首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyacrylamide gel electrophoresis at pH 8.3 was used to detect and quantitate the formation of the yeast tyrosyl-tRNA synthetase (an alpha 2-type enzyme) complex with its cognate tRNA. Electrophoretic mobility of the complex is intermediate between the free enzyme and free tRNA; picomolar quantities can be readily detected by silver staining and quantitated by densitometry of autoradiograms when [32P]tRNA is used. Two kinds of complexes of Tyr-tRNA synthetase with yeast tRNA(Tyr) were detected. A slower-moving complex is formed at ratios of tRNA(Tyr)/enzyme less than or equal to 0.5; it is assigned the composition tRNA.(alpha 2)2. At higher ratios, a faster-moving complex is formed, approaching saturation at tRNA(Tyr)/enzyme = 1; any excess of tRNA(Tyr) remains unbound. This complex is assigned the composition tRNA.alpha 2. The slower, i.e. tRNA.(alpha 2)2 complex, but not the faster complex, can be formed even with non-cognate tRNAs. Competition experiments show that the affinity of the enzyme towards tRNA(Tyr) is at least 10-fold higher than that for the non-cognate tRNAs. ATP and GTP affect the electrophoretic mobility of the enzyme and prevent the formation of tRNA.(alpha 2)2 complexes both with cognate and non-cognate tRNAs, while neither tyrosine, as the third substrate of Tyr tRNA synthetase, nor AMP, AMP/PPi, or spermidine, have such effects. Hence, the ATP-mediated formation of the alpha 2 structure parallels the increase in specificity of the enzyme towards its cognate tRNA.  相似文献   

2.
J J Rossi  A Landy 《Cell》1979,16(3):523-534
  相似文献   

3.
4.
1. tRNA of Bacillus subtilis was found to be variably contaminated with membrane teichoic acid. 2. Samples with high contents of teichoic acid showed no accepting activity for tRNA(Phe) and tRNA(Tyr). 3. Removal of teichoic acid restored accepting activity and fractions containing teichoic acid, separated on Sephadex G-150, inhibited the charging of tRNA(Tyr). 4. The presence of teichoic acid did not inhibit the charging of tRNA(His).  相似文献   

5.
Evolution of the tRNA(Tyr)/TyrRS aminoacylation systems   总被引:1,自引:0,他引:1  
The tRNA identity rules ensuring fidelity of translation are globally conserved throughout evolution except for tyrosyl-tRNA synthetases (TyrRSs) that display species-specific tRNA recognition. This discrimination originates from the presence of a conserved identity pair, G1-C72, located at the top of the acceptor stem of tRNA(Tyr) from eubacteria that is invariably replaced by an unusual C1-G72 pair in archaeal and eubacterial tRNA(Tyr). In addition to the key role of pair 1-72 in tyrosylation, discriminator base A73, the anticodon triplet and the large variable region (present in eubacterial tRNA(Tyr) but not found in eukaryal tRNA(Tyr)) contribute to tyrosylation with variable strengths. Crystallographic structures of two tRNA(Tyr)/TyrRS complexes revealed different interaction modes in accordance with the phylum-specificity. Recent functional studies on the human mitochondrial tRNA(Tyr)/TyrRS system indicates strong deviations from the canonical tyrosylation rules. These differences are discussed in the light of the present knowledge on TyrRSs.  相似文献   

6.
N Stange  H Beier 《The EMBO journal》1987,6(9):2811-2818
An intron-containing tobacco tRNA(Tyr) precursor synthesized in a HeLa cell nuclear extract has been used to develop a cell-free processing and splicing system from wheat germ. Removal of 5' and 3' flanking sequences, accurate excision of the intervening sequence, ligation of the resulting tRNA halves, addition of the 3'-terminal CCA sequence and modification of seven nucleosides were achieved in appropriate wheat germ S23 and S100 extracts. The maturation of pre-tRNA(Tyr) in these extracts resembles the pathway observed in vivo for tRNA biosynthesis in Xenopus oocytes and yeast in that processing of the flanks precedes intron excision. Most of the modified nucleosides (m2(2) G, psi 35, psi 55, m7G and m1A) are introduced into the intron-containing pre-tRNA with mature ends, whereas two others (m1G and psi 39) are only found in the mature tRNA(Tyr). Processing and splicing proceed very efficiently in the wheat germ extracts, leading to complete maturation of 5' and 3' ends followed by about 65% conversion to mature tRNA(Tyr) under our standard conditions. The activity of the wheat germ endonuclease is stimulated 3-fold by the non-ionic detergent Triton X-100. All previous attempts to demonstrate the presence of a splicing endonuclease in wheat germ had failed (Gegenheimer et al., 1983). Hence, this is the first cell-free plant extract which supports pre-tRNA processing and splicing in vitro.  相似文献   

