首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transforming growth factor-beta1 (TGF-beta1) is reported to exert both pro- and anti-inflammatory effects on the chronic activation of endothelial cells (ECs) in vitro by cytokines such as tumour necrosis factor-alpha (TNF-alpha). However, the effects of TGF-beta1 on acute inflammatory responses of ECs in vitro (e.g. to thrombin) have not been characterised. Pretreatment with TGF-beta1 (10 ng/mL) effectively inhibited all the thrombin-stimulated responses in rat aortic endothelial cells (RAECs) examined: adhesion and migration of polymorphonuclear leukocytes, adhesion of platelets and lymphocytes. Substantial inhibition of thrombin stimulation occurred after 30 min of pretreatment with TGF-beta1 and maximal inhibition was obtained after 1-20 h of pretreatment. Inhibition by TGF-beta1 pretreatment for 30 min was not affected by cycloheximide and was therefore independent of protein synthesis. Treatment with TGF-beta1 for 20 h did not affect the total levels of P-selectin and von Willebrand factor (vWF) in RAECs, but reduced thrombin-stimulated recruitment of P-selectin and vWF to the cell surface. The data demonstrate that TGF-beta1 exerts a potent anti-thrombin effect on ECs, effective after long and short pretreatment times.  相似文献   

2.
Transforming growth factor-beta inhibits endothelial cell proliferation   总被引:25,自引:0,他引:25  
Transforming growth factor-beta (TGF-beta) is an inhibitor of the proliferation of bovine aortic endothelial cells in culture. Basal cell growth in serum-containing medium and cell proliferation stimulated by fibroblast growth factor (FGF) are inhibited by TGF-beta in a dose-dependent manner. Half-maximal inhibition occurs at an inhibitor concentration of 0.5-1.0 ng/ml. TGF-beta does not appear to be cytotoxic and cells treated with the inhibitor grow normally after removal of TGF-beta. High concentrations of FGF are ineffective in overcoming TGF-beta-induced inhibition of cell proliferation, suggesting that antagonism of growth factor-induced cell proliferation by TGF-beta is of a noncompetitive nature.  相似文献   

3.
The macrophage scavenger receptor, a 220-kDa trimeric membrane glycoprotein, mediates the internalization of modified forms of low density lipoprotein (LDL) such as acetyl-LDL and oxidized-LDL and thus is likely to play a key role in atheroma macrophage foam cell formation. In addition, recent evidence suggests that the scavenger receptor may be an important macrophage binding site for lipopolysaccharide involved in lipopolysaccharide scavenging by macrophages. However, little is known about the regulation of this important receptor. We now report that the induction of scavenger receptor activity (as measured by acetyl-LDL stimulation of intracellular cholesterol esterification) seen in phorbol ester-differentiated THP-1 human macrophages was completely suppressed to the level seen in undifferentiated THP-1 monocytes by picomolar concentrations of transforming growth factor-beta 1 (TGF-beta 1). 125I-Acetyl-LDL degradation was inhibited in a dose-dependent manner by TGF-beta 1, with maximal inhibition (approximately 70%) occurring at 24 pM TGF-beta 1. Scatchard analysis revealed that TGF-beta 1 treatment resulted in a approximately 2-fold decrease in receptor number, and Northern blot analysis of RNA isolated from differentiated THP-1 macrophages demonstrated approximately 2-fold less scavenger receptor mRNA in TGF-beta 1-treated cells compared with that in macrophages not treated with TGF-beta 1. Since TGF-beta 1 is thought to be present in both atherosclerotic and inflammatory lesions, the above findings may have physiological relevance regarding the regulation of atheroma foam cell formation and/or the regulation of lipopolysaccharide clearance by macrophages.  相似文献   

