首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine kinases and phosphatases establish the crucial balance of tyrosine phosphorylation in cellular signaling, but creating specific inhibitors of protein Tyr phosphatases (PTPs) remains a challenge. Here, we report the development of a potent, selective inhibitor of Mycobacterium tuberculosis PtpB, a bacterial PTP that is secreted into host cells where it disrupts unidentified signaling pathways. The inhibitor, (oxalylamino-methylene)-thiophene sulfonamide (OMTS), showed an IC(50) of 440 +/- 50 nM and >60-fold specificity for PtpB over six human PTPs. The 2 A resolution crystal structure of PtpB in complex with OMTS revealed a large rearrangement of the enzyme, with some residues shifting >27 A relative to the PtpB:PO(4) complex. Extensive contacts with the catalytic loop provide a potential basis for inhibitor selectivity. Two OMTS molecules bound adjacent to each other, raising the possibility of a second substrate phosphotyrosine binding site in PtpB. The PtpB:OMTS structure provides an unanticipated framework to guide inhibitor improvement.  相似文献   

2.
Current treatments for Mycobacterium tuberculosis infections require long and complicated regimens that can lead to patient non-compliance, increasing incidences of antibiotic-resistant strains, and lack of efficacy against latent stages of disease. Thus, new therapeutics are needed to improve tuberculosis standard of care. One strategy is to target protein homeostasis pathways by inhibiting molecular chaperones such as GroEL/ES (HSP60/10) chaperonin systems. M. tuberculosis has two GroEL homologs: GroEL1 is not essential but is important for cytokine-dependent granuloma formation, while GroEL2 is essential for survival and likely functions as the canonical housekeeping chaperonin for folding proteins. Another strategy is to target the protein tyrosine phosphatase B (PtpB) virulence factor that M. tuberculosis secretes into host cells to help evade immune responses. In the present study, we have identified a series of GroEL/ES inhibitors that inhibit M. tuberculosis growth in liquid culture and biochemical function of PtpB in vitro. With further optimization, such dual-targeting GroEL/ES and PtpB inhibitors could be effective against all stages of tuberculosis – actively replicating bacteria, bacteria evading host cell immune responses, and granuloma formation in latent disease – which would be a significant advance to augment current therapeutics that primarily target actively replicating bacteria.  相似文献   

3.
The low-molecular-weight protein tyrosine phosphatase (LMWPTPase) belongs to a distinctive class of phosphotyrosine phosphatases widely distributed among prokaryotes and eukaryotes. We report here the crystal structure of LMWPTPase of microbial origin, the first of its kind from Mycobacterium tuberculosis. The structure was determined to be two crystal forms at 1.9- and 2.5-A resolutions. These structural forms are compared with those of the LMWPTPases of eukaryotes. Though the overall structure resembles that of the eukaryotic LMWPTPases, there are significant changes around the active site and the protein tyrosine phosphatase (PTP) loop. The variable loop forming the wall of the crevice leading to the active site is conformationally unchanged from that of mammalian LMWPTPase; however, differences are observed in the residues involved, suggesting that they have a role in influencing different substrate specificities. The single amino acid substitution (Leu12Thr [underlined below]) in the consensus sequence of the PTP loop, CTGNICRS, has a major role in the stabilization of the PTP loop, unlike what occurs in mammalian LMWPTPases. A chloride ion and a glycerol molecule were modeled in the active site where the chloride ion interacts in a manner similar to that of phosphate with the main chain nitrogens of the PTP loop. This structural study, in addition to identifying specific mycobacterial features, may also form the basis for exploring the mechanism of the substrate specificities of bacterial LMWPTPases.  相似文献   

4.
Ribose-5-phosphate isomerases (EC 5.3.1.6) inter-convert ribose-5-phosphate and ribulose-5-phosphate. This reaction allows the synthesis of ribose from other sugars, as well a means for salvage of carbohydrates after nucleotide breakdown. Two unrelated types of enzyme are known to catalyze the isomerization. The most common one, RpiA, is present in almost all organisms. The second type, RpiB, is found in many bacterial species.Here, we demonstrate that the RpiB from Mycobacterium tuberculosis (Rv2465c) has catalytic properties very similar to those previously reported for the Escherichia coli RpiB enzyme. Further, we report the structure of the mycobacterial enzyme, solved by molecular replacement and refined to 1.88A resolution. Comparison with the E.coli structure shows that there are important differences in the two active sites, including a change in the position and nature of the catalytic base. Sequence comparisons reveal that the M.tuberculosis and E.coli RpiB enzymes are in fact representative of two distinct sub-families. The mycobacterial enzyme represents a type found only in actinobacteria, while the enzyme from E.coli is typical of that seen in many other bacterial proteomes. Both RpiBs are very different from RpiA in structure as well as in the construction of the active site. Docking studies allow additional insights into the reactions of all three enzymes, and show that many features of the mechanism are preserved despite the different catalytic components.  相似文献   

