首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haplosporidian parasites infect various invertebrate hosts including some commercially important shellfish. Haplosporidium nelsoni (along with Perkinsus marinus) has severely affected Eastern oyster production on the eastern seaboard of the United States and flat oyster production in Europe has been severely impacted by Bonamia ostreae. These parasites are also often present at a very low prevalence and there are a variety of morphologically similar species that can be difficult to differentiate during cytological or histological diagnosis hence the need to develop specific tests. Recently, a Minchinia sp. was described affecting rock oysters (Saccostrea cuccullata) in north Western Australia. In this study, two in situ hybridisation (ISH) assays and a PCR assay have been developed and optimised for use in investigating these parasites. The first ISH assay used a 166bp polynucleotide probe while the second used a 30bp oligonucleotide probe. The specificity of each ISH assay was assessed by applying each probe to a variety of haplosporidian (5), a paramyxian (1) or ciliophora (1) parasites. The polynucleotide probe produced strong hybridisation signals against all of the haplosporidian parasites tested (Minchinia sp., Minchinia teredinis, Bonamia roughleyi, H. nelsoni and Haplosporidium costale) while the oligonucleotide probe recognised only the Minchinia sp. Both probes failed to detect the paramyxian (Marteilia sp.) or the Rhynchodid-like ciliate. The PCR assay amplifies a 220bp region and detected Minchinia sp. DNA from 50ng of genomic DNA extracted from the tissues of infected oysters and 10fg of amplified Minchinia sp. DNA. The assay did not react to oysters infected with H. nelsoni or H. costale. The ability of the PCR and oligonucleotide ISH assay to diagnose Minchinia sp. infected oysters was compared to histological examination from a sample of 56 oysters. The PCR assay revealed 26 infections while histological examination detected 14 infections. The oligonucleotide ISH assay detected 29 infections. The oligonucleotide ISH and PCR assays were found to be significantly more sensitive than histology for detecting the parasite.  相似文献   

2.
A Minchinia sp. (Haplosporidia: Haplosporidiidae) parasite was identified infecting rock oysters and morphologically described by Hine and Thorne (2002) using light microscopy and transmission electron microscopy (TEM). The parasite was associated with up to 80% mortality in the host species and it is suspected that the parasite would be a major impediment to the development of a tropical rock oyster aquaculture industry in northern Western Australia. However, attempts to identify the parasite following the development of a specific probe for Haplosporidium nelsoni were unsuccessful. The SSU region of the parasite's rRNA gene was later characterized in our laboratory and an in situ hybridization assay for the parasite was developed. This study names the parasite as Minchinia occulta n sp. and morphologically describes the parasite using histology, scanning electron microscopy and transmission electron microscopy. The non-spore stages were unusual in that they consisted primarily of uninucleate stages reminiscent of Bonamia spp. The parasite's spores were ovoid to circular shaped and measured 4.5 microm-5.0 microm x 3.5-4.1 microm in size. The nucleus of the sporoplasm measured 1.5-2.3 microm and was centrally located. The spores were covered in a branching network of microtubule-like structures that may degrade as the spore matures.  相似文献   

3.
Pteriid oysters (Pinctada maxima, Pinctada margaritifera, Pinctada albina, Pteria penguin), rock oysters (Saccostrea glomerata, Saccostrea cuccullata, Saccostrea echinata) and representatives of other taxa (Malleidae, Isognomonidae, Pinnidae, Mytilidae, Spondylidae, Arcidae) from the wild, and 4670 hatchery-reared P. maxima, from northern and Western Australia, were examined for parasites and diseases. Rickettsiales-like inclusions and metacestodes of Tylocephalum occurred in most species. Intranuclear virus-like inclusions occurred in 1/415 wild P. maxima, 1/1254 S. cuccullata, 3/58 Isognomon isognomum, 1/80 Pinna bicolor and 1/45 Pinna deltodes. Perkinsus was histologically observed in 1/4670 P. maxima spat, 2/469 P. albina, 1/933 S. glomerata, 16/20 Malleus meridianus, 12/58 I. isognomum, 1/45 P. deltodes, 5/12 Spondylus sp., 1/16 Septifer bilocularis and 3/6 Barbatia helblingii. One of 1254 S. cuccullata was heavily systematically infected with Perkinsus merozoites, meronts and schizonts, and was patently diseased. Other potentially serious pathogens included Haplosporidium sp. in 6/4670 P. maxima spat, Marteilia sydneyi from 1/933 S. glomerata, and Marteilia sp. (probably M. lengehi) (1/1254) and Haplosporidium sp. (125/1254) from S. cuccullata. The latter were associated with epizootics on offshore islands, with heaviest prevalence (45%) in oysters with empty gonad follicles. Marteilioides sp. infected the oocytes of 9/10 female S. echinata from Darwin Harbour. Details of geographical distribution and pathology are given, and the health of the bivalves examined is discussed.  相似文献   

