicular pools. (7) Evidence is provided that selective stimulations of nigral DA cell bodies may lead to changes in release patterns from DA terminals in the ipsilateral neostriatum, which are in turn followed by discrete changes in extracellular levels of GABA and Glu in the same region. Finally, some methodological considerations are presented to clarify the contribution of neuronal release to extracellular levels of amino acid neurotransmitters in the rat neostriatum.  相似文献   

16.
17.
Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]α-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3. Most of the [1-14C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1–2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain.  相似文献   

18.
GABA(A) receptors, mediators of fast inhibitory neurotransmission, are heteropentameric assemblies from a large array of subunits. Differences in the sensitivity of receptor subtypes to endogenous GABA may permit subunit-dependent finely tuned responsiveness to the same GABAergic inputs. Using both radioligand binding and electrophysiology combined with mutagenesis, we identified a domain of four amino acids within the alpha subunits that mediates the distinct sensitivities to GABA allowing their selective switch between alphabeta3gamma2 combinations. Replacing this domain in alpha3 by the corresponding segments of alpha1-alpha5 resulted in mutant receptors displaying the GABA EC(50) values of the respective wild-type receptors. Vice versa, the alpha3 motif forced the low sensitivity to GABA of alpha3 upon alpha1beta3gamma2, alpha4beta3gamma2, and alpha5beta3gamma2. Binding of the GABA agonist [(3)H]muscimol was not affected by the exchange of the motif between alpha1 and alpha3 subunits. Thus, the equilibrium binding pocket is maintained upon replacement of the four amino acids. Taken together our data suggest that the identified motifs contribute to a structure involved in the transduction of the binding signal rather than to the binding itself.  相似文献   

19.
Cholecystokinin (CCK) receptor binding levels were compared between groups of genetically obese (fa/fa) and non-obese (Fa/-) Zucker rats of both sexes. The radioligand used was the iodinated octapeptide (CCK-8). Binding was measured in eight brain regions. The relative distribution among different brain regions of specifically bound CCK per mg protein was similar in all groups of animals. High binding levels were present in the olfactory bulb, cortex and caudate nucleus. Moderate levels were seen in hippocampus and hypothalamus, and low levels were observed in hindbrain, midbrain and thalamus. Obese animals of both sexes had significantly higher CCK receptor binding levels in the hippocampus and in the midbrain in comparison to lean controls. The male obese animals also had significantly elevated binding levels in the thalamic sample. These results demonstrate a correlation between genetic obesity and elevated CCK receptor binding levels in specific brain regions.  相似文献   

20.
GABA is a potent inhibitory neurotransmitter that binds to heterooligomeric receptors in the mammalian brain. In a previous study, we documented specific GABA binding to isolated rat hepatocytes that resulted in inhibition of hepatocyte proliferation. The purpose of the present study was to define the nature of hepatic GABA(A) receptors and to document their expression during rapid liver growth (after partial hepatectomy). PCRs with gene-specific primers derived from published sequences were performed with Marathon-ready human and rat liver cDNA. Two GABA(A) receptor subunit types (beta3 and epsilon) were expressed in human liver and one subunit type (beta3) in rat liver. PCR amplification of the human GABA(A) receptorbeta3-subunit produced a single product (molecular mass 53-59 kDa). In the case of the epsilon-subunit, two PCR products were identified. After partial hepatectomy, GABA(A) receptorbeta3-subunit expression inversely correlated with regenerative activity (r = -0.527, P = 0.006). In conclusion, these results indicate that in the human liver GABA(A) receptors consist of the beta3- and epsilon-subunit types, whereas in the rat liver only the beta3-subunit type is expressed. The results also support the hypothesis that GABAergic activity serves to maintain hepatocytes in a quiescent state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号