首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo near-infrared fluorescence imaging   总被引:12,自引:0,他引:12  
Photon penetration into living tissue is highly dependent on the absorption and scattering properties of tissue components. The near-infrared region of the spectrum offers certain advantages for photon penetration, and both organic and inorganic fluorescence contrast agents are now available for chemical conjugation to targeting molecules. This review focuses on those parameters that affect image signal and background during in vivo imaging with near-infrared light and exogenous contrast agents. Recent examples of in vivo near-infrared fluorescence imaging of animals and humans are presented, including imaging of normal and diseased vasculature, tissue perfusion, protease activity, hydroxyapatite and cancer.  相似文献   

2.
It has been suggested that vascular cell adhesion molecule-1 (VCAM-1) could serve as an early marker for inflammation of the endothelium. The ability to noninvasively image VCAM-1 could thus be a useful tool to diagnose a number of inflammatory diseases at early stages. Here we demonstrate that magnetooptical nanoparticles conjugated to anti-VCAM-1 antibodies can be used to specifically detect VCAM-1 expression on endothelial cells in culture and in vivo. Elevated VCAM-1 expression was detected on cultured murine heart endothelial cells by both fluorescence and magnetic resonance, while only basal expression levels were detected on murine dermal endothelial cells. Intravital microscopy of a murine inflammatory model injected with the VCAM-1 targeted nanoparticles revealed specific labeling of the activated endothelium, with labeling kinetics yielding a maximum vessel wall signal 6 h after injection. In contrast, nontargeted nanoparticles did not exhibit any specific labeling of the endothelium. These studies suggest that the developed nanoparticle would be useful for MR and optical detection of activated endothelium.  相似文献   

3.
In this article, the characterization of the first near-infrared (NIR) phospholipase-activated molecular beacon is reported, and its utility for in vivo cancer imaging is demonstrated. The probe consists of three elements: a phospholipid (PL) backbone to which the NIR fluorophore, pyropheophorbide a (Pyro), and the NIR Black Hole Quencher 3 (BHQ) were conjugated. Because of the close proximity of BHQ to Pyro, the Pyro-PtdEtn-BHQ probe is self-quenched until enzyme hydrolysis releases the fluorophore. The Pyro-PtdEtn-BHQ probe is highly specific to one isoform of phospholipase C, phosphatidylcholine-specific phospholipase C (PC-PLC), responsible for catabolizing phosphatidylcholine directly to phosphocholine. Incubation of Pyro-PtdEtn-BHQ in vitro with PC-PLC demonstrated a 150-fold increase in fluorescence that could be inhibited by the specific PC-PLC inhibitor tricyclodecan-9-yl xanthogenate (D609) with an IC(50) of 34 ± 8 μM. Since elevations in phosphocholine have been consistently observed by magnetic resonance spectroscopy in a wide array of cancer cells and solid tumors, we assessed the utility of Pyro-PtdEtn-BHQ as a probe for targeted tumor imaging. Injection of Pyro-PtdEtn-BHQ into mice bearing DU145 human prostate tumor xenografts followed by in vivo NIR imaging resulted in a 4-fold increase in tumor radiance over background and a 2 fold increase in the tumor/muscle ratio. Tumor fluorescence enhancement was inhibited with the administration of D609. The ability to image PC-PLC activity in vivo provides a unique and sensitive method of monitoring one of the critical phospholipase signaling pathways activated in cancer, as well as the phospholipase activities that are altered in response to cancer treatment.  相似文献   

4.
A recently developed near-infrared fluorescence-labeled folate probe (NIR2-folate) was tested for in vivo imaging of arthritis using a lipopolysaccharide intra-articular injection model and a KRN transgenic mice serum induction mouse model. In the lipopolysaccharide injection model, the fluorescence signal intensity of NIR2-folate (n = 12) and of free NIR2 (n = 5) was compared between lipopolysaccharide-treated and control joints. The fluorescence signal intensity of the NIR2-folate probe at the inflammatory joints was found to be significantly higher than the control normal joints (up to 2.3-fold, P < 0.001). The NIR2-free dye injection group showed a persistent lower enhancement ratio than the NIR2-folate probe injection group. Excessive folic acid was also given to demonstrate a competitive effect with the NIR2-folate. In the KRN serum transfer model (n = 4), NIR2-folate was applied at different time points after serum transfer, and the inflamed joints could be detected as early as 30 hours after arthritogenic antibody transfer (1.8-fold increase in signal intensity). Fluorescence microscopy, histology, and immunohistochemistry validated the optical imaging results. We conclude that in vivo arthritis detection was feasible using a folate-targeted near-infrared fluorescence probe. This receptor-targeted imaging method may facilitate improved arthritis diagnosis and early assessment of the disease progress by providing an in vivo characterization of active macrophage status in inflammatory joint diseases.  相似文献   