7.
The reaction of wild-type and two mutant derivatives of RNase P have been examined with wild-type and mutant substrates. We show that a mutant derivative of tRNA(Tyr)Su3, tRNA(Tyr)Su3A15, in which the G15.C48(57) base-pair essential for folding of the tRNA moiety is altered, is a temperature-sensitive suppressor in vivo. The precursor to tRNA(Tyr)Su3A15 is cleaved in a temperature-sensitive manner in vitro by RNase P and with a higher Km compared to the precursor to tRNA(Tyr)Su3. The precursor to tRNA(Tyr)Su3A2, another temperature-sensitive suppressor in vivo in which the G2.C71(80) base-pair in the acceptor stem is changed to A2.C71(80), behaves like the precursor to tRNA(Tyr)Su3 in vitro; that is, it is not cleaved in a temperature-sensitive manner. Therefore, there are at least two ways in which a suppressor tRNA can acquire a temperature-sensitive phenotype in vivo. One of the mutant derivatives of RNase P we have tested, rnpA49, which affects the protein cofactor of the enzyme, has a decreased kcat compared to wild-type, which can explain its phenotype in vivo.  相似文献   

8.
Aminoacylation of tRNA(Tyr) involves two steps: (1) tyrosine activation to form the tyrosyl-adenylate intermediate; and (2) transfer of tyrosine from the tyrosyl-adenylate intermediate to tRNA(Tyr). In Bacillus stearothermophilus tyrosyl-tRNA synthetase, Asp78, Tyr169, and Gln173 have been shown to form hydrogen bonds with the alpha-ammonium group of the tyrosine substrate during the first step of the aminoacylation reaction. Asp194 and Gln195 stabilize the transition state complex for the first step of the reaction by hydrogen bonding with the 2'-hydroxyl group of AMP and the carboxylate oxygen atom of tyrosine, respectively. Here, the roles that Asp78, Tyr169, Gln173, Asp194, and Gln195 play in catalysis of the second step of the reaction are investigated. Pre-steady-state kinetic analyses of alanine variants at each of these positions shows that while the replacement of Gln173 by alanine does not affect the initial binding of the tRNA(Tyr) substrate, it destabilizes the transition state complex for the second step of the reaction by 2.3 kcal/mol. None of the other alanine substitutions affects either the initial binding of the tRNA(Tyr) substrate or the stability of the transition state for the second step of the aminoacylation reaction. Taken together, the results presented here and the accompanying paper are consistent with a concerted reaction mechanism for the transfer of tyrosine to tRNA(Tyr), and suggest that catalysis of the second step of tRNA(Tyr) aminoacylation involves stabilization of a transition state in which the scissile acylphosphate bond of the tyrosyl-adenylate species is strained. Cleavage of the scissile bond on the breakdown of the transition state alleviates this strain.  相似文献   

9.
Xin Y  Li W  First EA 《Biochemistry》2000,39(2):340-347
Variants at each position of the 'KMSKS' signature motif in tyrosyl-tRNA synthetase have been analyzed to test the hypothesis that this motif is involved in catalysis of the second step of the aminoacylation reaction (i.e., the transfer of tyrosine from the enzyme-bound tyrosyl-adenylate intermediate to the tRNA(Tyr) substrate). Pre-steady-state kinetic studies show that while the rate constants for tyrosine transfer (k(4)) are similar to the wild-type value for all of the mobile loop variants, the K230A and K233A variants have increased dissociation constants (K(d)(tRNA)( )()= 2.4 and 1.7 microM, respectively) relative to the wild-type enzyme (K(d)(tRNA)( )()= 0.39 microM). In contrast, the K(d)(tRNA) values for the F231L, G232A, and T234A variants are similar to that of the wild-type enzyme. The K(d)(tRNA) value for a loop deletion variant, Delta(227-234), is similar to that for the K230A/K233A double mutant variant (3.4 and 3.0 microM, respectively). Double mutant free energy cycle analysis indicates there is a synergistic interaction between the side chains of K230 and K233 during the initial binding of tRNA(Tyr) (DeltaDeltaG(int) = -0.74 kcal/mol). These results suggest that while the 'KMSKS' motif is important for the initial binding of tRNA(Tyr) to tyrosyl-tRNA synthetase, it does not play a catalytic role in the second step of the reaction. These studies provide the first kinetic evidence that the 'KMSKS' motif plays a role in the initial binding of tRNA(Tyr) to tyrosyl-tRNA synthetase.  相似文献   

