首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Eg5 is a slow, plus-end-directed microtubule-based motor of the BimC kinesin family that is essential for bipolar spindle formation during eukaryotic cell division. We have analyzed two human Eg5/KSP motors, Eg5-367 and Eg5-437, and both are monomeric based on results from sedimentation velocity and sedimentation equilibrium centrifugation as well as analytical gel filtration. The steady-state parameters were: for Eg5-367: k(cat) = 5.5 s(-1), K(1/2,Mt) = 0.7 microm, and K(m,ATP) = 25 microm; and for Eg5-437: k(cat) = 2.9 s(-1), K(1/2,Mt) = 4.5 microm, and K(m,ATP) = 19 microm. 2'(3')-O-(N-Methylanthraniloyl)-ATP (mantATP) binding was rapid at 2-3 microm(-1)s(-1), followed immediately by ATP hydrolysis at 15 s(-1). ATP-dependent Mt.Eg5 dissociation was relatively slow and rate-limiting at 8 s(-1) with mantADP release at 40 s(-1). Surprisingly, Eg5-367 binds microtubules more effectively (11 microm(-1)s(-1)) than Eg5-437 (0.7 microm(-1)s(-1)), consistent with the steady-state K(1/2,Mt) and the mantADP release K(1/2,Mt). These results indicate that the ATPase pathway for monomeric Eg5 is more similar to conventional kinesin than the spindle motors Ncd and Kar3, where ADP product release is rate-limiting for steady-state turnover.  相似文献   

2.
Hsp90 is a dimeric, ATP-regulated molecular chaperone. Its ATPase cycle involves the N-terminal ATP binding domain (amino acids (aa) 1-272) and, in addition, to some extent the middle domain (aa 273-528) and the C-terminal dimerization domain (aa 529-709). To analyze the contribution of the different domains and the oligomeric state on the progression of the ATPase cycle of yeast Hsp90, we created deletion constructs lacking either the C-terminal or both the C-terminal and the middle domain. To test the effect of dimerization on the ATPase activity of the different constructs, we introduced a Cys residue at the C-terminal ends of the constructs, which allowed covalent dimerization. We show that all monomeric constructs tested exhibit reduced ATPase activity and a decreased affinity for ATP in comparison with wild type Hsp90. The covalently linked dimers lacking only the C-terminal domain hydrolyze ATP as efficiently as the wild type protein. Furthermore, this construct is able to trap the ATP molecule similar to the full-length protein. This demonstrates that in the ATPase cycle, the C-terminal domain can be replaced by a cystine bridge. In contrast, the ATPase activity of the artificially linked N-terminal domains remains very low and bound ATP is not trapped. Taken together, we show that both the dimerization of the N-terminal domains and the association of the N-terminal with the middle domain are important for the efficiency of the ATPase cycle. These reactions are synergistic and require Hsp90 to be in the dimeric state.  相似文献   

3.
Tgs1 is the enzyme responsible for converting 7-methylguanosine RNA caps to the 2,2,7-trimethylguanosine cap structures of small nuclear and small nucleolar RNAs. Whereas budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe encode a single Tgs1 protein, the primitive eukaryote Giardia lamblia encodes two paralogs, Tgs1 and Tgs2. Here we show that purified Tgs2 is a monomeric enzyme that catalyzes methyl transfer from AdoMet (K(m) of 6 microm) to m(7)GDP (K(m) of 65 microm; k(cat) of 14 min(-1)) to form m(2,7)GDP. Tgs2 also methylates m(7)GTP (K(m) of 30 microm; k(cat) of 13 min(-1)) and m(7)GpppA (K(m) of 7 microm; k(cat)) of 14 min(-1) but is unreactive with GDP, GTP, GpppA, ATP, CTP, or UTP. We find that the conserved residues Asp-68, Glu-91, and Trp-143 are essential for Tgs2 methyltransferase activity in vitro. The m(2,7)GDP product formed by Tgs2 can be converted to m(2,2,7)GDP by S. pombe Tgs1 in the presence of excess AdoMet. However, Giardia Tgs2 itself is apparently unable to add a second methyl group at guanine-N2. This result implies that 2,2,7-trimethylguanosine caps in Giardia are either synthesized by Tgs1 alone or by the sequential action of Tgs2 and Tgs1. The specificity of Tgs2 raises the prospect that some Giardia mRNAs might contain dimethylguanosine caps.  相似文献   