5.
Fluorescence imaging is increasingly used to probe protein function and gene expression in live animals. This technology could enhance the study of pathogenesis, drug development, and therapeutic intervention. In this article, we focus on three-dimensional fluorescence observations using fluorescence-mediated molecular tomography (FMT), a novel imaging technique that can resolve molecular function in deep tissues by reconstructing fluorescent probe distributions in vivo. We have compared FMT findings with conventional fluorescence reflectance imaging (FRI) to study protease function in nude mice with subsurface implanted tumors. This validation of FMT with FRI demonstrated the spatial congruence of fluorochrome activation as determined by the two techniques.  相似文献   

6.
In vivo near-infrared fluorescence imaging of osteoblastic activity.   总被引:9,自引:0,他引:9  
In vertebrates, the development and integrity of the skeleton requires hydroxyapatite (HA) deposition by osteoblasts. HA deposition is also a marker of, or a participant in, processes as diverse as cancer and atherosclerosis. At present, sites of osteoblastic activity can only be imaged in vivo using gamma-emitting radioisotopes. The scan times required are long, and the resultant radioscintigraphic images suffer from relatively low resolution. We have synthesized a near-infrared (NIR) fluorescent bisphosphonate derivative that exhibits rapid and specific binding to HA in vitro and in vivo. We demonstrate NIR light-based detection of osteoblastic activity in the living animal, and discuss how this technology can be used to study skeletal development, osteoblastic metastasis, coronary atherosclerosis, and other human diseases.  相似文献   

7.
The development and validation of a multiscopic near-infrared fluorescence (NIRF) probe, cinnamoyl-F-(D)L-F-(D)L-F-PEG-cyanine7 (cFlFlF-PEG-Cy7), that targets formyl peptide receptor on neutrophils using a mice ear inflammation model is described. Acute inflammation was induced in mice by topical application of phorbol-12-myristate-13-acetate to left ears 24 hours before probe administration. Noninvasive NIRF imaging was longitudinally performed up to 24 hours following probe injection. The in vivo neutrophil-targeting specificity of the probe was characterized by a blocking study with preadministration of excess nonfluorescent peptide cFlFlF-PEG and by an imaging study with a scrambled peptide probe cLFFFL-PEG-Cy7. NIRF imaging of mice injected with cinnamoyl-L-F-F-F-L-PEG-cyanine7 (cFlFlF-PEG-Cy7) revealed that the fluorescence intensity for inflamed left ears was approximately fourfold higher than that of control right ears at 24 hours postinjection. In comparison, the ratios acquired with the scrambled probe and from the blocking study were 1.5- and 2-fold at 24 hours postinjection, respectively. Moreover, a microscopic immunohistologic study confirmed that the NIRF signal of cFlFlF-PEG-Cy7 was associated with activated neutrophils in the inflammatory tissue. With this probe, in vivo neutrophil chemotaxis could be correlatively imaged macroscopically in live animals and microscopically at tissue and cellular levels.  相似文献   

8.
AbstractWe delivered adenovirus vector (Ad) via intravitreous injection and monitored transgene (luciferase) expression in living mice (BALB/c) at multiple time points. In vivo live imaging technology was able to assess dynamically intraocular luciferase expression in a single animal population throughout the entire experiment period. Using this information, we were able to determine the optimal time point for readministration of Ad into the eyes and to dynamically study the time course of expression of a second Ad administration. Optical imaging demonstrated the limited period of transgene expression in eyes. Significant transgene signal was also detected in livers. The repeat intraocular delivery of the adenovirus resulted in significant blunting of transgene expression in both eyes and livers compared to the initial delivery. Periocular corticosteroid (triamcinolone acetonide) injection combined with initial Ad delivery was effective to rescue luciferase expression on repeat Ad vector delivery. However, this effect was not observed when corticosteroid was combined with repeat Ad delivery. Although corticosteroid enhanced ocular transgene expression, it also increased transgene expression in liver, which has potential safety implications. This dynamic transgene expression in eyes was successfully traced and monitored via a live imaging technique.  相似文献   