4.
DNA probes were used in in situ hybridisation on histological sections of oysters exposed for defined intervals to Marteilia sydneyi infection to reveal the early development of the parasite in the oyster host, Saccostrea glomerata. The initial infective stages enter through the palps and gills whereupon extrasporogonic proliferation results in the liberation of cells into surrounding connective tissue and haemolymph spaces. Following systemic dissemination, the parasite infiltrates the digestive gland and becomes established as a nurse cell beneath the epithelial cells in a digestive tubule. Here, cell-within-cell proliferation results in the eventual liberation of daughter cells from the nurse cell into spaces between adjacent epithelial cells. None of these stages had previously been described. Proliferation is associated with host responses, including haemocytic infiltration of the connective tissue and diapedesis across tubule epithelia. The responses cease as sporogenesis begins.  相似文献   

5.
Bonamia ostreae is a protozoan parasite of the flat oyster, Ostrea edulis, which has caused significant loss of oysters in Europe over the last decade. B. ostreae was purified from infected flat oysters and DNA was extracted. The nearly complete small subunit rDNA gene of B. ostreae was amplified using universal oligonucleotides and the PCR product was cloned and sequenced. BLAST research with this sequence revealed similarities to Haplosporidium nelsoni, Haplosporidium costale, and Minchinia teredinis. These data suggest that B. ostreae may be included in the genus Haplosporidium. Specific B. ostreae primers were designed for labeling, by PCR, a probe. This probe was successfully used by in situ hybridization to detect B. ostreae in infected fiat oysters, thus confirming the accuracy of this SSU rDNA sequence. The probe lead also to the detection of Bonamia sp. in infected Tiostrea chilensis and H. nelsoni in infected Crassostrea virginica but not Mikrocytos mackini infected Crassostrea gigas. These primers were also used to detect B. ostreae from infected oyster tissues by PCR. This B. ostreae SSU rDNA gene sequence provides genetic information as a first step toward elucidation of the taxonomic boundaries among the microcell organisms. Moreover, the development of DNA detection assays will be valuable specific diagnostic tools.  相似文献   

6.
The oyster ovarian parasite Marteilioides chungmuensis has been reported from Korea and Japan, damaging the oyster industries. Recently, Marteilioides-like organisms have been identified in other commercially important marine bivalves. In this study, we surveyed Marteilioides infection in the Manila clam Ruditapes philippinarum, Suminoe oyster Crassostrea ariakensis, and Pacific oyster Crassostrea gigas, using histology and Marteilioides-specific small subunit (SSU) rDNA PCR. The SSU rDNA sequence of M. chungmuensis (1716 bp) isolated from C. gigas in Tongyoung bay was 99.9% similar to that of M. chungmuensis reported in Japan. Inclusions of multi-nucleated bodies in the oocytes, typical of Marteilioides infection, were identified for the first time in Suminoe oysters. The SSU rDNA sequence of a Marteilioides-like organism isolated from Suminoe oysters was 99.9% similar to that of M. chungmuensis. Marteilioides sp. was also observed from 7 Manila clams of 1840 individuals examined, and the DNA sequences of which were 98.2% similar to the known sequence of M. chungmuensis. Unlike Marteilioides infection of Pacific oysters, no remarkable pathological symptoms, such as large multiple lumps on the mantle, were observed in infected Suminoe oysters or Manila clams. Distribution of the infected Manila clams, Suminoe oysters and Pacific oysters was limited to small bays on the south coast, suggesting that the southern coast is the enzootic area of Marteilioides infection.  相似文献   

7.
A new microsporidian species, Enterocytozoon hepatopenaei sp. nov., is described from the hepatopancreas of the black tiger shrimp Penaeus monodon (Crustacea: Decapoda). Different stages of the parasite are described, from early sporogonal plasmodia to mature spores in the cytoplasm of host-cells. The multinucleate sporogonal plasmodia existed in direct contact with the host-cell cytoplasm and contained numerous small blebs at the surface. Binary fission of the plasmodial nuclei occurred during early plasmodial development and numerous pre-sporoblasts were formed within the plasmodium. Electron-dense disks and precursors of the polar tubule developed in the cytoplasm of the plasmodium prior to budding of early sporoblasts from the plasmodial surface. Mature spores were oval, measuring 0.7 × 1.1 μm and contained a single nucleus, 5-6 coils of the polar filament, a posterior vacuole, an anchoring disk attached to the polar filament, and a thick electron-dense wall. The wall was composed of a plasmalemma, an electron-lucent endospore (10 nm) and an electron-dense exospore (2 nm). DNA primers designed from microsporidian SSU rRNA were used to amplify an 848 bp product from the parasite genome (GenBank FJ496356). The sequenced product had 84% identity to the matching region of SSU rRNA from Enterocytozoon bieneusi. Based upon ultrastructural features unique to the family Enterocytozoonidae, cytoplasmic location of the plasmodia and SSU rRNA sequence identity 16% different from E. bieneusi, the parasite was considered to be a new species, E. hepatopenaei, within the genus Enterocytozoon.  相似文献   