4.
We demonstrate that RecQ helicase from Escherichia coli is a catalytic helicase whose activity depends on the concentration of ATP, free magnesium ion, and single-stranded DNA-binding (SSB) protein. Helicase activity is cooperative in ATP concentration, with an apparent S(0.5) value for ATP of 200 microm and a Hill coefficient of 3.3 +/- 0.3. Therefore, RecQ helicase utilizes multiple, interacting ATP-binding sites to mediate double-stranded DNA (dsDNA) unwinding, implicating a multimer of at least three subunits as the active unwinding species. Unwinding activity is independent of dsDNA ends, indicating that RecQ helicase can unwind from both internal regions and ends of dsDNA. The K(M) for dsDNA is 0.5-0.9 microm base pairs; the k(cat) for DNA unwinding is 2.3-2.7 base pairs/s/monomer of RecQ helicase; and unexpectedly, helicase activity is optimal at a free magnesium ion concentration of 0.05 mm. Omitting Escherichia coli SSB protein lowers the rate and extent of dsDNA unwinding, suggesting that RecQ helicase associates with the single-stranded DNA (ssDNA) product. In agreement, the ssDNA-dependent ATPase activity is reduced in proportion to the SSB protein concentration; in its absence, ATPase activity saturates at six nucleotides/RecQ helicase monomer and yields a k(cat) of 24 s(-1). Thus, we conclude that SSB protein stimulates RecQ helicase-mediated unwinding by both trapping the separated ssDNA strands after unwinding and preventing the formation of non-productive enzyme-ssDNA complexes.  相似文献   

5.
Fungal conventional kinesins are unusually fast microtubule motor proteins. To compare the functional organization of fungal and animal conventional kinesins, a set of C-terminal deletion mutants of the Neurospora crassa conventional kinesin, NcKin, was investigated for its biochemical and biophysical properties. While the shortest, monomeric construct comprising the catalytic core and the neck-linker (NcKin343) displays very high steady-state ATPase (k(cat) = 260/s), constructs including both the full neck and adjacent hinge domains (NcKin400, NcKin433 and NcKin480) show wild-type behaviour: they are dimeric, show fast gliding and slower ATP turnover rates (k(cat) = 60-84/s), and are chemically processive. Unexpectedly, a construct (NcKin378, corresponding to Drosophila KHC381) that includes just the entire coiled-coil neck is a monomer. Its ATPase activity is slow (k(cat) = 27/s), and chemical processivity is abolished. Together with a structural analysis of synthetic neck peptides, our data demonstrate that the NcKin neck domain behaves differently from that of animal conventional kinesins and may be tuned to drive fast, processive motility.  相似文献   

6.
The gene encoding for a putative thermosome from the hyperthermophilic crenarchaeon Aeropyrum pernix K1 (ApcpnA) was cloned and the biochemical characteristics of the resulting recombinant protein were examined. The gene (accession no. APE0907) from A. pernix K1 showed some homology with other group II chaperonins from archaea. The recombinant ApcpnA protein has a molecular mass of 60 kDa, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and exhibited ATPase activity with an optimum temperature and pH of 90 degrees C and 5.0, respectively. The ATPase activity was found to be dependent on manganese and potassium ions, but not magnesium ion. The K(m) for ATP at pH 5.0 and 90 degrees C was 10.04 (+/- 1.31) microM, and k(cat) was determined to be 2.21 (+/- 0.11) min(-1) for the ApcpnA monomer. The recombinant ApcpnA prevents thermal aggregation of bovine rhodanese and enhances the thermal stability of alcohol dehydrogenase in vitro, indicating that the protein is suitable as a molecular chaperonin in the high-temperature environment.  相似文献   

