首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Azoulay  M Brahic    J F Bureau 《Journal of virology》1994,68(6):4049-4052
The DA strain of Theiler's virus causes a persistent infection of the white matter of the spinal cord with chronic inflammation and primary demyelination. Inbred strains of mice differ greatly in their susceptibility to this disease. It has been shown that both viral persistence and demyelination are controlled mainly by a gene located in the H-2D region. This raised the possibility that the H-2D gene itself controls viral persistence, which in turn determines demyelination. In the present work we introduced the H-2Db gene of resistant C57BL/6 mice into the genome of susceptible H-2q FVB mice and showed that the FVB mice become resistant to persistence of the infection and did not develop inflammatory lesions.  相似文献   

2.
Intracerebral inoculation of Theiler's murine encephalomyelitis virus into susceptible strains of mice produces chronic demyelinating disease in the central nervous system characterized by persistent viral infection. Immunogenetic data suggest that genes from both major histocompatibility complex (MHC) and non-MHC loci are important in determining susceptibility or resistance to demyelination. The role of the MHC in determining resistance or susceptibility to disease can be interpreted either as the presence of antigen-presenting molecules that confer resistance to viral infection or as the ability of MHC products to contribute to pathogenesis by acting as viral receptors or by mediating immune attack against virally infected cells. These alternatives can be distinguished by determining whether the contribution of the MHC to resistance is inherited as a recessive or dominant trait. Congenic mice with different MHC haplotypes on identical B10 backgrounds were crossed and quantitatively analyzed for demyelination, infectious virus, and local virus antigen production. F1 hybrid progeny derived from resistant B10 (H-2b), B10.D2 (H-2d), or B10.K (H-2k) and susceptible B10.R111 (H-2r), B10.M (H-2f), or B10.BR (H-2k) parental mice exhibited no or minimal demyelination, indicating that on a B10 background, resistance is inherited as a dominant trait. Although infectious virus, as measured by viral plaque assay, was cleared inefficiently from the central nervous systems of resistant F1 hybrid progeny mice, we found a direct correlation between local viral antigen production and demyelination. These data are consistent with our hypothesis that the immunological basis for resistance is determined by efficient presentation of the viral antigen to the immune system, resulting in local virus clearance and absence of subsequent demyelination.  相似文献   

3.
We investigated the role of the immune system in protecting against virus-induced demyelination by generating lines of transgenic B10 (H-2(b)) congenic mice expressing three independent contiguous coding regions of the Theiler's murine encephalomyelitis virus (TMEV) under the control of a class I major histocompatibility complex (MHC) promoter. TMEV infection of normally resistant B10 mice results in virus clearance and development of inflammatory demyelination in the spinal cord. Transgenic expression of the viral capsid genes resulted in inactivation of virus-specific CD8(+) T lymphocytes (class I MHC immune function) directed against the relevant peptides, but it did not affect production of virus capsid-specific antibodies or lymphocyte proliferation to the virus antigen (class II MHC immune functions). Following intracerebral infection with TMEV, all three lines of mice survived the acute encephalitis but transgenic mice expressing VP1 (or the cluster of virus capsid proteins [VP4, VP2, and VP3] mapping to the left of VP1 in the TMEV genome) developed virus persistence and subsequent demyelination in spinal cord white matter. Transgenic mice expressing noncapsid proteins mapping to the right of VP1 (2A, 2B, 2C, 3A, 3B, 3C, and 3D) cleared the virus and did not develop demyelination. These results are consistent with the hypothesis that virus capsid gene products of TMEV stimulate class I-restricted CD8(+) T-cell immune responses, which are important for virus clearance and for protection against myelin destruction. Presented within the context of self-antigens, inactivation of these cells by ubiquitous expression of relevant virus capsid peptides partially inhibited resistance to virus-induced demyelination.  相似文献   