5.
In the search for lead compounds for new drugs for tuberculosis, the activity of 38 synthetic chalcones were assayed for their potential inhibitory action towards a protein tyrosine phosphatase from Mycobacterium tuberculosis--PtpA. The compounds were obtained by aldolic condensation between aldehydes and acetophenones, under basic conditions. Five compounds presented moderate or good activity. The structure-activity analysis reveals that the predominant factor for the activity is the molecule planarity/hydrophobicity and the nature of the substituents.  相似文献   

6.
Riboflavin kinase (RFK) is an essential enzyme catalyzing the phosphorylation of riboflavin (vitamin B(2)) to form FMN, an obligatory step in vitamin B(2) utilization and flavin cofactor synthesis. The structure of human RFK revealed a six-stranded antiparallel beta barrel core structurally similar to the riboflavin synthase/ferredoxin reductase FAD binding domain fold. The binding site of an intrinsically bound MgADP defines a novel nucleotide binding motif that encompasses a loop, a 3(10) helix, and a reverse turn followed by a short beta strand. This active site loop forms an arch with ATP and riboflavin binding at the opposite side and the phosphoryl transfer appears to occur through the hole underneath the arch. The invariant residues Asn36 and Glu86 are implicated in the catalysis.  相似文献   

7.
The development of low μM inhibitors of the Mycobacterium tuberculosis phosphatase PtpA is reported. The most potent of these inhibitors (Ki = 1.4 ± 0.3 μM) was found to be selective when tested against a panel of human tyrosine and dual-specificity phosphatases (11-fold vs the highly homologous HCPtpA, and >70-fold vs all others tested). Modeling the inhibitor-PtpA complexes explained the structure–activity relationships observed in vitro and revealed further possibilities for compound development.  相似文献   

8.
Protein tyrosine phosphatase B (PtpB) from Staphylococcus aureus, MRSA 252, is a low molecular weight protein tyrosine phosphatase involved in its pathogenicity. PtpB has been modeled in silico and site-directed mutagenesis performed to ascertain the importance of active site residues Cys8, Arg14, Ser15 and Asp120 in its catalytic mechanism. Kinetic characterization of wild-type and the mutant PtpBs, C8S, R14A, S15T, S15A, D120A, D120E, D120N revealed the reaction mechanism followed by this LMWPTPase. The mutations caused major changes in the local environment resulting in significant decrease of its catalytic activity. Inhibition kinetics for the wild-type enzyme was performed with maleimide and maleimidobutyric acid.  相似文献   

9.
Alpha-methylacyl-CoA racemase (Amacr) catalyzes the racemization of alpha-methyl-branched CoA esters. Sequence comparisons have shown that this enzyme is a member of the family III CoA transferases. The mammalian Amacr is involved in bile acid synthesis and branched-chain fatty acid degradation. In human, mutated variants of Amacr have been shown to be associated with disease states. Amino acid sequence alignment of Amacrs and its homologues from various species revealed 26 conserved protic residues, assumed to be potential candidates as catalytic residues. Amacr from Mycobacterium tuberculosis (MCR) was taken as a representative of the racemases. To determine their importance for efficient catalysis, each of these 26 protic residues of MCR was mutated into an alanine, respectively, and the mutated variants were overexpressed in Escherichia coli. It was found that four variants (R91A, H126A, D156A, and E241A) were properly folded but had much decreased catalytic efficiency. Apparently, Arg91, His126, Asp156, and Glu241 are important catalytic residues of MCR. The importance of these residues for catalysis can be rationalized by the 1.8 A resolution crystal structure of MCR, which shows that the catalytic site is at the interface between the large and small domain of two different subunits of the dimeric enzyme. This crystal structure is the first structure of a complete enzyme of the bile acid synthesis pathway. It shows that MCR has unique structural features, not seen in the structures of the sequence related formyl-CoA transferases, suggesting that the family III CoA transferases can be subdivided in at least two classes, being racemases and CoA transferases.  相似文献   

