首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mismatch repair proteins, MutS and MutL, interact in a DNA mismatch and ATP-dependent manner to activate downstream events in repair. Here, we assess the role of ATP binding and hydrolysis in mismatch recognition by MutS and the formation of a ternary complex involving MutS and MutL bound to a mismatched DNA. We show that ATP reduces the affinity of MutS for mismatched DNA and that the modulation of DNA binding affinity by nucleotide is even more pronounced for MutS E694A, a protein that binds ATP but is defective for ATP hydrolysis. Despite the ATP hydrolysis defect, E694A, like WT MutS, undergoes rapid, ATP-dependent dissociation from a DNA mismatch. Furthermore, MutS E694A retains the ability to interact with MutL on mismatched DNA. The recruitment of MutL to a mismatched DNA by MutS is also observed for two mutant MutL proteins, E29A, defective for ATP hydrolysis, and R266A, defective for DNA binding. These results suggest that ATP binding in the absence of hydrolysis is sufficient to trigger formation of a MutS sliding clamp. However, recruitment of MutL results in the formation of a dynamic ternary complex that we propose is the intermediate that signals subsequent repair steps requiring ATP hydrolysis.  相似文献   

2.
The Escherichia coli MutS and MutL proteins have been conserved throughout evolution, although their combined functions in mismatch repair (MMR) are poorly understood. We have used biochemical and genetic studies to ascertain a physiologically relevant mechanism for MMR. The MutS protein functions as a regional lesion sensor. ADP-bound MutS specifically recognizes a mismatch. Repetitive rounds of mismatch-provoked ADP-->ATP exchange results in the loading of multiple MutS hydrolysis-independent sliding clamps onto the adjoining duplex DNA. MutL can only associate with ATP-bound MutS sliding clamps. Interaction of the MutS-MutL sliding clamp complex with MutH triggers ATP binding by MutL that enhances the endonuclease activity of MutH. Additionally, MutL promotes ATP binding-independent turnover of idle MutS sliding clamps. These results support a model of MMR that relies on two dynamic and redundant ATP-regulated molecular switches.  相似文献   

3.
L Galio  C Bouquet    P Brooks 《Nucleic acids research》1999,27(11):2325-2331
Functional interactions of Escherichia coli MutS and MutL in mismatch repair are dependent on ATP. In this study, we show that MutS and MutL associate with immobilised DNA in a manner dependent on ATP hydrolysis and with an ATP concentration near the solution K m of the ATPase of MutS. After removal of MutS, MutL and ATP, much of the protein in this ternary complex is not stably associated, with MutL leaving the complex more rapidly than MutS. The rapid dissociation reveals a dynamic interaction with concurrent rapid association and dissociation of proteins from the DNA. Analysis by surface plasmon resonance showed that the DNA interacting with dynamically bound protein was more resistant to nuclease digestion than the DNA in MutS-DNA complexes. Non-hydrolysable analogs of ATP inhibit the formation of this dynamic complex, but permit formation of a second type of ternary complex with MutS and MutL stably bound to the immobilised DNA.  相似文献   

4.
Joseph N  Sawarkar R  Rao DN 《DNA Repair》2004,3(12):265-1577
Haemophilus influenzae DNA mismatch repair proteins, MutS, MutL and MutH, are functionally characterized in this study. Introduction of mutS, mutL and mutH genes of H. influenzae resulted in complementation of the mismatch repair activity of the respective mutant strains of Escherichia coli to varying levels. DNA binding studies using H. influenzae MutH have shown that the protein is capable of binding to any DNA sequence non-specifically in a co-operative and metal independent manner. Presence of MutL and ATP in the binding reaction resulted in the formation of a more specific complex, which indicates that MutH is conferred specificity for binding hemi-methylated DNA through structural alterations mediated by its interaction with MutL. To study the role of conserved amino acids Ile213 and Leu214 in the helix at the C-terminus of MutH, they were mutated to alanine. The mutant proteins showed considerably reduced DNA binding and nicking, as well as MutL-mediated activation. MutH failed to nick HU bound DNA whereas MboI and Sau3AI, which have the same recognition sequence as MutH, efficiently cleaved the substrate. MutS ATPase activity was found to be reduced two-fold in presence of covalently closed circular duplex containing a mismatched base pair whereas, the activity was regained upon linearization of the circular duplex. This observation possibly suggests that the MutS clamps are trapped in the closed DNA heteroduplex. These studies, therefore, serve as the basis for a detailed investigation of the structure-function relationship among the protein partners of the mismatch repair pathway of H. influenzae.  相似文献   