10.
In vitro transcription of E. coli tRNA genes.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

11.
The existence of specific sites in tRNA for the binding of divalent cations has been seriously questioned by electrostatic considerations [Leroy & Guéron (1979) Biopolymers, 16, 2429-2446]. However, our earlier studies of the binding of Mg2+ and Mn2+ to yeast tRNA(Tyr) have indicated that spermine creates new binding sites for divalent cations [Weygand-Durasevi? et al. (1977) Biochim. Biophys, Acta, 479, 332-344; N?thig-Laslo et al. (1981) Eur. J. Biochem. 117, 263-267]. We have now used yeast tRNA(Tyr), spin labeled at the hypermodified purine (i6A-37) in the anticodon loop, to study the effect of spermine on the binding of manganese ions. The presence of eight spermine molecules per tRNA(Tyr) at high ionic strength (0.2 M NaCl, 0.05 M triethanolamine.HCl) and at low temperature (7 degrees C) enhances the binding of manganese to tRNA(Tyr). This effect could not be explained by electrostatic binding. The initial binding of manganese to tRNA(Tyr) affects the motional properties of the spin label indicating a change of the conformation of the anticodon loop. From the absence of the paramagnetic effect of manganese on the ESR spectra of the spin label one can conclude that the first binding site for manganese is at a distance from i6A-37, influencing the spin label motion through a long-range effect. The enhancement of the binding of manganese to tRNA(Tyr) by spermine is lost upon destruction of its specific macromolecular structure and it does not occur in single stranded or in double-stranded polynucleotides. The observed effect can be explained by the binding of Mn2+ to new sites, created by the binding of spermine, which are specific for the macromolecular structure of tRNA.  相似文献   

12.
13.
The mitochondrial genome of Trypanosoma brucei does not appear to encode any tRNA genes. Isolated organellar tRNAs hybridize to nuclear DNA, suggesting that they are synthesized in the nucleus and subsequently imported into the mitochondrion. Most imported tRNAs have cytosolic counterparts, showing identical mobility on two-dimensional polyacrylamide gels. We have compared three nuclear-encoded mitochondrial tRNAs (tRNA(Lys), tRNA(Leu), tRNA(Tyr)) with their cytosolic isoforms by direct enzymatic sequence analysis. Our findings indicate that the primary sequences of the mitochondrial and the corresponding cytosolic tRNAs are identical. However, we have identified a mitochondrion-specific nucleotide modification of each tRNA which is localized to a conserved cytidine residue at the penultimate position 5' of the anticodon. The modification present in mature mitochondrial tRNA(Tyr) was not found in a mutant tRNA(Tyr) defective in splicing in either cytosolic or mitochondrial fractions. The mutant tRNA(Tyr) has been expressed in transformed cells and its import into mitochondria has been demonstrated, suggesting that the modified cytidine residue is not required for import and therefore may be involved in adapting imported tRNAs to specific requirements of the mitochondrial translation machinery.  相似文献   

14.
15.
Hydroxyl radical, generated by reduction of hydrogen peroxide by Fe(II)-EDTA, was used to investigate the contact sites of yeast tRNA(Tyr) with its cognate tyrosyl-tRNA synthetase (TyrRS). Exposure of free tRNA(Tyr) to this reagent gave cleavage patterns consistent with the tertiary structure of yeast tRNA(Phe) established by X-ray crystallography. When the probing reaction was performed under the conditions which stabilized complex formation between tRNA(Tyr) and TyrRS, aminoacyl-stem region of the tRNA was protected from cleavage. This result supports our earlier finding that the information for binding to TyrRS would reside mainly in the aminoacyl-stem of tRNA(Tyr).  相似文献   