4.
Acute and chronic demyelination are hallmarks of CNS infection by the neurotropic JHM strain of mouse hepatitis virus. Although infectious virus is cleared by CD8+ T cells, both viral RNA and activated CD8+ T cells remain in the CNS during persistence potentially contributing to pathology. To dissociate immune from virus-mediated determinants initiating and maintaining demyelinating disease, mice were infected with two attenuated viral variants differing in a hypervariable region of the spike protein. Despite similar viral replication and tropism, one infection was marked by extensive demyelination and paralysis, whereas the other resulted in no clinical symptoms and minimal neuropathology. Mononuclear cells from either infected brain exhibited virus specific ex vivo cytolytic activity, which was rapidly lost during viral clearance. As revealed by class I tetramer technology the paralytic variant was superior in inducing specific CD8+ T cells during the acute disease. However, after infectious virus was cleared, twice as many virus-specific IFN-gamma-secreting CD8+ T cells were recovered from the brains of asymptomatic mice compared with mice undergoing demyelination, suggesting that IFN-gamma ameliorates rather than perpetuates JHM strain of mouse hepatitis virus-induced demyelination. The present data thus indicate that in immunocompetent mice, effector CD8+ T cells control infection without mediating either clinical disease or demyelination. In contrast, demyelination correlated with early and sustained infection of the spinal cord. Rapid viral spread, attributed to determinants within the spike protein and possibly perpetuated by suboptimal CD8+ T cell effector function, thus ultimately leads to the process of immune-mediated demyelination.  相似文献   

5.
GDVII subgroup strains of Theiler's murine encephalomyelitis virus (TMEV) are highly virulent and produce acute polioencephalomyelitis in mice. Neither viral persistence nor demyelination is demonstrated in the few surviving mice. In contrast, DA subgroup strains are less virulent and establish a persistent central nervous system infection which results in demyelinating disease. We previously reported a subgroup-specific infection in a macrophage-like cell line, J774-1 cells; i.e., GDVII strain does not replicate in J774-1 cells, whereas the DA strain actively replicates in these cells. In addition, this subgroup-specific virus growth is shown to be related to the presence of L* protein, a 17 kDa protein translated out-of-frame of the viral polyprotein from an AUG located 13 nucleotides downstream from the polyprotein's AUG. The present paper demonstrated that this subgroup-specific infection is observed in murine monocyte/macrophage lineage cell lines, but not in other murine cell lines including neural cells. An RNase protection assay also suggested that L* protein-related virus growth is regulated at the step of viral RNA replication. As macrophages are reported to be the major cell harboring virus during the chronic demyelinating stage, the activity of L* protein with respect to virus growth in macrophages may be a key factor in clarifying the mechanism(s) of TMEV persistence, which is probably a trigger to spinal cord demyelination.  相似文献   

6.
Demyelination is the pathologic hallmark of the human immune-mediated neurologic disease multiple sclerosis, which may be triggered or exacerbated by viral infections. Several experimental animal models have been developed to study the mechanism of virus-induced demyelination, including coronavirus mouse hepatitis virus (MHV) infection in mice. The envelope spike (S) glycoprotein of MHV contains determinants of properties essential for virus-host interactions. However, the molecular determinants of MHV-induced demyelination are still unknown. To investigate the mechanism of MHV-induced demyelination, we examined whether the S gene of MHV contains determinants of demyelination and whether demyelination is linked to viral persistence. Using targeted RNA recombination, we replaced the S gene of a demyelinating virus (MHV-A59) with the S gene of a closely related, nondemyelinating virus (MHV-2). Recombinant viruses containing an S gene derived from MHV-2 in an MHV-A59 background (Penn98-1 and Penn98-2) exhibited a persistence-positive, demyelination-negative phenotype. Thus, determinants of demyelination map to the S gene of MHV. Furthermore, viral persistence is insufficient to induce demyelination, although it may be a prerequisite for the development of demyelination.  相似文献   

7.
Some strains of mouse hepatitis virus (MHV) can induce chronic inflammatory demyelination in mice that mimics certain pathological features of multiple sclerosis. We have examined neural cell tropism of demyelinating and nondemyelinating strains of MHV in order to determine whether central nervous system (CNS) cell tropism plays a role in demyelination. Previous studies demonstrated that recombinant MHV strains, isogenic other than for the spike gene, differ in the extent of neurovirulence and the ability to induce demyelination. Here we demonstrate that these strains also differ in their abilities to infect a particular cell type(s) in the brain. Furthermore, there is a correlation between the differential localization of viral antigen in spinal cord gray matter and that in white matter during acute infection and the ability to induce demyelination later on. Viral antigen from demyelinating strains is detected initially in both gray and white matter, with subsequent localization to white matter of the spinal cord, whereas viral antigen localization of nondemyelinating strains is restricted mainly to gray matter. This observation suggests that the localization of viral antigen to white matter during the acute stage of infection is essential for the induction of chronic demyelination. Overall, these observations suggest that isogenic demyelinating and nondemyelinating strains of MHV, differing in the spike protein expressed, infect neurons and glial cells in different proportions and that differential tropism to a particular CNS cell type may play a significant role in mediating the onset and mechanisms of demyelination.  相似文献   