7.
A Crithidia fasciculata 83-kDa protein purified during a separate study of C. fasciculata trypanothione synthetase was shown to have ATPase activity and to belong to the hsp90 family of stress proteins. Because no ATPase activity has previously been reported for the hsp90 class, ATP utilization by C. fasciculata hsp83 was characterized: this hsp83 has an ATPase kcat of 150 min-1 and a Km of 60 microM, whereas the homologous mammalian hsp90 binds ATP but has no ATPase activity. Crithidia fasciculata hsp83 undergoes autophosphorylation on serine and threonine at a rate constant of 3.3 x 10(-3) min-1. Similar analysis was performed on recombinant Trypanosoma cruzi hsp83, and comparable ATPase parameters were obtained (kcat = 100 min-1, Km = 80 microM, kautophosphorylation = 6.3 x 10(-3) min-1). The phosphoenzyme is neither on the ATPase hydrolytic pathway nor does it affect ATPase catalytic efficiency. Both C. fasciculata and T. cruzi hsp83 show up to fivefold stimulation of ATPase activity by peptides of 6-24 amino acids.  相似文献   

8.
Myosin IIIA is specifically expressed in photoreceptors and cochlea and is important for the phototransduction and hearing processes. In addition, myosin IIIA contains a unique N-terminal kinase domain and C-terminal tail actin-binding motif. We examined the kinetic properties of baculovirus expressed human myosin IIIA containing the kinase, motor, and two IQ domains. The maximum actin-activated ATPase rate is relatively slow (k(cat) = 0.77 +/- 0.08 s(-1)), and high actin concentrations are required to fully activate the ATPase rate (K(ATPase) = 34 +/- 11 microm). However, actin co-sedimentation assays suggest that myosin III has a relatively high steady-state affinity for actin in the presence of ATP (K(actin) approximately 7 microm). The rate of ATP binding to the motor domain is quite slow both in the presence and absence of actin (K(1)k(+2) = 0.020 and 0.001 microm(-1).s(-1), respectively). The rate of actin-activated phosphate release is more than 100-fold faster (85 s(-1)) than the k(cat), whereas ADP release in the presence of actin follows a two-step mechanism (7.0 and 0.6 s(-1)). Thus, our data suggest a transition between two actomyosin-ADP states is the rate-limiting step in the actomyosin III ATPase cycle. Our data also suggest the myosin III motor spends a large fraction of its cycle in an actomyosin ADP state that has an intermediate affinity for actin (K(d) approximately 5 microm). The long lived actomyosin-ADP state may be important for the ability of myosin III to function as a cellular transporter and actin cross-linker in the actin bundles of sensory cells.  相似文献   

9.
A gene encoding a putative GTPase containing two tandemly repeated GTP-binding domains from a hyperthermophilic bacterium, Thermotoga maritima, was cloned and expressed in Escherichia coli. The gene (TM1446) termed der is highly conserved in Eubacteria including E. coli. The purified der product (Tm-Der) has GTPase activity but no ATPase activity. GTP, GDP, and dGTP but not GMP, ATP, CTP, and UTP compete for GTP binding to Tm-Der. An optimal condition for the GTPase assay was determined to be pH 7.5 in 400 mm KCl and 5 mm MgCl(2) at 70 degrees C, where K(m), V(max), and k(cat) values were determined to be 110 microm, 3.46 microm/min, and 0.87 min(-1), respectively. A der deletion strain of E. coli was constructed by replacing the der gene (originally annotated yfgK) with a kanamycin resistance gene. The deletion strain was found to form colonies only if the cells harbored a plasmid containing der, indicating that der is essential for E. coli growth.  相似文献   