8.
In the Austral summer and autumn of 2000 and 2001, mortalities of black-footed abalone Haliotis iris (Martyn, 1784) occurred in a commercial facility in New Zealand. Histological analyses suggested that infection by a haplosporidian parasite was responsible. To confirm identification as a haplosporidian and to help determine if this parasite represented a new, undescribed species, DNA was extracted from infected host tissues scored as positive for infection by histological examination. Small-subunit rRNA (SSU rRNA) gene sequences from both the host abalone and a parasitic organism were amplified by PCR and characterized. Although the sequence for this parasite was novel, not matching any known SSU rRNA gene sequences, phylogenetic analyses strongly supported grouping this parasite with the haplosporidians. Parsimony analyses placed the parasite at the base of the phylum Haplosporidia, ancestral to Urosporidium crescens and the Haplosporidium, Bonamia, and Minchinia species. Sequencing of multiple parasite DNA clones revealed a single polymorphic site in the haplosporidian SSU rRNA gene sequence.  相似文献   

9.
Haplosporidium sp. is described from rock oysters Saccostrea cuccullata Born, 1778 experiencing epizootics on the northwestern coast of Western Australia. All stages were observed as focal infections in the connective tissue of the gills, or as disseminated infections in the mantle and around digestive diverticulae. Haplosporidium sp. occurred between epithelial cells of the gut, in focal lesions in the gills, but not in the epithelium of the digestive diverticulae, and sporulation was confined to the connective tissue. Plasmodia developed into sporonts and sporocysts in a loose syncytium that gave rise to binucleate and uninucleate sporoblasts from which spores developed. Spores were flask-shaped, 5.6-6.7 x 3.3-4.0 microm, with a characteristic operculum, a few filamentous wrappings and rod-like structures in the posterior sporoplasm. Mature spores had a wall comprising inner (90 nm wide), middle (30 nm wide) and outer (130 nm wide) layers, and a surface coat of microtubules giving them a furry appearance. Oysters with empty gonad follicles were most heavily infected, and oyster condition and mortality appeared to be related to degree of infection.  相似文献   

10.
Skovgaard A  Daugbjerg N 《Protist》2008,159(3):401-413
Paradinium and Paradinium-like parasites were detected in various copepod hosts collected in the NW Mediterranean Sea, the North Atlantic Ocean, and the Godth?bsfjord (Greenland). The identity and systematic position of the parasitic, plasmodial protist Paradinium was investigated on the basis of SSU rDNA and morphology. SSU rDNA sequences were obtained from 3 specimens of Paradinium poucheti isolated from their cyclopoid copepod host, Oithona similis. In addition, a comparable sequence was obtained from a hitherto undescribed species of Paradinium from the harpactacoid copepod Euterpina acutifrons. Finally, SSU rDNA sequences were acquired from 2 specimens of a red plasmodial parasite (RP parasite) isolated from Clausocalanus sp. Both morphological and SSU rDNA sequence data supported that P. poucheti and Paradinium sp. are closely related organisms. In phylogenetic analyses based on SSU rDNA sequences, Paradinium spp. clustered with sequences from an uncultured eukaryote clone from the Pacific Ocean and two sequences from haplosporidian-like parasites of shrimps, Pandalus spp. This Paradinium clade branched as a sister group to a clade comprising the Haplosporidia and the Foraminifera. The RP parasite had a superficial morphological resemblance to Paradinium and has previously been interpreted as a member of this genus. However, several morphological characters contradict this and SSU rDNA sequence data disagree with the RP parasite and Paradinium being related. The phylogenetic analyses suggested that the RP parasite is a fast-evolved alveolate and a member of the so-called marine alveolate Group I (MAGI) and emerging data now suggest that this enigmatic group may, like the syndinian dinoflagellates, consist of heterotrophic parasites.  相似文献   

11.
The protistan parasite Mikrocytos mackini, causative agent of Denman Island disease (mikrocytosis), induces mortality and reduces marketability in the Pacific oyster, Crassostrea gigas, in British Columbia, Canada. This parasite is a pathogen of international concern because it infects a range of oyster species, and because its life cycle and mode of transmission are unknown. A digoxigenin-labelled DNA probe in situ hybridisation technique (DIG-ISH) was developed, and its detection sensitivity was compared to standard histological sections stained with haematoxylin and eosin stain (H&E-histo). In H&E-histo preparations, the detection of M. mackini was certain only when the parasite occurred within the vesicular connective tissue of adult oysters. However, the DIG-ISH technique clearly demonstrated the presence of infection in all other host tissues as well as in juvenile oysters with poorly developed vesicular connective tissue. The probe hybridised strongly to M. mackini, did not hybridise to oyster tissues or with the other shellfish parasites tested, and was more sensitive for detecting infections when compared to H&E-histo.  相似文献   