8.
Little or no antiviral immune response is mounted in athymic nude mice infected with the Daniels strain of Theiler's murine encephalomyelitis virus. In these athymic mice, increasing levels of infectious virus could be detected in the central nervous system. Seventy-five percent (9 of 12) of the nude mice were moribund or dead by 4 weeks postinfection. In contrast, treatment of Theiler's virus-infected nude mice with a neutralizing monoclonal antibody (H7-2) against the viral protein VP-1 resulted in a dramatic reduction of infectious virus within the central nervous system. All antibody-treated nude animals survived beyond 4 weeks postinfection. Monoclonal antibody titers could be maintained by passive transfer in treated nude mice at levels comparable to those of polyclonal antibody titers found in heterozygous infected nu/+ littermates. Areas of demyelination were detected in the untreated animals as early as 7 days after infection with little or no remyelination present. In approximately one-half of the antibody-treated nude animals, no demyelinating lesions were found. However, the rest of these treated mice were found to have areas of both demyelination and remyelination. Thus, anti-Theiler's murine encephalomyelitis virus antibody against VP-1 can play a dramatic role in the survival of mice, clearance of virus, limiting viral spread, and altering the pattern of disease in the absence of a functional T-cell response.  相似文献   

9.
Antibody prevents virus reactivation within the central nervous system.   总被引:7,自引:0,他引:7  
The neurotropic JHM strain of mouse hepatitis virus (JHMV) produces an acute CNS infection characterized by encephalomyelitis and demyelination. The immune response cannot completely eliminate virus, resulting in persistence associated with chronic ongoing CNS demyelination. The contribution of humoral immunity to viral clearance and persistent infection was investigated in mice homozygous for disruption of the Ig mu gene (IgM-/-). Acute disease developed with equal kinetics and severity in IgM-/- and syngeneic C57BL/6 (wt) mice. However, clinical disease progressed in IgM-/- mice, while wt mice recovered. Viral clearance during acute infection was similar in both groups, supporting a primary role of cell-mediated immunity in viral clearance. In contrast to wt mice, in which infectious virus was reduced to below detection following acute infection, increasing infectious virus was recovered from the CNS of the IgM-/- mice following initial clearance. No evidence was obtained for selection of variant viruses nor was there an apparent loss of cell-mediated immunity in the absence of Ab. Passive transfer of anti-JHMV Ab following initial clearance prevented reactivation of infectious virus within the CNS of IgM-/- mice. These data demonstrate the clearance of infectious virus during acute disease by cell-mediated immunity. However, immunologic control is not maintained in the absence of anti-viral Ab, resulting in recrudescence of infectious virus. These data suggest that humoral immunity plays no role in controlling virus during acute infection, but plays an important role in establishing and maintaining CNS viral persistence.  相似文献   

10.
Intracerebral infection of certain strains of mice with Theiler's virus results in chronic immune-mediated demyelination in spinal cord. We used mouse mutants with deletion of the V beta class of TCR genes to examine the role of TCR genes in this demyelinating disease which is similar to multiple sclerosis. Quantitative analysis of spinal cord lesions demonstrated a markedly increased number and extent of demyelinated lesions in persistently infected RIII S/J mice which have a massive deletion of the TCR V beta-chain (V beta 5.2, V beta 8.3, V beta 5.1, V beta 8.2, V beta 5.3, V beta 8.1, V beta 13, V beta 12, V beta 11, V beta 9, V beta 6, V beta 15, V beta 17) compared with B10.RIII mice which are of identical MHC haplotype (H-2r) but have normal complement of V beta TCR genes. In contrast, infection of C57L (H-2b) or C57BR (H-2k) mice which have deletion of the V beta TCR genes (V beta 5.2, V beta 8.3, V beta 5.1, V beta 8.2, V beta 5.3, V beta 8.1, V beta 13, V beta 12, V beta 11, and V beta 9) resulted in few demyelinating lesions. Genetic segregation analysis of (B10.RIII x RIII S/J) x RIII S/J backcrossed mice and (B10.RIII x RIII S/J) F2 mice demonstrated correlation of increased susceptibility to demyelination with deletion of TCR V beta genes. The increase in number of demyelinating lesions correlated with increase in number of virus-Ag+ cells in spinal cord. These experiments provide strong evidence that the structural diversity at the TCR beta-complex can influence susceptibility to virus-induced demyelination.  相似文献   