10.
11.
The bovine protein tyrosine phosphatase (BPTP) is a member of the class of low-molecular weight protein tyrosine phosphatases (PTPases) found to be ubiquitous in mammalian cells. The catalytic site of BPTP contains a CX(5)R(S/T) phosphate-binding motif or P-loop (residues 12-19) which is the signature sequence for all PTPases. Ser19, the final residue of the P-loop motif, interacts with the catalytic Cys12 and participates in stabilizing the conformation of the active site through interactions with Asn15, also in the P-loop. Mutations at Ser19 result in an enzyme with altered kinetic properties with changes in the pK(a) of the neighboring His72. The X-ray structure of the S19A mutant enzyme shows that the general conformation of the P-loop is preserved. However, changes in the loop containing His72 result in a displacement of the His72 side chain that may explain the shift in the pK(a). In addition, it was found that in the crystal, the protein forms a dimer in which Tyr131 and Tyr132 from one monomer insert into the active site of the other monomer, suggesting a dual-tyrosine motif on target sites for this enzyme. Since the activity of this PTPase is reportedly regulated by phosphorylation at Tyr131 and Tyr132, the structure of this dimer may provide a model of a self-regulation mechanism for the low-molecular weight PTPases.  相似文献   

12.
结核分枝杆菌感染引起的结核病疫情依然严峻。感染的结核菌可分泌一系列效应分子调控、干扰和逃逸宿主免疫。本文综述蛋白酪氨酸磷酸酶PtpA在结核菌感染中发挥的重要作用:经多条途径抑制宿主天然免疫、细胞凋亡及吞噬体-溶酶体融合、调控宿主能量代谢等逃逸免疫杀伤。作为候选药物靶标,靶向PtpA的抑制剂设计、筛选及药物研发较为迟缓,因为PtpA与宿主蛋白酪氨酸磷酸酶hLMW-PTP具有较高一致性。为了进一步探索靶向该分子的更佳途径,分析了ptpA基因转录及PtpA蛋白分泌方面的研究进展及存在问题,为靶向PtpA的其他途径提供参考。  相似文献   

13.
Active site labeling of a receptor-like protein tyrosine phosphatase.   总被引:1,自引:0,他引:1  
The inactivation of the cytoplasmic domain of rat LAR, a receptor-like protein tyrosine phosphatase (PTPase), by iodoacetate and not by iodoacetamide suggested that iodoacetate interacts in a highly selective manner with the enzyme. The data indicate that iodoacetate binds at the active site of the enzyme with a stoichiometry of 0.8 mol of iodoacetate bound per mol of rat LAR. A single [14C]iodoacetate-labeled peptide was isolated following endoproteinase Lys-C digestion of the radiolabeled PTPase. Sequence analysis of the active site labeled peptide demonstrates that Cys-1522 contains the radiolabel. This residue has been shown by site-directed mutagenesis to be essential for rat LAR activity (Pot, D. A., Woodford, T. A., Remboutsika, E., Haun, R. S., and Dixon, J. E. (1991) J. Biol. Chem. 266, 19688-19696). Iodoacetate reacts only with the first domain of this double domain PTPase. These results, for the first time, directly identify the highly reactive cysteine residue at the active site of a PTPase and highlight the ability of this residue to participate as a nucleophile in the hydrolysis of phosphate from tyrosine.  相似文献   

14.
15.
MptpB is an essential secreted virulence factor for M. tuberculosis. Inhibition of MptpB impairs mycobacterial survival in host macrophages and thus helps reduce tuberculosis infections. However, the binding mode of the biphenyl inhibitors, which are known as some of the most potent MptpB inhibitors, remains unclear. In this study, to understand the interactions between biphenyl inhibitors and MptpB, docking and molecular dynamics simulations were carried out using AutoDock and GROMACS softwares. Calculation results show that all the biphenyl inhibitors can be docked to the binding site of MptpB, with the acid warheads forming a hydrogen bond network at the active site. But the binding modes of other terminals of these inhibitors are different. The cyclohexyl and trifluoromethyl substituents at R1 and R2 sites are necessary for the inhibitors to adopt their double-site binding mechanism. The estimated binding affinities are basically consistent with the experimental results. MD simulations show that these binding complexes display different stability.  相似文献   