16.
L-Lactate oxidase (LOX) from Aerococcus viridans catalyzes the oxidation of L-lactate to pyruvate by the molecular oxygen and belongs to a large family of 2-hydroxy acid-dependent flavoenzymes. To investigate the interaction of LOX with pyruvate in structural details and understand the chemical mechanism of flavin-dependent L-lactate dehydrogenation, the LOX-pyruvate complex was crystallized and the crystal structure of the complex has been solved at a resolution of 1.90 Angstrom. One pyruvate molecule bound to the active site and located near N5 position of FMN for subunits, A, B, and D in the asymmetric unit, were identified. The pyruvate molecule is stabilized by the interaction of its carboxylate group with the side-chain atoms of Tyr40, Arg181, His265, and Arg268, and of its keto-oxygen atom with the side-chain atoms of Tyr146, Tyr215, and His265. The alpha-carbon of pyruvate is found to be 3.13 Angstrom from the N5 atom of FMN at an angle of 105.4 degrees from the flavin N5-N10 axis.  相似文献   

17.
18.
M Plohl  Z Ku?an 《Biochimie》1988,70(5):637-644
Stimulatory effects of Mg2+ and spermine on the kinetics of the aminoacylation of tRNA(Tyr) were examined using purified yeast tRNA(Tyr) and tyrosyl-tRNA synthetase. The apparent Km for tRNA(Tyr) was the lowest at Mg2+ concentrations between 2 and 5 mM and was not influenced by spermine. In the absence of spermine, the apparent Vmax was the highest at Mg2+ concentrations of 5 mM or higher, whereas the presence of spermine strongly stimulated the reaction at lower Mg2+ concentrations. Spermine alone could not substitute for Mg2+, nor was it able, at any Mg2+ concentration, to increase the reaction rate above the level reached at high concentrations of Mg2+ alone. Calculations of the concentration of Mg3.tRNA(Tyr) complex as a function of initial Mg2+ concentration, using the binding constants derived from physical measurements, allow the conclusion that spermine exerts its stimulatory activity by creating strong binding sites for Mg2+; this would enable the tRNA to assume the conformation required for optimal aminoacylation. The conformational requirement for the first tRNA: synthetase encounter is obviously less stringent, since the apparent Km for tRNA(Tyr) is not influenced by spermine.  相似文献   

19.
Tyrosyl-tRNA synthetase (TyrRS) is able to catalyze the transfer of both l- and d-tyrosine to the 3' end of tRNA(Tyr). Activation of either stereoisomer by ATP results in formation of an enzyme-bound tyrosyl-adenylate intermediate and is accompanied by a blue shift in the intrinsic fluorescence of the protein. Single turnover kinetics for the aminoacylation of tRNA(Tyr) by D-tyrosine were monitored using stopped-flow fluorescence spectroscopy. Bacillus stearothermophilus tyrosyl-tRNA synthetase binds d-tyrosine with an 8.5-fold lower affinity than that of l-tyrosine (K (D-Tyr)(d) = 102 microm) and exhibits a 3-fold decrease in the forward rate constant for the activation reaction (k (D-Tyr)(3) = 13 s(-1)). Furthermore, as is the case for l-tyrosine, tyrosyl-tRNA synthetase exhibits "half-of-the-sites" reactivity with respect to the binding and activation of D-tyrosine. Surprisingly, pyrophosphate binds to the TyrRS.d-Tyr-AMP intermediate with a 14-fold higher affinity than it binds to the TyrRS.l-Tyr-AMP intermediate (K (PPi)(d) = 0.043 for TyrRS.d-Tyr-AMP.PP(i)). tRNA(Tyr) binds with a slightly (2.3-fold) lower affinity to the TyrRS.d-Tyr-AMP intermediate than it does to the TyrRS.l-Tyr-AMP intermediate. The observation that the K (Tyr)(d) and k(3) values are similar for l- and d-tyrosine suggests that their side chains bind to tyrosyl-tRNA synthetase in similar orientations and that at least one of the carboxylate oxygen atoms in d-tyrosine is properly positioned for attack on the alpha-phosphate of ATP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号