11.
Intracranial infection of Theiler's murine encephalomyelitis virus (TMEV) induces demyelination and a neurological disease in susceptible SJL/J (SJL) mice that resembles multiple sclerosis. While the virus is cleared from the central nervous system (CNS) of resistant C57BL/6 (B6) mice, it persists in SJL mice. To investigate the role of viral persistence and its accompanying immune responses in the development of demyelinating disease, transgenic mice expressing the P1 region of the TMEV genome (P1-Tg) were employed. Interestingly, P1-Tg mice with the B6 background showed severe reductions in both CD4(+) and CD8(+) T-cell responses to capsid epitopes, while P1-Tg mice with the SJL background displayed transient reductions following viral infection. Reduced antiviral immune responses in P1-Tg mice led to >100- to 1,000-fold increases in viral persistence at 120 days postinfection in the CNS of mice with both backgrounds. Despite the increased CNS TMEV levels in these P1-Tg mice, B6 P1-Tg mice developed neither neuropathological symptoms nor demyelinating lesions, and SJL P1-Tg mice developed significantly less severe TMEV-induced demyelinating disease. These results strongly suggest that viral persistence alone is not sufficient to induce disease and that the level of T-cell immunity to viral capsid epitopes is critical for the development of demyelinating disease in SJL mice.  相似文献   

12.
13.
Infection of certain strains of mice with Theiler's murine encephalomyelitis virus results in persistence of virus and an immune-mediated primary demyelination in the central nervous system that resembles multiple sclerosis. Because susceptibility/resistance to demyelination in B10 congeneic mice maps strongly to class I MHC genes (D region) we tested whether expression of a human class I MHC gene (HLA-B27) would alter susceptibility to Theiler's murine encephalomyelitis virus-induced demyelination. Transgenic HLA-B27 mice were found to co-express human and endogenous mouse class I MHC genes by flow microfluorimetry analysis of PBL. In the absence of the human transgene, H-2stf, or v mice but not H-2b mice had chronic demyelination and persistence of virus at 45 days after infection. No difference in degree of demyelination, meningeal inflammation, or virus persistence was seen between transgenic HLA-B27 and nontransgenic littermate mice of H-2f or H-2v haplotype. In contrast, H-2s (HLA-B27+) mice showed a dramatic decrease in extent of demyelination and number of virus-Ag+ cells in the spinal cord compared with H-2s (HLA-B27-) littermate mice. In addition, none of the eight H-2s mice homozygous for HLA-B27 gene had spinal cord lesions even though infectious virus was isolated chronically from their central nervous system. Expression of HLA-B27 transgene did not interfere with the resistance to demyelination normally observed in B10 (H-2b) mice. These experiments demonstrate that expression of a human class I MHC gene can modulate a virus-induced demyelinating disease process in the mouse.  相似文献   

14.
Innate immune response is important for viral clearance during influenza virus infection. Galectin-1, which belongs to S-type lectins, contains a conserved carbohydrate recognition domain that recognizes galactose-containing oligosaccharides. Since the envelope proteins of influenza virus are highly glycosylated, we studied the role of galectin-1 in influenza virus infection in vitro and in mice. We found that galectin-1 was upregulated in the lungs of mice during influenza virus infection. There was a positive correlation between galectin-1 levels and viral loads during the acute phase of viral infection. Cells treated with recombinant human galectin-1 generated lower viral yields after influenza virus infection. Galectin-1 could directly bind to the envelope glycoproteins of influenza A/WSN/33 virus and inhibit its hemagglutination activity and infectivity. It also bound to different subtypes of influenza A virus with micromolar dissociation constant (K(d)) values and protected cells against influenza virus-induced cell death. We used nanoparticle, surface plasmon resonance analysis and transmission electron microscopy to further demonstrate the direct binding of galectin-1 to influenza virus. More importantly, we show for the first time that intranasal treatment of galectin-1 could enhance survival of mice against lethal challenge with influenza virus by reducing viral load, inflammation, and apoptosis in the lung. Furthermore, galectin-1 knockout mice were more susceptible to influenza virus infection than wild-type mice. Collectively, our results indicate that galectin-1 has anti-influenza virus activity by binding to viral surface and inhibiting its infectivity. Thus, galectin-1 may be further explored as a novel therapeutic agent for influenza.  相似文献   