5.
DNA错配修复蛋白MutS和MutL的相互作用研究   总被引:2,自引:0,他引:2  
MutL 和 MutS 是DNA错配修复系统中起关键作用的修复蛋白. 利用基因融合技术高效表达了MutL 和 MutS融合蛋白,并利用它们发展了一种研究二者相互作用的简便方法. 融合蛋白MutL-GFP (Trx-His6-GFP-(Ser-Gly)6-MutL),MutL-Strep tagⅡ (Trx-His6-(Ser-Gly)6-Strep tagⅡ-(Ser-Gly)6-MutL) 和 MutS (Trx-His6-(Ser-Gly)6-MutS) 被构建并在大肠杆菌中高效表达. 收集菌体细胞、超声波破碎后离心取上清进行SDS-聚丙烯酰胺凝胶电泳 (SDS-PAGE) 分析,结果表明有与预期分子质量相应的诱导表达条带出现,其表达量约占全细胞蛋白的30%且以可溶形式存在. 利用固定化金属离子配体亲和层析柱分别纯化融合蛋白,其纯度达到90%. 通过将MutS蛋白固定的方法研究两种MutL融合蛋白分别与MutS之间的相互作用. 结果表明:只有MutS蛋白与含有错配碱基DNA分子结合后才与MutL蛋白发生相互作用. 通过检测MutL融合蛋白标记的绿色荧光信号或酶学显色信号来鉴定相互作用的发生. 建立的融合分子系统方法也为研究其他的蛋白质或生物大分子之间的相互作用提供了一个技术平台.  相似文献   

6.
The mutL gene product is part of the dam-directed mismatch repair system of Escherichia coli but has no known enzymatic function. It forms a complex on heteroduplex DNA with the mismatch recognition MutS protein and with MutH, which has latent endonuclease activity. An N-terminal hexahistidine-tagged MutL was constructed which was active in vivo. As a first stop to determine the functional domains of MutL, we have isolated 72 hydroxylamine-induced plasmid-borne mutations which impart a dominant-negative phenotype to the wild-type strain for increased spontaneous mutagenesis. None of the mutations complement a mutL deletion mutant, indicating that the mutant proteins by themselves are inactive. All the dominant mutations but one could be complemented by the wild-type mutL at about the same gene dosage. DNA sequencing indicated that the mutations affected 22 amino acid residues located between positions 16 and 549 of the 615 amino acid protein. In the N-terminal half of the protein, 12 out of 15 amino acid replacements occur at positions conserved in various eukaryotic MutL homologs. All but one of the sequence changes affecting the C-terminal end of the protein are nonsense mutations.  相似文献   

7.
MutL融合蛋白的高效表达及其伴侣功能研究(英文)   总被引:1,自引:0,他引:1  
DNA错配修复蛋白MutL和其它的修复蛋白相互作用来共同完成大肠杆菌甲基介导的错配修复过程 .为研究修复蛋白MutL的体外生物功能构建了融合蛋白Trx His6 Linkerpeptide MutL(THLL)的表达载体并使其高效表达及易于纯化 .mutL基因片段是以E .coliK 12基因组为模板经PCR扩增获得 ,并通过基因的体外拼接成功构建了融合蛋白THLL表达载体pET32a linkerpeptide mutL .重组菌株E .coliAD4 94 (DE3) pET32a linkerpeptide mutL经过IPTG的诱导表达了融合蛋白THLL .收集菌体细胞、超声波破碎后离心取上清进行SDS PAGE分析 ,结果表明有一与预期分子量(84kD)相应的诱导表达条带出现 ,其表达量约占全细胞蛋白的 30 %且以可溶形式存在 .利用固定化金属离子 (Ni2 +)配体亲和层析柱纯化融合蛋白THLL ,其纯度达到 90 % .通过非变性凝胶电泳分析 ,对融合蛋白THLL在DNA错配修复过程中的分子伴侣生物功能进行了系统研究 .结果表明 ,THLL能增加融合蛋白Trx His6 Linkerpeptide MutS (THLS)与含有错配碱基DNA双链的结合 ,但受ATP的浓度变化影响很大  相似文献   