10.
The OpuA system of Bacillus subtilis is a member of the substrate-binding-protein-dependent ABC transporter superfamily and serves for the uptake of the compatible solute glycine betaine under hyperosmotic growth conditions. Here, we have characterized the nucleotide-binding protein (OpuAA) of the B.subtilis OpuA transporter in vitro. OpuAA was overexpressed heterologously in Escherichia coli as a hexahistidine tag fusion protein and purified to homogeneity by affinity and size exclusion chromatography (SEC). Dynamic monomer/dimer equilibrium was observed for OpuAA, and the K(D) value was determined to be 6 microM. Under high ionic strength assay conditions, the monomer/dimer interconversion was diminished, which enabled separation of both species by SEC and separate analysis of both monomeric and dimeric OpuAA. In the presence of 1 M NaCl, monomeric OpuAA showed a basal ATPase activity (K(M)=0.45 mM; k(2)=2.3 min(-1)), whereas dimeric OpuAA showed little ATPase activity under this condition. The addition of nucleotides influenced the monomer/dimer ratio of OpuAA, demonstrating different oligomeric states during its catalytic cycle. The monomer was the preferred species under post-hydrolysis conditions (e.g. ADP/Mg(2+)), whereas the dimer dominated the nucleotide-free and ATP-bound states. The affinity and stoichiometry of monomeric or dimeric OpuAA/ATP complexes were determined by means of the fluorescent ATP-analog TNP-ATP. One molecule of TNP-ATP was bound in the monomeric state and two TNP-ATP molecules were detected in the dimeric state of OpuAA. Binding of TNP-ADP/Mg(2+) to dimeric OpuAA induced a conformational change that led to the decay of the dimer. On the basis of our data, we propose a model that couples changes in the oligomeric state of OpuAA with ATP hydrolysis.  相似文献   

11.
The ATPase cycle of the endoplasmic chaperone Grp94   总被引:2,自引:0,他引:2  
Grp94, the Hsp90 paralog of the endoplasmic reticulum, plays a crucial role in protein secretion. Like cytoplasmic Hsp90, Grp94 is regulated by nucleotide binding to its N-terminal domain. However, the question of whether Grp94 hydrolyzes ATP was controversial. This sets Grp94 apart from other members of the Hsp90 family where a slow but specific turnover of ATP has been unambiguously established. In this study we aimed at analyzing the nucleotide binding properties and the potential ATPase activity of Grp94. We show here that Grp94 has an ATPase activity comparable with that of yeast Hsp90 with a k(cat) of 0.36 min(-1) at 25 degrees C. Kinetic and equilibrium constants of the partial reactions of the ATPase cycle were determined using transient kinetic methods. Nucleotide binding appears to be tighter compared with other Hsp90s investigated, with dissociation constants (K(D)) of approximately 4 microm for ADP, ATP, and AMP-PCP. Interestingly, all nucleotides and inhibitors (radicicol, 5'-N-ethylcarboxamidoadenosine) studied here bind with similar rate constants for association (0.2-0.3 x 10(6) M(-1) s(-1)). Furthermore, there is a marked difference from cytosolic Hsp90s in that after binding, the ATP molecule does not seem to become trapped by conformational changes in Grp94. Grp94 stays predominantly in the open state concerning the nucleotide-binding pocket as evidenced by kinetic analyses. Thus, Grp94 shows mechanistically important differences in the interaction with adenosine nucleotides, but the basic hydrolysis reaction seems to be conserved between cytosolic and endoplasmic members of the Hsp90 family.  相似文献   