15.
Susceptibility to demyelination caused by the WW isolate of Theiler's murine encephalomyelitis viruses is linked to class II genes of the major histocompatibility complex. SJL/J (H-2s) mice, expressing only I-As class II gene products of the major histocompatibility complex, are highly susceptible to Theiler's murine encephalomyelitis virus infection with the WW virus isolate, with chronic paralysis and severe inflammation and demyelination in the central nervous system. The effect of in vivo administration of anti-I-As monoclonal antibodies on Theiler's murine encephalomyelitis virus infection was observed. SJL/J mice were treated in various protocols pre- or postinfection. Anti-I-As monoclonal antibody reversed chronic paralysis and reduced inflammation and demyelination when given after the establishment of persistent infection. The effect was long lasting, but clinical signs, inflammation, and demyelination recurred 2 months after treatment ceased. Anti-I-As antibodies had no effect on viral titers within the central nervous system. The timing of the administration of monoclonal antibodies was critical. Administration of anti-I-As before the establishment of the persistent infection resulted in fatal encephalitis.  相似文献   

16.
The absence of interleukin-10 (IL-10), a potent anti-inflammatory cytokine results in increased immune-mediated demyelination in mice infected with a neurotropic coronavirus (recombinant J2.2-V-1 [rJ2.2]). Here, we examined the therapeutic effects of increased levels of IL-10 at early times after infection by engineering a recombinant J2.2 virus to produce IL-10. We demonstrate that viral expression of IL-10, which occurs during the peak of virus replication and at the site of disease, enhanced survival and diminished morbidity in rJ2.2-infected wild-type B6 and IL-10(-/-) mice. The protective effects of increased IL-10 levels were associated with reductions in microglial activation, inflammatory cell infiltration into the brain, and proinflammatory cytokine and chemokine production. Additionally, IL-10 increased both the frequency and number of Foxp3(+) regulatory CD4 T cells in the infected central nervous system. Most strikingly, the ameliorating effects of IL-10 produced during the first 5 days after infection were long acting, resulting in decreased demyelination during the resolution phase of the infection. Collectively, these results suggest that the pathogenic processes that result in demyelination are initiated early during infection and that they can be diminished by exogenous IL-10 delivered soon after disease onset. IL-10 functions by dampening the innate or very early T cell immune response. Further, they suggest that early treatment with IL-10 may be useful adjunct therapy in some types of viral encephalitis.  相似文献   

17.
Japanese encephalitis (JE) virus is the most common cause of epidemic viral encephalitis in the world. The virus mainly infects neuronal cells and causes an inflammatory response after invasion of the parenchyma of the brain. The death of neurons is frequently observed, in which demyelinated axons are commonly seen. The mechanism that accounts for the occurrence of demyelination is ambiguous thus far. With a mouse model, the present study showed that myelin-specific antibodies appeared in sera, particularly in those mice with evident symptoms. Meanwhile, specific T cells proliferating in response to stimulation by myelin basic protein (MBP) was also shown in these mice. Taken together, our results suggest that autoimmunity may play an important role in the destruction of components, e.g., MBP, of axon-surrounding myelin, resulting in demyelination in the mouse brain after infection with the JE virus.  相似文献   