4.
5.
6.
Matrix metalloproteinases (MMP) have been identified in vulnerable areas of atherosclerotic plaques and may contribute to plaque instability through extracellular matrix degradation. Human metalloelastase (MMP-12) is a macrophage-specific MMP with broad substrate specificity and is capable of degrading proteins found in the extracellular matrix of atheromas. Despite its potential importance, little is known about the regulation of MMP-12 expression in the context of atherosclerosis. In this study, we report that in human peripheral blood-derived macrophages, MMP-12 mRNA was markedly up-regulated by several pro-atherosclerotic cytokines and growth factors including interleukin-1beta, tumor necrosis factor-alpha, macrophage colony-stimulating factor, vascular endothelial growth factor, and platelet-derived growth factor-BB. In contrast, the pleiotropic anti-inflammatory growth factor transforming growth factor-beta1 (TGF-beta1) inhibited cytokine-mediated induction of MMP-12 mRNA, protein, and enzymatic activity. Analyses of MMP-12 promoter through transient transfections and electrophoretic mobility shift assays indicated that both its induction by cytokines and its inhibition by TGF-beta1 depended on signaling through an AP-1 site at -81 base pairs. Moreover, the inhibitory effect of TGF-beta1 on MMP-12 was dependent on Smad3. Taken together, MMP-12 is induced by several factors implicated in atherosclerosis. The inhibition of MMP-12 expression by TGF-beta1 suggests that TGF-beta1, acting via Smad3, may promote plaque stability.  相似文献   

7.
Transforming Growth Factor-Beta (TGF-β) is the general name for a family of naturally-occurring polypeptides which have multiple regulatory effects on cell proliferation and differentiation. Over the last decade it has become apparent that TGF-βs can be produced by most cell types and exert a wide range of effects in a context-dependent autocrine, paracrine or endocrine fashion via interactions with distinct receptors on the cell surface. This review summarizes current knowledge concerning the molecular and cellular biology of TGF-β3, the most recently described mammalian isoform, and focuses on those physiological actions which may lead to clinical applications, particularly in the indication areas of wound healing and chemoprotection.  相似文献   

8.
9.
During the wound healing process lysis of basement membranes precedes keratinocyte migration into the wound bed. We studied, in vitro, whether this degradation of basement membranes could be regulated by transforming growth factor-beta 1 (TGF-beta 1), which is known to accelerate wound healing in vivo. Transforming growth factor-beta 1 was found to increase the expression of both 92- and 72-kDa type IV collagenases (gelatinases) in cultured human mucosal and dermal keratinocytes. The 92-kDa enzyme predominated in both unstimulated and stimulated cultures. The 92-kDa form was stimulated over 5-fold, and the other form by a factor of 2-3. This increase in the synthesis of type IV collagenases was associated with a marked increase in the mRNA levels of these enzymes as well. The induction of the 92-kDa enzyme was similar in culture medium containing either 0.15 or 1.2 mM calcium chloride. Rat mucosal keratinocytes secreted only 92-kDa type IV collagenase, the secretion of which was not regulated by TGF-beta 1. Also, TGF-beta 1 did not cause any significant induction (maximum about 1.2-fold) of either type IV collagenase in human gingival fibroblasts. The induction levels of both collagenases in human keratinocytes were independent of the type of the extracellular matrix the cells were grown on. However, the basement membrane matrix (Matrigel) activated about half of the 92-kDa type to its 84-kDa active form. The data suggest that TGF-beta 1 has a specific function in up-regulating the expression of type IV collagenases in human keratinocytes, offering a possible explanation of how keratinocytes detach from basement membranes prior to the migration over the wound bed.  相似文献   

10.
The effects of transforming growth factor (TGF) on Leydig cell steroidogenesis in primary culture were investigated. Basal testosterone levels were 3.7 +/- 0.54 ng/ml (mean +/- SE, N = 7). In the presence of hCG (10 ng/ml), testosterone levels increased to 22.77 +/- 3.05 ng/ml. TGF-beta caused a dose dependent inhibition of hCG-stimulated testosterone formation but without effects on basal levels. TGF-beta also inhibited 8-bromo cyclic AMP-induced testosterone formation and hCG-stimulated cyclic AMP formation. In contrast, TGF-alpha had no effect on either basal or hCG-stimulated testosterone formation and did not modify the inhibitory effect of TGF-beta. Present study indicates that TGF-beta can modulate Leydig cell steroidogenesis.  相似文献   