8.
Mismatch repair (MMR) is an evolutionarily conserved DNA repair system, which corrects mismatched bases arising during DNA replication. MutS recognizes and binds base pair mismatches, while the MutL protein interacts with MutS-mismatch complex and triggers MutH endonuclease activity at a distal-strand discrimination site on the DNA. The mechanism of communication between these two distal sites on the DNA is not known. We used functional fluorescent MMR proteins, MutS and MutL, in order to investigate the formation of the fluorescent MMR protein complexes on mismatches in real-time in growing Escherichia coli cells. We found that MutS and MutL proteins co-localize on unrepaired mismatches to form fluorescent foci. MutL foci were, on average, 2.7 times more intense than the MutS foci co-localized on individual mismatches. A steric block on the DNA provided by the MutHE56A mutant protein, which binds to but does not cut the DNA at the strand discrimination site, decreased MutL foci fluorescence 3-fold. This indicates that MutL accumulates from the mismatch site toward strand discrimination site along the DNA. Our results corroborate the hypothesis postulating that MutL accumulation assures the coordination of the MMR activities between the mismatch and the strand discrimination site.  相似文献   

9.
Mismatch repair is a highly conserved pathway responsible for correcting DNA polymerase errors incorporated during genome replication. MutL is a mismatch repair protein known to coordinate several steps in repair that ultimately results in strand removal following mismatch identification by MutS. MutL homologs from bacteria to humans contain well-conserved N-terminal and C-terminal domains. To understand the contribution of the MutL N-terminal domain to mismatch repair, we analyzed 14 different missense mutations in Bacillus subtilis MutL that were conserved with missense mutations identified in the human MutL homolog MLH1 from patients with hereditary nonpolyposis colorectal cancer (HNPCC). We characterized missense mutations in or near motifs important for ATP binding, ATPase activity, and DNA binding. We found that 13 of the 14 missense mutations conferred a substantial defect to mismatch repair in vivo, while three mutant alleles showed a dominant negative increase in mutation frequency to wild-type mutL. We performed immunoblot analysis to determine the relative stability of each mutant protein in vivo and found that, although most accumulated, several mutant proteins failed to maintain wild-type levels, suggesting defects in protein stability. The remaining missense mutations located in areas of the protein important for DNA binding, ATP binding, and ATPase activities of MutL compromised repair in vivo. Our results define functional residues in the N-terminal domain of B. subtilis MutL that are critical for mismatch repair in vivo.  相似文献   

10.
The beta sliding clamp binds to multiple sites within MutL and MutS   总被引:4,自引:0,他引:4  
The MutL and MutS proteins are the central components of the DNA repair machinery that corrects mismatches generated by DNA polymerases during synthesis. We find that MutL interacts directly with the beta sliding clamp, a ring-shaped dimeric protein that confers processivity to DNA polymerases by tethering them to their substrates. Interestingly, the interaction of MutL with beta only occurs in the presence of single-stranded DNA. We find that the interaction occurs via a loop in MutL near the ATP-binding site. The binding site of MutL on beta locates to the hydrophobic pocket between domains two and three of the clamp. Site-specific replacement of two residues in MutL diminished interaction with beta without disrupting MutL function with helicase II. In vivo studies reveal that this mutant MutL is no longer functional in mismatch repair. In addition, the human MLH1 has a close match to the proliferating cell nuclear antigen clamp binding motif in the region that corresponds to the beta interaction site in Escherichia coli MutL, and a peptide corresponding to this site binds proliferating cell nuclear antigen. The current report also examines in detail the interaction of beta with MutS. We find that two distinct regions of MutS interact with beta. One is located near the C terminus and the other is close to the N terminus, within the mismatch binding domain. Complementation studies using genes encoding different MutS mutants reveal that the N-terminal beta interaction motif on MutS is essential for activity in vivo, but the C-terminal interaction site for beta is not. In light of these results, we propose roles for the beta clamp in orchestrating the sequence of events that lead to mismatch repair in the cell.  相似文献   