9.
10.
Human epidermal growth factor receptor type 2 (HER2) is a well-known biomarker that is overexpressed in many breast carcinomas. HER2 expression level is an important factor to optimize the therapeutic strategy and monitor the treatment. We used albumin binding domain-fused HER2-specific Affibody molecules, labeled with Alexa Fluor750 dye, to characterize HER2 expression in vivo. Near-infrared optical imaging studies were carried out using mice with subcutaneous HER2-positive tumors. Animals were divided into groups of five: no treatment and 12 hours and 1 week after treatment of the tumors with the Hsp90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG). The compartmental ligands-receptor model, describing binding kinetics, was used to evaluate HER2 expression from the time sequence of the fluorescence images after the intravenous probe injection. The normalized rate of accumulation of the specific fluorescent biomarkers, estimated from this time sequence, linearly correlates with the conventional ex vivo enzyme-linked immunosorbent assay (ELISA) readings for the same tumor. Such correspondence makes properly arranged fluorescence imaging an excellent candidate for estimating HER2 overexpression in tumors, complementing ELISA and other ex vivo assays. Application of this method to the fluorescence data from HER2-positive xenografts reveals that the 17-DMAG treatment results in downregulation of HER2. Application of the AngioSense 750 probe confirmed the antiangiogenic effect of 17-DMAG found with Affibody-Alexa Fluor 750 conjugate.  相似文献   

11.
We have developed a method to image tumor-associated lysosomal protease activity in a xenograft mouse model in vivo using autoquenched near-infrared fluorescence (NIRF) probes. NIRF probes were bound to a long circulating graft copolymer consisting of poly-L-lysine and methoxypolyethylene glycol succinate. Following intravenous injection, the NIRF probe carrier accumulated in solid tumors due to its long circulation time and leakage through tumor neovasculature. Intratumoral NIRF signal was generated by lysosomal proteases in tumor cells that cleave the macromolecule, thereby releasing previously quenched fluorochrome. In vivo imaging showed a 12-fold increase in NIRF signal, allowing the detection of tumors with submillimeter-sized diameters. This strategy can be used to detect such early stage tumors in vivo and to probe for specific enzyme activity.  相似文献   

12.
A number of medical applications of near-infrared spectroscopy are growing closer to clinical acceptance, and new techniques involving both spectroscopy and imaging are evolving rapidly. In vivo spectroscopy and, more recently, imaging techniques are largely based upon optical electronic transitions involving the metal centers of hemoglobin (blood), myoglobin (muscle) and cytochrome aa3 (mitochondria). The wide variety of near-IR based applications includes heart and stroke research, monitoring cerebral oxygenation of premature babies, and 'functional activation' (response of brain to mental tasks). All of these applications are founded upon changes in hemoglobin O2 saturation; these changes are monitored by following trends in the near-infrared absorptions of deoxyhemoglobin (760 nm) and oxyhemoglobin (920 nm). The same absorptions provide a basis for imaging regional variations in blood oxygenation. This report presents and discusses examples, both from the literature and from our recent work, of near-infrared spectroscopy and imaging in medical applications.  相似文献   

13.
Zhang Y  Fan S  Yao Y  Ding J  Wang Y  Zhao Z  Liao L  Li P  Zang F  Teng GJ 《PloS one》2012,7(1):e30262

Objectives

Thrombus and secondary thrombosis plays a key role in stroke. Recent molecular imaging provides in vivo imaging of activated factor XIII (FXIIIa), an important mediator of thrombosis or fibrinolytic resistance. The present study was to investigate the fibrin deposition in a thromboembolic stroke mice model by FXIIIa–targeted near-infrared fluorescence (NIRF) imaging.