18.
CD8+ T cells are important for clearance of neurotropic mouse hepatitis virus (MHV) strain A59, although their possible role in A59-induced demyelination is not well understood. We developed an adoptive-transfer model to more clearly elucidate the role of virus-specific CD8+ T cells during the acute and chronic phases of infection with A59 that is described as follows. C57BL/6 mice were infected with a recombinant A59 virus expressing the gp33 epitope, an H-2Db-restricted CD8+ T-cell epitope encoded in the glycoprotein of lymphocytic choriomeningitis virus, as a fusion with the enhanced green fluorescent protein (RA59-gfp/gp33). P14 splenocytes (transgenic for a T-cell receptor specific for the gp33 epitope) were transferred at different times pre- and postinfection (p.i.). Adoptive transfer of P14 splenocytes 1 day prior to infection with RA59-gfp/gp33, but not control virus lacking the gp33 epitope, RA59-gfp, reduced weight loss and viral replication and spread in the brain and to the spinal cord. Furthermore, demyelination was significantly reduced compared to that in nonrecipients. However, when P14 cells were transferred on day 3 or 5 p.i., no difference in acute or chronic disease was observed compared to that in nonrecipients. Protection in mice receiving P14 splenocytes prior to infection correlated with a robust gp33-specific immune response that was not observed in mice receiving the later transfers. Thus, an early robust CD8+ T-cell response was necessary to reduce virus replication and spread, specifically to the spinal cord, which protected against demyelination in the chronic phase of the disease.  相似文献   

19.
Intracranial infection of C57BL/6 mice with mouse hepatitis virus (MHV) results in an acute encephalomyelitis followed by a demyelinating disease similar in pathology to the human disease multiple sclerosis (MS). CD4(+) T cells are important in amplifying demyelination by attracting macrophages into the central nervous system (CNS) following viral infection; however, the mechanisms governing the entry of these cells into the CNS are poorly understood. The role of chemokine receptor CCR5 in trafficking of virus-specific CD4(+) T cells into the CNS of MHV-infected mice was investigated. CD4(+) T cells from immunized CCR5(+/+) and CCR5(-/-) mice were expanded in the presence of the immunodominant epitope present in the MHV transmembrane (M) protein encompassing amino acids 133 to 147 (M133-147). Adoptive transfer of CCR5(+/+)-derived CD4(+) T cells to MHV-infected RAG1(-/-) mice resulted in CD4(+)-T-cell entry into the CNS and clearance of virus from the brain. These mice also displayed robust demyelination correlating with macrophage accumulation within the CNS. Conversely, CD4(+) T cells from CCR5(-/-) mice displayed an impaired ability to traffic into the CNS of MHV-infected RAG1(-/-) recipients, which correlated with increased viral titers, diminished macrophage accumulation, and limited demyelination. Analysis of chemokine receptor mRNA expression by M133-147-expanded CCR5(-/-)-derived CD4(+) T cells revealed reduced expression of CCR1, CCR2, and CXCR3, indicating that CCR5 signaling is important in increased expression of these receptors, which aid in trafficking of CD4(+) T cells into the CNS. Collectively these results demonstrate that CCR5 signaling is important to migration of CD4(+) T cells to the CNS following MHV infection.  相似文献   

20.
Structural diversity in the peptide binding sites of the redundant classical MHC antigen presenting molecules is strongly selected in humans and mice. Although the encoded antigen presenting molecules overlap in antigen presenting function, differences in polymorphism at the MHC I A, B and C loci in humans and higher primates indicate these loci are not functionally equivalent. The structural basis of these differences is not known. We hypothesize that classical class I loci differ in their ability to direct effective immunity against intracellular pathogens. Using a picornavirus infection model and chimeric H-2 transgenes, we examined locus specific functional determinants distinguishing the ability of class I sister genes to direct effective anti viral immunity. Whereas, parental FVB and transgenic FVB mice expressing the H-2Kb gene are highly susceptible to persisting Theiler''s virus infection within the CNS and subsequent demyelination, mice expressing the Db transgene clear the virus and are protected from demyelination. Remarkably, animals expressing a chimeric transgene, comprised primarily of Kb but encoding the peptide binding domain of Db, develop a robust anti viral CTL response yet fail to clear virus and develop significant demyelination. Differences in expression of the chimeric Kbα1α2Db gene (low) and Db (high) in the CNS of infected mice mirror expression levels of their endogenous H-2q counterparts in FVB mice. These findings demonstrate that locus specific elements other than those specifying peptide binding and T cell receptor interaction can determine ability to clear virus infection. This finding provides a basis for understanding locus-specific differences in MHC polymorphism, characterized best in human populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号