11.
MutS is the key protein of the Escherichia coli DNA mismatch repair system. It recognizes mispaired and unpaired bases and has intrinsic ATPase activity. ATP binding after mismatch recognition by MutS serves as a switch that enables MutL binding and the subsequent initiation of mismatch repair. However, the mechanism of this switch is poorly understood. We have investigated the effects of ATP binding on the MutS structure. Crystallographic studies of ATP-soaked crystals of MutS show a trapped intermediate, with ATP in the nucleotide-binding site. Local rearrangements of several residues around the nucleotide-binding site suggest a movement of the two ATPase domains of the MutS dimer toward each other. Analytical ultracentrifugation experiments confirm such a rearrangement, showing increased affinity between the ATPase domains upon ATP binding and decreased affinity in the presence of ADP. Mutations of specific residues in the nucleotide-binding domain reduce the dimer affinity of the ATPase domains. In addition, ATP-induced release of DNA is strongly reduced in these mutants, suggesting that the two activities are coupled. Hence, it seems plausible that modulation of the affinity between ATPase domains is the driving force for conformational changes in the MutS dimer. These changes are driven by distinct amino acids in the nucleotide-binding site and form the basis for long-range interactions between the ATPase domains and DNA-binding domains and subsequent binding of MutL and initiation of mismatch repair.  相似文献   

12.
The Salmonella typhimurium and Escherichia coli MutS protein is one of several methyl-directed mismatch repair proteins that act together to correct replication errors. MutS is homologous to the Streptococcus pneumoniae HexA mismatch repair protein and to the Duc1 and Rep1 proteins of human and mouse. Homology between the deduced amino acid sequence of both MutS and HexA, and the type A nucleotide binding site consensus sequence, suggested that ATP binding and hydrolysis play a role in their mismatch repair functions. We found that MutS does indeed weakly hydrolyze ATP to ADP and Pi, with a Km of 6 microM and kcat of 0.26. To show that this activity is intrinsic to MutS, we made a site-directed mutation, which resulted in the invariant lysine of the nucleotide binding consensus sequence being changed to an alanine. The mutant MutS allele was unable to complement a mutS::Tn10 mutation in vivo, and was dominant over wild type when present in high copy number. The purified mutant protein had reduced ATPase activity, with the Km affected more severely than the kcat. Like the wild type MutS protein, the mutant protein is able to bind heteroduplex DNA specifically, but the mutant protein does so with a reduced affinity.  相似文献   

13.
The mutS gene, implicated in DNA mismatch repair, was cloned from an extremely thermophilic bacterium, Thermus thermophilus HB8. Its nucleotide sequence encoded a 819-amino acid protein with a molecular mass of 91.4 kDa. Its predicted amino acid sequence showed 56 and 39% homology with Escherichia coli MutS and human hMsh2 proteins, respectively. The T.thermophilus mutS gene complemented the hypermutability of the E.coli mutS mutant, suggesting that T.thermophilus MutS protein was active in E.coli and could interact with E.coli MutL and/or MutH proteins. The T.thermophilus mutS gene product was overproduced in E.coli and then purified to homogeneity. Its molecular mass was estimated to be 91 kDa by SDS-PAGE but approx. 330 kDa by size-exclusion chromatography, suggesting that T.thermophilus MutS protein was a tetramer in its native state. Circular dichroic measurements indicated that this protein had an alpha-helical content of approx. 50%, and that it was stable between pH 1.5 and 12 at 25 degree C and was stable up to 80 degree C at neutral pH. Thermus thermophilus MutS protein hydrolyzed ATP to ADP and Pi, and its activity was maximal at 80 degrees C. The kinetic parameters of the ATPase activity at 65 degrees C were Km = 130 microM and Kcat = 0.11 s(-1). Thermus thermophilus MutS protein bound specifically with G-T mismatched DNA even at 60 degrees C.  相似文献   