Materials and Methods

The experimental protocol was approved by our institutional animal use committee. Seventy-six C57B/6J mice were subjected to thromboembolic middle cerebral artery occlusion or sham operation. Mice were either intravenously injected with the FXIIIa-targeted probe or control probe. In vivo and ex vivo NIRF imaging were performed thereafter. Probe distribution was assessed with fluorescence microscopy by spectral imaging and quantification system. MR scans were performed to measure lesion volumes in vivo, which were correlated with histology after animal euthanasia.

Results

In vivo significant higher fluorescence intensity over the ischemia-affected hemisphere, compared to the contralateral side, was detected in mice that received FXIIIa-targeted probe, but not in the controlled mice. Significantly NIRF signals showed time-dependent processes from 8 to 96 hours after injection of FXIIIa-targeted probes. Ex vivo NIRF image showed an intense fluorescence within the ischemic territory only in mice injected with FXIIIa-targeted probe. The fluorescence microscopy demonstrated distribution of FXIIIa-targeted probe in the ischemic region and nearby micro-vessels, and FXIIIa-targeted probe signals showed good overlap with immune-fluorescent fibrin staining images. There was a significant correlation between total targeted signal from in vivo or ex vivo NIRF images and lesion volume.

Conclusion

Non-invasive detection of fibrin deposition in ischemic mouse brain using NIRF imaging is feasible and this technique may provide an in vivo experimental tool in studying the role of fibrin in stroke.  相似文献   

14.
15.
We developed a novel near-infrared (NIR) fluorescent probe, GPU-167, for in vivo imaging of tumor hypoxia. GPU-167 comprises a tricarbocyanine dye as an NIR fluorophore and two 2-nitroimidazole moieties as exogenous hypoxia markers that undergo bioreductive activation and then selective entrapment in hypoxic cells. After treatment with GPU-167, tumor cells contained significantly higher levels of fluorescence in hypoxia than in normoxia. In vivo fluorescence imaging specifically detected GPU-167 in tumors 24 h after administration. Ex vivo analysis revealed that fluorescence showed a strong correlation with hypoxia inducible factor (HIF)-1 active hypoxic regions. These data suggest that GPU-167 is a promising in vivo optical imaging probe for tumor hypoxia.  相似文献   

16.
Colorectal cancer (CRC) is a major cause of cancer-related deaths in much of the world. Most CRCs arise from pre-malignant (dysplastic) lesions, such as adenomatous polyps, and current endoscopic screening approaches with white light do not detect all dysplastic lesions. Thus, new strategies to identify such lesions, including non-polypoid lesions, are needed. We aim to identify and validate novel peptides that specifically target dysplastic colonic epithelium in vivo. We used phage display to identify a novel peptide that binds to dysplastic colonic mucosa in vivo in a genetically engineered mouse model of colo-rectal tumorigenesis, based on somatic Apc (adenomatous polyposis coli) gene inactivation. Binding was confirmed using confocal microscopy on biopsied adenomas and excised adenomas incubated with peptide ex vivo. Studies of mice where a mutant Kras allele was somatically activated in the colon to generate hyperplastic epithelium were also performed for comparison. Several rounds of in vivo T7 library biopanning isolated a peptide, QPIHPNNM. The fluorescent-labeled peptide bound to dysplastic lesions on endoscopic analysis. Quantitative assessment revealed the fluorescent-labeled peptide (target/background: 2.17±0.61) binds ~2-fold greater to the colonic adenomas when compared to the control peptide (target/background: 1.14±0.15), p<0.01. The peptide did not bind to the non-dysplastic (hyperplastic) epithelium of the Kras mice. This work is first to image fluorescence-labeled peptide binding in vivo that is specific towards colonic dysplasia on wide-area surveillance. This finding highlights an innovative strategy for targeted detection to localize pre-malignant lesions that can be generalized to the epithelium of hollow organs.  相似文献   