16.
17.
Eukaryotic low-molecular-weight protein tyrosine phosphatases (LMW PTPs) contain a conserved serine, a histidine with an elevated pKa, and an active site asparagine that together form a highly conserved hydrogen bonding network. This network stabilizes the active site phosphate binding loop for optimal substrate binding and catalysis. In the phosphatase from the bovine parasite Tritrichomonas foetus (TPTP), both the conserved serine (S37) and asparagine (N14) are present, but the conserved histidine has been replaced by a glutamine residue (Q67). Site-directed mutagenesis, kinetic, and spectroscopic experiments suggest that Q67 is located near the active site and is important for optimal catalytic activity. Kinetic experiments also suggest that S37 participates in the active site/hydrogen bonding network. Nuclear magnetic resonance spectroscopy was used to determine the three-dimensional structure of the TPTP enzyme and to further examine the roles of S37 and Q67. The backbone conformation of the TPTP phosphate binding loop is nearly superimposable with that of other tyrosine phosphatases, with N14 existing in a strained, left-handed conformation that is a hallmark of the active site hydrogen bonding network in the LMW PTPs. As expected, both S37 and Q67 are located at the active site, but in the consensus structure they are not within hydrogen bonding distance of N14. The hydrogen bond interactions that are observed in X-ray structures of LMW PTPs may in fact be transient in solution. Protein dynamics within the active site hydrogen bonding network appear to be affected by the presence of substrate or bound inhibitors such as inorganic phosphate.  相似文献   

18.
Resuscitation promoting factor (Rpf) proteins, which hydrolyze the sugar chains in cell‐wall peptidoglycan (PG), play key roles in prokaryotic cell elongation, division, and escape from dormancy to vegetative growth. Like other bacteria, Mycobacterium tuberculosis (Mtb) expresses multiple Rpfs, none of which is individually essential. This redundancy has left unclear the distinct functions of the different Rpfs. To explore the distinguishing characteristics of the five Mtb Rpfs, we determined the crystal structure of the RpfE catalytic domain. The protein adopts the characteristic Rpf fold, but the catalytic cleft is narrower compared to Mtb RpfB. Also in contrast to RpfB, in which the substrate‐binding surfaces are negatively charged, the corresponding RpfE catalytic pocket and predicted peptide‐binding sites are more positively charged at neutral pH. The complete reversal of the electrostatic potential of the substrate‐binding site suggests that the different Rpfs function optimally at different pHs or most efficiently hydrolyze different micro‐domains of PG. These studies provide insights into the molecular determinants of the evolution of functional specialization in Rpfs.  相似文献   

19.
PF10014 is a novel family of 2‐oxyglutarate‐Fe2+‐dependent dioxygenases that are involved in biosynthesis of antibiotics and regulation of biofilm formation, likely by catalyzing hydroxylation of free amino acids or other related ligands. The crystal structure of a PF10014 member from Methylibium petroleiphilum at 1.9 Å resolution shows strong structural similarity to cupin dioxygenases in overall fold and active site, despite very remote homology. However, one of the β‐strands of the cupin catalytic core is replaced by a loop that displays conformational isomerism that likely regulates the active site. Proteins 2014; 82:164–170. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Mycobacterium tuberculosis, the causative agent for tuberculosis has employed several signalling molecules to sense the host cellular environment and act accordingly. For example, protein tyrosine phosphatase A (MPtpA) of M. tuberculosis, a signalling protein belonging to the tyrosine phosphatase superfamily, is involved in phagocytosis and is active in virulent mycobacterial form. Starting from a β-lactam framework a new class of structure based cyclic peptide (CP) inhibitors was designed. The synthesis involves a crucial intramolecular transamidation via a ring opening reaction. All the compounds show moderate to good inhibitory activities against MPtpA in micromolar concentrations. The results of inhibition kinetics suggest mixed mode of inhibition. The binding constant determined from circular dichroism (CD) and fluorescence quenching studies shows strong binding of the hydrophilic side chain of CPs with the enzyme active site residues. All these are well supported by docking studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号