11.
Cell signalling in the developing mammalian palate appears to involve various growth factors and hormones. An important developmental role for the transforming growth factor-beta (TGF-beta) class of growth factors is suggested by the immunolocalization of TGF-beta 1 in the palate during its ontogeny. This study examined the effects of TGF-beta stimulation of, as well as TGF-beta receptor profiles in, murine embryonic palate mesenchymal (MEPM) and human embryonic palate mesenchymal (HEPM) cells. Results showed that TGF-beta 1 (1 ng/ml) stimulated proliferation of HEPM cells and inhibited proliferation of MEPM cells in a dose-dependent manner. The time course of 125I-TGF-beta 1 binding to specific receptors was determined by incubating cells in the presence of 170 pM 125I-TGF-beta 1 for up to 4 h. In both cell types, at 37 degrees C, the binding of 125I-TGF-beta decreased linearly over 4 h, while at 4 degrees C, binding increased with time of incubation. Incubation of both cell types at 4 degrees C for 4 h, with increasing concentrations of 125I-TGF-beta 1, resulted in binding which demonstrated saturation kinetics. Scatchard analyses revealed one class of receptors for HEPM (K 32.3 pM) and MEPM (K 26.3 pM). However, SDS-PAGE analyses of 125I-TGF-beta chemically crosslinked to specific receptor sites revealed that both cell types contained the types I (65,000 Mr) and III (230,000 Mr) TGF-beta receptors while MEPM also contained the type II (86,000 Mr) receptor. Binding studies further demonstrated the ability of platelet-derived growth factor to transmodulate TGF-beta binding. These results indicate that the HEPM cell line and primary cultures of MEPM cells, although obtained from palates at similar developmental stages, are dramatically different in their responsiveness to TGF-beta and have disparate TGF-beta receptor profiles.  相似文献   

12.
13.
14.
We studied the effect of transforming growth factor-beta (TGF-beta) on prostaglandin E2 (PGE2) production and mitogenesis in human amnion cells and compared the response in amnion cells with that in A431 cells. Both amnion cells and A431 cells respond to epidermal growth factor (EGF) with increased production of PGE2 whereas EGF promotes mitogenesis in amnion cells but not in A431 cells. In amnion cells, TGF-beta was not mitogenic, and did not alter the mitogenic response of cells to EGF. Treatment of amnion cells with TGF-beta did, however, cause a decrease in PGE2 production relative to untreated cells, although EGF stimulated PGE2 production was not attenuated. In A431 cells, TGF-beta acted to decrease PGE2 production relative to untreated cells and to attenuate the stimulation of PGE2 production effected by EGF. The inhibitory action of TGF-beta on PG production in amnion and A431 cells is contrary to the stimulation of PG production in mouse calvaria reported by others and is suggestive that the effect of TGF-beta on prostaglandin production, like its effect on growth, varies between different cell types. Inhibition of PG production by treatment of amnion or A431 cells with mefenamic acid did not alter thymidine incorporation into DNA in response to EGF; similarly, the addition of PGE2 or PGF2 alpha to culture media of amnion or A431 cells had no effect on mitogenesis (in the absence or presence of EGF). Based on these findings, we conclude that PG production and EGF action on proliferation (stimulation in amnion cells; inhibition in A431 cells) are dissociated.  相似文献   

15.
Transforming growth factor-beta 1 binds to immobilized fibronectin   总被引:8,自引:0,他引:8  
We have characterized the interaction of homodimeric porcine transforming growth factor-beta 1 (TGF-beta 1) with affinity-purified human plasma fibronectin. Using a solid-phase binding assay, we have demonstrated that TGF-beta 1 binds to fibronectin immobilized on Immunlon ITM microtiter plates. TGF-beta 1 binding increased with time, reaching a plateau after 4-6 h, and was dependent upon the concentration of both labeled TGF-beta 1 and immobilized fibronectin present. The binding of radiolabeled TGF-beta 1 to fibronectin was saturable and was reduced 75% in the presence of a 100-fold excess of unlabeled TGF-beta 1. TGF-beta 1 bound to fibronectin with an association rate constant (Ka) of 2.96 x 10(3) M-1 s-1 and did not readily dissociate under various conditions. The binding of TGF-beta 1 to fibronectin was insensitive to variations in ionic strength over a range of 0.1-1.0 M NaCl and was relatively insensitive to divalent cation concentration in the range of 0.1-10.0 mM as well. These data suggest that the binding of TGF-beta 1 to fibronectin may not be dependent upon the interaction of charged amino acids within these two molecules. However, the binding of TGF-beta 1 to fibronectin was strongly pH-dependent and binding decreased dramatically below pH 4.0 and above pH 10.0, suggesting that charged amino acids may influence TGF-beta 1/fibronectin interactions. The association of TGF-beta 1 with immobilized fibronectin or other extracellular matrix components and subsequent dissociation under acidic conditions or by an as-yet-unidentified mechanism may play a role in the distribution and/or activity of this potent growth regulator at sites of tissue injury and inflammation in vivo.  相似文献   