17.
Summary An in vivo 5-bromodeoxyuridine (BrdUrd) labeled DNA probe was used for in situ DNA-RNA hybridization. BrdUrd was incorporated into plasmid DNA by inoculating E. coli with Luria-Bertani (LB) culture medium containing 500 mg/L of BrdUrd. After purification of the plasmid DNA, specific probes of the defined DNA fragments, which contained the cloned insert and short stretches of the vector DNA, were generated by restriction endonuclease. The enzymatic digestion pattern of the BrdUrd-labeled plasmid DNA was the same as that of the non-labeled one. BrdUrd was incorporated in 15%–20% of the total DNA, that is, about 80% of the thymidine was replaced by BrdUrd. Picogram amounts of the BrdUrd-labeled DNA probe itself and the target DNA were detectable on nitrocellulose filters in dot-blot spot and hybridization experiments using a peroxidase/diaminobenzidine combination. The BrdUrd-labeled DNA probe was efficiently hybridized with both single stranded DNA on nitrocellulose filters and cellular mRNA in in situ hybridization experiments. Through the reaction with BrdUrd in single stranded tails, hybridized probes were clearly detectable with fluorescent microscopy using a FITC-conjugated monoclonal anti-BrdUrd antibody. The in vivo labeling method did not require nick translation steps or in vitro DNA polymerase reactions. Sensitive, stable and efficient DNA probes were easily obtainable with this method.  相似文献   

18.
An in vivo 5'-bromodeoxyuridine (BrdUrd) labeled DNA probe was used for in situ DNA-RNA hybridization. BrdUrd was incorporated into plasmid DNA by inoculating E. coli with Luria-Bertani (LB) culture medium containing 500 mg/L of BrdUrd. After purification of the plasmid DNA, specific probes of the defined DNA fragments, which contained the cloned insert and short stretches of the vector DNA, were generated by restriction endonuclease. The enzymatic digestion pattern of the BrdUrd-labeled plasmid DNA was the same as that of the non-labeled one. BrdUrd was incorporated in 15%-20% of the total DNA, that is, about 80% of the thymidine was replaced by BrdUrd. Picogram amounts of the BrdUrd-labeled DNA probe itself and the target DNA were detectable on nitrocellulose filters in dot-blot spot and hybridization experiments using a peroxidase/diaminobenzidine combination. The BrdUrd-labeled DNA probe was efficiently hybridized with both single stranded DNA on nitrocellulose filters and cellular mRNA in in situ hybridization experiments. Through the reaction with BrdUrd in single stranded tails, hybridized probes were clearly detectable with fluorescent microscopy using a FITC-conjugated monoclonal anti-BrdUrd antibody. The in vivo labeling method did not require nick translation steps or in vitro DNA polymerase reactions. Sensitive, stable and efficient DNA probes were easily obtainable with this method.  相似文献   

19.
In vivo oxygen imaging using green fluorescent protein   总被引:1,自引:0,他引:1  
In vivo oxygen measurement is the key to understanding how biological systems dynamically adapt to reductions in oxygen supply. High spatial resolution oxygen imaging is of particular importance because recent studies address the significance of within-tissue and within-cell heterogeneities in oxygen concentration in health and disease. Here, we report a new technique for in vivo molecular imaging of oxygen in organs using green fluorescent protein (GFP). GFP-expressing COS-7 cells were briefly photoactivated with a strong blue light while lowering the oxygen concentration from 10% to <0.001%. Red fluorescence (excitation 520–550 nm, emission >580 nm) appeared after photoactivation at <2% oxygen (the red shift of GFP fluorescence). The red shift disappeared after reoxygenation of the cell, indicating that the red shift is stable as long as the cell is hypoxic. The red shift of GFP fluorescence was also demonstrated in single cardiomyocytes isolated from the GFP knock-in mouse (green mouse) heart. Then, we tried in vivo molecular imaging of hypoxia in organs. The red shift could be imaged in the ischemic liver and kidney in the green mouse using macroscopic optics provided that oxygen diffusion from the atmospheric air was prevented. In crystalloid-perfused beating heart isolated from the green mouse, significant spatial heterogeneities in the red shift were demonstrated in the epicardium distal to the coronary artery ligation. We conclude that the present technique using GFP as an oxygen indicator may allow in vivo molecular imaging of oxygen in organs. heart; ischemia; hypoxia; molecular imaging  相似文献   

20.
To image implant-surrounding activated macrophages, a macrophage-specific PET probe was prepared by conjugating folic acid (FA) and 2,2′,2″,2?-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetracetic acid (DOTA) to polyethylene glycol (PEG) and then labeling the conjugate with Ga-68. In vivo PET imaging evaluations demonstrate that the probe is able to detect foreign body reactions, and more importantly, quantify the degree of inflammatory responses to an implanted medical device. These results were further validated by histological analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号