12.
The Rv0948c gene from Mycobacterium tuberculosis H(37)R(v) encodes a 90 amino acid protein as the natural gene product with chorismate mutase (CM) activity. The protein, 90-MtCM, exhibits Michaelis-Menten kinetics with a k(cat) of 5.5+/-0.2s(-1) and a K(m) of 1500+/-100microm at 37 degrees C and pH7.5. The 2.0A X-ray structure shows that 90-MtCM is an all alpha-helical homodimer (Protein Data Bank ID: 2QBV) with the topology of Escherichia coli CM (EcCM), and that both protomers contribute to each catalytic site. Superimposition onto the structure of EcCM and the sequence alignment shows that the C-terminus helix3 is shortened. The absence of two residues in the active site of 90-MtCM corresponding to Ser84 and Gln88 of EcCM appears to be one reason for the low k(cat). Hence, 90-MtCM belongs to a subfamily of alpha-helical AroQ CMs termed AroQ(delta.) The CM gene (y2828) from Yersinia pestis encodes a 186 amino acid protein with an N-terminal signal peptide that directs the protein to the periplasm. The mature protein, *YpCM, exhibits Michaelis-Menten kinetics with a k(cat) of 70+/-5s(-1) and K(m) of 500+/-50microm at 37 degrees C and pH7.5. The 2.1A X-ray structure shows that *YpCM is an all alpha-helical protein, and functions as a homodimer, and that each protomer has an independent catalytic unit (Protein Data Bank ID: 2GBB). *YpCM belongs to the AroQ(gamma) class of CMs, and is similar to the secreted CM (Rv1885c, *MtCM) from M.tuberculosis.  相似文献   

13.
The multidrug efflux pump P-glycoprotein (Pgp) couples drug transport to ATP hydrolysis. Previously, using a synthetic library of tetramethylrosamine ( TMR) analogues, we observed significant variation in ATPase stimulation ( V m (D)). Concentrations required for half-maximal ATPase stimulation ( K m (D)) correlated with ATP hydrolysis transition-state stabilization and ATP occlusion (EC 50 (D)) at a single site. Herein, we characterize several TMR analogues that elicit modest turnover ( k cat 相似文献   

14.
Catalytic reaction pathway for the mitogen-activated protein kinase ERK2   总被引:2,自引:0,他引:2  
Prowse CN  Hagopian JC  Cobb MH  Ahn NG  Lew J 《Biochemistry》2000,39(20):6258-6266
The structural, functional, and regulatory properties of the mitogen-activated protein kinases (MAP kinases) have long attracted considerable attention owing to the critical role that these enzymes play in signal transduction. While several MAP kinase X-ray crystal structures currently exist, there is by comparison little mechanistic information available to correlate the structural data with the known biochemical properties of these molecules. We have employed steady-state kinetic and solvent viscosometric techniques to characterize the catalytic reaction pathway of the MAP kinase ERK2 with respect to the phosphorylation of a protein substrate, myelin basic protein (MBP), and a synthetic peptide substrate, ERKtide. A minor viscosity effect on k(cat) with respect to the phosphorylation of MBP was observed (k(cat) = 10 +/- 2 s(-1), k(cat)(eta) = 0.18 +/- 0.05), indicating that substrate processing occurs via slow phosphoryl group transfer (12 +/- 4 s(-1)) followed by the faster release of products (56 +/- 4 s(-1)). At an MBP concentration extrapolated to infinity, no significant viscosity effect on k(cat)/K(m(ATP)) was observed (k(cat)/K(m(ATP)) = 0.2 +/- 0.1 microM(-1) s(-1), k(cat)/K(m(ATP))(eta) = -0.08 +/- 0.04), consistent with rapid-equilibrium binding of the nucleotide. In contrast, at saturating ATP, a full viscosity effect on k(cat)/K(m) for MBP was apparent (k(cat)/K(m(MBP)) = 2.4 +/- 1 microM(-1) s(-1), k(cat)/K(m(MBP))(eta) = 1.0 +/- 0.1), while no viscosity effect was observed on k(cat)/K(m) for the phosphorylation of ERKtide (k(cat)/K(m(ERKtide)) = (4 +/- 2) x 10(-3) microM(-1) s(-1), k(cat)/K(m(ERKtide))(eta) = -0.02 +/- 0.02). This is consistent with the diffusion-limited binding of MBP, in contrast to the rapid-equilibrium binding of ERKtide, to form the ternary Michaelis complex. Calculated values for binding constants show that the estimated value for K(d(MBP)) (/= 1.5 mM). The dramatically higher catalytic efficiency of MBP in comparison to that of ERKtide ( approximately 600-fold difference) is largely attributable to the slow dissociation rate of MBP (/=56 s(-1)), from the ERK2 active site.  相似文献   