16.
Transforming growth factor-beta complexes with thrombospondin.   总被引:20,自引:0,他引:20       下载免费PDF全文
Thrombospondin (TSP) was demonstrated to inhibit the growth of bovine aortic endothelial cells, an activity that was not neutralized by antibodies to TSP or by other agents that block TSP-cell interactions but that partially was reversed by a neutralizing antibody to transforming growth factor-beta (TGF-beta). Similar to TGF-beta, TSP supported the growth of NRK-49F colonies in soft agar in a dose-dependent manner, which required epidermal growth factor and was neutralized by anti-TGF-beta antibody. Chromatography of a TSP preparation did not separate the TGF-beta-like NRK colony-forming activity from high molecular weight protein. However, when chromatography was performed at pH 11, this activity was dissociated from TSP. These results suggest that at least some growth modulating activities of TSP are due to TGF-beta associated with TSP by strong non-covalent forces. Most of the active TGF-beta released from platelets after degranulation was associated with TSP, as demonstrated by anti-TSP immunoaffinity and gel permeation chromatography. 125I-TGF-beta binds to purified TSP in an interaction that is specific in the sense that bound TGF-beta could be displaced by TGF-depleted TSP but not significantly by native TSP, heparin, decorin, alpha 2-macroglobulin, fibronectin, or albumin. Hence, TGF-beta can bind to TSP, and the complex forms under physiological conditions. Furthermore, TSP-associated TGF-beta is biologically active, and the binding of TGF-beta to TSP may protect TGF-beta from extracellular inactivators.  相似文献   

17.
Transforming growth factor-beta 1 expression in irradiated liver   总被引:8,自引:0,他引:8  
The expression of transforming growth factor-beta 1 (TGF-beta 1) in the liver of irradiated rats was increased in a dose-dependent fashion 9 months after irradiation. Expression of TGF-beta 1 was confined primarily to hepatocytes in the pericentral region of the liver, and the percentage of hepatocytes strongly positive for TGF-beta 1 was significantly correlated with the extent of fibrosis. We further showed that a localized injection of TGF-beta 1 into normal rat liver elicited a strong fibrotic reaction at the injection site. These results suggest that the increased hepatic concentration of TGF-beta 1 in response to radiation injury may be important in the pathogenesis of radiation hepatitis. TGF-beta 1 was also found to be present at a significantly higher concentration in unirradiated human hepatocytes than in normal rat hepatocytes, implying that the propensity for humans to develop radiation hepatitis may result in part from the elevated levels of TGF-beta 1 normally found in human liver.  相似文献   

18.
Transforming growth factor-beta (TGF-beta), a product of neoplastic and hemopoietic cells, is a bifunctional regulator of the immune response. At femtomolar concentrations, TGF-beta stimulates monocyte migration, and picomolar quantities induce synthesis of monocyte growth factors, including IL-1, that may promote tissue repair by regulating fibrosis and angiogenesis. Paradoxically, TGF-beta at picomolar concentrations also blocks the ability of IL-1 to stimulate lymphocyte proliferation. At 0.01 to 1.0 ng/ml, TGF-beta 1 and its homologue, TGF-beta 2, suppress the IL-1-dependent murine thymocyte proliferation assay. TGF-beta also inhibits human peripheral blood T lymphocyte mitogenesis. Inhibition of cell division appears to occur after activation of the lymphocytes inasmuch as neither gene expression nor translation of IL-2R is suppressed. Furthermore, TGF-beta does not block synthesis of IL-2. Therefore, TGF-beta 1 and TGF-beta 2 likely act at a site distal to IL-1 to block lymphocyte DNA synthesis. These findings suggest that TGF-beta secreted in an inflammatory site may be beneficial in diminishing lymphocyte function while promoting fibrosis and tissue repair. However, TGF-beta generated by neoplastic tissues may provide a mechanism for unrestricted tumor cell growth through its selective immunosuppressive effects.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号