14.
Vsr DNA mismatch endonuclease is the key enzyme of very short patch (VSP) DNA mismatch repair and nicks the T-containing strand at the site of a T-G mismatch in a sequence-dependent manner. MutS is part of the mutHLS repair system and binds to diverse mismatches in DNA. The function of the mutL gene product is currently unclear but mutations in the gene abolish mutHLS -dependent repair. The absence of MutL severely reduces VSP repair but does not abolish it. Purified MutL appears to act catalytically to bind Vsr to its substrate; one-hundredth of an equivalent of MutL is sufficient to bring about a significant effect. MutL enhances binding of MutS to its substrate 6-fold but does so in a stoichiometric manner. Mutational studies indicate that the MutL interaction region lies within the N-terminal 330 amino acids and that the MutL multimerization region is at the C-terminal end. MutL mutant monomeric forms can stimulate MutS binding.  相似文献   

15.
MutS and MutL are both required to activate downstream events in DNA mismatch repair. We examined the rate of dissociation of MutS from a mismatch using linear heteroduplex DNAs or heteroduplexes blocked at one or both ends by four-way DNA junctions in the presence and absence of MutL. In the presence of ATP, dissociation of MutS from linear heteroduplexes or heteroduplexes blocked at only one end occurs within 15 s. When both duplex ends are blocked, MutS remains associated with the DNA in complexes with half-lives of 30 min. DNase I footprinting of MutS complexes is consistent with migration of MutS throughout the DNA duplex region. When MutL is present, it associates with MutS and prevents ATP-dependent migration away from the mismatch in a manner that is dependent on the length of the heteroduplex. The rate and extent of mismatch-provoked cleavage at hemimethylated GATC sites by MutH in the presence of MutS, MutL, and ATP are the same whether the mismatch and GATC sites are in cis or in trans. These results suggest that a MutS-MutL complex in the vicinity of a mismatch is involved in activating MutH.  相似文献   

16.
Structure and function of mismatch repair proteins   总被引:13,自引:0,他引:13  
Yang W 《Mutation research》2000,460(3-4):245-256
DNA mismatch repair is required for maintaining genomic stability and is highly conserved from prokaryotes to eukaryotes. Errors made during DNA replication, such as deletions, insertions and mismatched basepairs, are substrates for mismatch repair. Mismatch repair is strand-specific and targets only the newly synthesized daughter strand. To initiate mismatch repair in Escherichia coli, three proteins are essential, MutS, for mismatch recognition, MutH, for introduction of a nick in the target strand, and MutL, for mediating the interactions between MutH and MutS. Homologues of MutS and MutL important for mismatch repair have been found in nearly all organisms. Mutations in MutS and MutL homologues have been linked to increased cancer susceptibility in both mice and humans. Here, we review the crystal structures of the MutH endonuclease, a conserved ATPase fragment of MutL (LN40), and complexes of LN40 with various nucleotides. Based on the crystal structure, the active site of MutH has been identified and an evolutionary relationship between MutH and type II restriction endonucleases established. Recent crystallographic and biochemical studies have revealed that MutL operates as a molecular switch with its interactions with MutH and MutS regulated by ATP binding and hydrolysis. These crystal structures also shed light on the general mechanism of mismatch repair and the roles of Mut proteins in preventing mutagenesis.  相似文献   

17.
In eukaryotes, homologs of the Escherichia coli MutS and MutL proteins are crucial for both meiotic recombination and post-replicative DNA mismatch repair. Both pathways require the formation of a MutS homolog complex which interacts with a second heterodimer, composed of two MutL homologs. During mammalian meiosis, it is likely that chromosome synapsis requires the presence of a MSH4-MSH5 heterodimer. PMS2, a MutL homolog, seems to play an important role in this process. A MSH4-MSH5 heterodimer is also likely present later with other MutL homologs (MLH1 and MLH3) and is involved in the crossing-over process. The phenotype of msh4-/- mutant mice and MSH4 immunolocalization on meiotic chromosomes suggest that MSH4 has an early function in mammalian meiotic recombination. Both MSH4 and PMS2 directly interact with the RAD51 DNA strand exchange protein. In addition, MSH4 and RAD51 proteins co-localize on mouse meiotic chromosome cores. These results suggest that MSH4 and its partners could act, just after strand exchange promoted by RAD51, to check the homology of DNA heteroduplexes.  相似文献   