15.
Caenorhabditis elegans has been used as a model organism to study the roles of molecular chaperones in cellular processes. C. elegans heat shock protein 70-1 (CeHsp70-1) is the first of the 13-member Hsp70 family genes identified so far in the organism. The protein product of this gene, CeHsp70-1, has been shown to play an important role in conferring thermo-tolerance and longevity on C. elegans. Here, we present the results of the first work to over-express, purify and characterize the ATP hydrolyzing activity of a member of the C. elegans Hsp70s. Recombinant CeHsp70-1 was found to be highly expressed and sufficiently soluble in Escherichia coli. The protein was purified to homogeneity using a combination of nickel affinity, ion exchange and size-exclusion chromatography. Kinetic properties of the basal ATPase activity of the enzyme in a low-salt buffer were determined using a colorimetric assay. The specific activity (V(max) per mg protein), K(m) and k(cat) values obtained for CeHsp70-1 were 25 nmol/min/mg, 50 μM and 0.28 min?1, respectively. The catalytic constant (k(cat)) of the protein was found to be similar to that of heat shock cognate 70 (Hsc70) and binding immunoglobulin protein (BiP). At low concentrations, CeHsp70-1 existed mostly in its monomeric form. This work provides a platform for kinetic studies of other members of the C. elegans Hsp70 molecular chaperones.  相似文献   

16.
Salmonella FliI is the flagellar ATPase which converts the energy of ATP hydrolysis into the export of flagellar proteins. It forms a ring-shaped oligomer in the presence of ATP, its analogs, or phospholipids. The extreme N-terminal region of FliI has an unstable conformation and is responsible for the interaction with other components of the export apparatus and for regulation of the catalytic mechanism. To understand the role of this N-terminal region in more detail, we used multi-angle light-scattering, analytical ultracentrifugation, far-UV CD and biochemical methods to characterize a partially functional variant of FliI, missing its first seven amino acid residues (His-FliI(Delta1-7)), whose ATPase activity is about ten times lower than that of wild-type FliI. His-FliI(Delta1-7) is monomeric in solution. The deletion increased the content of alpha-helix, suggesting that the deletion stabilizes the unstable N-terminal region into an alpha-helical conformation. The deletion did not influence the K(m) value for ATP. However, unlike the wild-type, ATP and acidic phospholipids did not induce oligomerization of His-FliI(Delta1-7) or increase its ATPase activity. These results suggest that the deletion suppresses the oligomerization of FliI, and that a conformational change in the unstable N-terminal region is required for FliI oligomerization to effectively couple the energy of ATP hydrolysis to the translocation of flagellar proteins.  相似文献   

17.
Phosphomevalonate kinase catalyzes an essential step in the so-called mevalonate pathway, which appears to be the sole pathway for the biosynthesis of sterols and other isoprenoids in mammals and archea. Despite the well documented importance of this pathway in the cause and prevention of human disease and that it is the biosynthetic root of an enormous diverse class of metabolites, the mechanism of phosphomevalonate kinase from any organism is not yet well characterized. The first structure of a phosphomevalonate kinase from Streptococcus pneumoniae was solved recently. The enzyme exhibits an atypical P-loop that is a conserved defining feature of the GHMP kinase superfamily. In this study, the kinetic mechanism of the S. pneumoniae enzyme is characterized in the forward and reverse directions using a combination of classical initial-rate methods including alternate substrate inhibition using ADPbetaS. The inhibition patterns strongly support that in either direction the substrates bind randomly to the enzyme prior to chemistry, a random sequential bi-bi mechanism. The kinetic constants are as follows: k(cat(forward)) = 3.4 s(-1), K(i(ATP)) = 137 microm, K(m(ATP)) = 74 microm, K(i(pmev)) = 7.7 microm, K(m(pmev)) = 4.2 microm; k(cat(reverse)) = 3.9 s(-1), K(i(ADP)) = 410 microm, K(m(ADP)) = 350 microm, K(i(ppmev)) = 14 microm, K(m(ppmev)) = 12 microm, where pmev and ppmev represent phosphomevalonate and diphosphomevalonate, respectively.  相似文献   