18.
The MutL ATPase is required for mismatch repair   总被引:9,自引:0,他引:9  
Members of the MutL family contain a novel nucleotide binding motif near their amino terminus, and the Escherichia coli protein has been found to be a weak ATPase (Ban, C., and Yang, W. (1998) Cell 95, 541-552). Genetic analysis has indicated that substitution of Lys for Glu-32 within this motif of bacterial MutL results in a strong dominant negative phenotype (Aronshtam, A., and Marinus, M. G. (1996) Nucleic Acids Res. 24, 2498-2504). By in vitro comparison of MutL-E32K with the wild type protein, we show the mutant protein to be defective in DNA-activated ATP hydrolysis, as well as MutS- and MutL-dependent activation of the MutH d(GATC) endonuclease and the mismatch repair excision system. MutL-E32K also acts in dominant negative manner in the presence of wild type MutL in vitro, inhibiting the overall mismatch repair reaction, as well as MutH activation. As judged by protein affinity chromatography, MutL and MutL-E32K both support formation of ternary complexes that also contain MutS and MutH or MutS and DNA helicase II. These findings imply that the MutL nucleotide binding center is required for mismatch repair and suggest that the dominant negative behavior of the MutL-E32K mutation is due to the formation of dead-end complexes in which the MutL-E32K protein is unable to transduce a signal from MutS that otherwise results in mismatch-dependent activation of the MutH d(GATC) endonuclease or the unwinding activity of helicase II.  相似文献   

19.
During mismatch repair, MutS is responsible for mismatch detection and the recruitment of MutL to the mismatch through a mechanism that is unknown in most organisms. Here, we identified a discrete site on MutS that is occupied by MutL in Bacillus subtilis. The MutL binding site is composed of two adjacent phenylalanine residues located laterally in an exposed loop of MutS. Disruption of this site renders MutS defective in binding MutL in vitro and in vivo, while also eliminating mismatch repair. Analysis of MutS repair complexes in vivo shows that MutS mutants defective in interaction with MutL are ‘trapped’ in a repetitive loading response. Furthermore, these mutant MutS repair complexes persist on DNA away from the DNA polymerase, suggesting that MutS remains loaded on mismatch proximal DNA awaiting arrival of MutL. We also provide evidence that MutS and MutL interact independent of mismatch binding by MutS in vivo and in vitro, suggesting that MutL can transiently probe MutS to determine if MutS is mismatch bound. Together, these data provide insights into the mechanism that MutS employs to recruit MutL, and the consequences that ensue when MutL recruitment is blocked.  相似文献   

20.
Methyl-directed mismatch repair is a coordinated process that ensures replication fidelity and genome integrity by resolving base pair mismatches and insertion/deletion loops. This post-replicative event involves the activities of several proteins, many of which appear to be regulated by MutL. MutL interacts with and modulates the activities of MutS, MutH, UvrD, and perhaps other proteins. The purified protein catalyzes a slow ATP hydrolysis reaction that is essential for its role in mismatch repair. However, the role of the ATP hydrolysis reaction is not understood. We have begun to address this issue using two point mutants: MutL-E29A, which binds nucleotide but does not catalyze ATP hydrolysis, and MutL-D58A, which does not bind nucleotide. As expected, both mutants failed to complement the loss of MutL in genetic assays. Purified MutL-E29A protein interacted with MutS and stimulated the MutH-catalyzed nicking reaction in a mismatch-dependent manner. Importantly, MutL-E29A stimulated the loading of UvrD on model substrates. In fact, stimulation of UvrD-catalyzed unwinding was more robust with MutL-E29A than the wild-type protein. MutL-D58A, on the other hand, did not interact with MutS, stimulate MutH-catalyzed nicking, or stimulate the loading of UvrD. We conclude that ATP-bound MutL is required for the incision steps associated with mismatch repair and that ATP hydrolysis by MutL is required for a step in the mismatch repair pathway subsequent to the loading of UvrD and may serve to regulate helicase loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号