18.
The two transmembrane domains of CD39 ecto-apyrase regulate the formation of fully active homotetramers. We show that mutations in apyrase conserved region 1 (ACR1) have two dramatically different sets of effects determined by whether they occur in intact tetramers or in disrupted tetramers or monomers. In intact tetramers, substitution of H59 in the rat brain CD39 ACR1 with G or S abolishes more than 90% of the ATPase activity but less than 50% of the ADPase activity, converting the enzyme into an ADPase with relative ADP:ATP hydrolysis rates of 6:1 or 8:1, respectively. In contrast, the same substitutions in tetramers lacking either transmembrane domain, in monomers lacking both transmembrane domains, or in detergent-solubilized full-length monomers have no effect on ATPase activity and increase ADPase activity approximately 2-fold, resulting in equal ATPase and ADPase activities. N61R substitution has a much smaller effect on the ADPase:ATPase ratio in both cases. While the data for truncated and monomeric constructs are consistent with the proposed role of ACR1 as the beta-phosphate binding domain by analogy with the actin/hsp70/hexokinase superfamily, the finding that H59 substitutions in full-length CD39 primarily diminish the ATP hydrolysis rate suggests that ACR1 may play a different role in intact tetramers. We propose that CD39 uses different ATPase and ADPase mechanisms in different quaternary structure contexts, and that H59 in ACR1 plays a central role specifically in ATP hydrolysis in intact tetramers.  相似文献   

19.
Chlorophyllase catalyzes the initial step in the degradation of chlorophyll and plays a key role in leaf senescence and fruit ripening. Here, we report the cloning of chlorophyllase from Triticum aestivum (wheat) and provide a detailed mechanistic analysis of the enzyme. Purification of recombinant chlorophyllase from an Escherichia coli expression system indicates that the enzyme functions as a dimeric protein. Wheat chlorophyllase hydrolyzed the phytol moiety from chlorophyll (k(cat) = 566 min(-1); K(m) = 63 microM) and was active over a broad temperature range (10-75 degrees C). In addition, the enzyme displays carboxylesterase activity toward p-nitrophenyl (PNP)-butyrate, PNP-decanoate, and PNP-palmitate. The pH-dependence of the reaction showed the involvement of an active site residue with a pK(a) of approximately 6.5 for both k(cat) and k(cat)/K(m) with chlorophyll, PNP-butyrate, and PNP-decanoate. Using these substrates, solvent kinetic isotope effects ranging from 1.5 to 1.9 and from 1.4 to 1.9 on k(cat) and k(cat)/K(m), respectively, were observed. Proton inventory experiments suggest the transfer of a single proton in the rate-limiting step. Our analysis of wheat chlorophyllase indicates that the enzyme uses a charge-relay mechanism similar to other carboxylesterases for catalysis. Understanding the activity and mechanism of chlorophyllase provides insight on the biological and chemical control of senescence in plants and lays the groundwork for biotechnological improvement of this enzyme.  相似文献   

20.
The ATPase activity of the molecular chaperone Hsp90 is essential for its function in the assembly of client proteins. To understand the mechanism of human Hsp90, we have carried out a detailed kinetic analysis of ATP binding, hydrolysis and product release. ATP binds rapidly in a two-step process involving the formation of a diffusion-collision complex followed by a conformational change. The rate-determining step was shown to be ATP hydrolysis and not subsequent ADP dissociation. There was no evidence from any of the biophysical measurements for cooperativity in either nucleotide binding or hydrolysis for the dimeric protein. A monomeric fragment, lacking the C-terminal dimerisation domain, showed no dependence on protein concentration and, therefore, subunit association for activity. The thermodynamic linkage between client protein binding and nucleotide affinity revealed ATP bound Hsp90 has a higher affinity for client proteins than the ADP bound form. The kinetics are consistent with independent Michaelis-Menten catalysis in each subunit of the Hsp90 dimer. We propose that Hsp90 functions in an open-ring configuration for client protein activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号