12.
Little is known about the trypanosomes of indigenous Australian vertebrates and their vectors. We surveyed a range of vertebrates and blood-feeding invertebrates for trypanosomes by parasitological and PCR-based methods using primers specific to the small subunit ribosomal RNA (SSU rRNA) gene of genus Trypanosoma. Trypanosome isolates were obtained in culture from two common wombats, one swamp wallaby and an Australian bird (Strepera sp.). By PCR, blood samples from three wombats, one brush-tailed wallaby, three platypuses and a frog were positive for trypanosome DNA. All the blood-sucking invertebrates screened were negative for trypanosomes both by microscopy and PCR, except for specimens of terrestrial leeches (Haemadipsidae). Of the latter, two Micobdella sp. specimens from Victoria and 18 Philaemon sp. specimens from Queensland were positive by PCR. Four Haemadipsa zeylanica specimens from Sri Lanka and three Leiobdella jawarerensis specimens from Papua New Guinea were also PCR positive for trypanosome DNA. We sequenced the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes in order to determine the phylogenetic positions of the new vertebrate and terrestrial leech trypanosomes. In trees based on these genes, Australian vertebrate trypanosomes fell in several distinct clades, for the most part being more closely related to trypanosomes outside Australia than to each other. Two previously undescribed wallaby trypanosomes fell in a clade with Trypanosoma theileri, the cosmopolitan bovid trypanosome, and Trypanosoma cyclops from a Malaysian primate. The terrestrial leech trypanosomes were closely related to the wallaby trypanosomes, T. cyclops and a trypanosome from an Australian frog. We suggest that haemadipsid leeches may be significant and widespread vectors of trypanosomes in Australia and Asia.  相似文献   

13.
Examination of European flat oysters, Ostrea edulis, from the Dutch oyster culture, but originating in France, revealed a new disease due to a protistan parasite. Light and electron microscope studies revealed that the parasite belongs to the haplosporidan genus Minchinia. Since comparison with other Minchinia spp. indicate that it is new, the name Minchinia armoricana nov. sp. is proposed. Thus far, the parasite was very rare; only two diseased oysters were observed among ca. 3700 specimens examined histologically during a 2.5-year period. The diseased oysters showed macroscopically a peculiar brown discoloration and microscopically many sporocysts with spores in the connective tissue. Beside the two diseased oysters, another one was observed with an infection of unidentified plasmodial stages in the connective tissue. These may be developmental stages of the new species M. armoricana.  相似文献   

14.
15.
Amoebic gill disease (AGD) is a potentially fatal disease of some marine fish. Two amphizoic amoebae Neoparamoeba pemaquidensis and Neoparamoeba branchiphila have been cultured from AGD-affected fish, yet it is not known if one or both are aetiological agents. Here, we PCR amplified the 18S rRNA gene of non-cultured, gill-derived (NCGD) amoebae from AGD-affected Atlantic salmon (Salmo salar) using N. pemaquidensis and N. branchiphila-specific oligonucleotides. Variability in PCR amplification led to comparisons of 18S rRNA and 28S rRNA gene sequences from NCGD and clonal cultured, gill-derived (CCGD) N. pemaquidensis and N. branchiphila. Phylogenetic analyses inferred from either 18S or 28S rRNA gene sequences unambiguously segregated a lineage consisting of NCGD amoebae from other members of the genus Neoparamoeba. Species-specific oligonucleotide probes that hybridise 18S rRNA were designed, validated and used to probe gill tissue from AGD-affected Atlantic salmon. The NCGD amoebae-specific probe bound AGD-associated amoebae while neither N. pemaquidensis nor N. branchiphila were associated with AGD-lesions. Together, these data indicate that NCGD amoebae are a new species, designated Neoparamoeba perurans n.sp. and this is the predominant aetiological agent of AGD of Atlantic salmon cultured in Tasmania, Australia.  相似文献   

16.
The dynamics of the protozoan parasite Marteilia refringens was studied in Thau lagoon, an important French shellfish site, for 1 year in three potential hosts: the Mediterranean mussel Mytilus galloprovincialis (Mytiliidae), the grooved carpet shell Ruditapes decussatus (Veneriidae) and the copepod Paracartia grani (Acartiidae). Parasite DNA was detected by PCR in R. decussatus. In situ hybridisation showed necrotic cells of M. refringens in the digestive epithelia of some R. decussatus suggesting the non-involvement of this species in the parasite life cycle. In contrast, the detection of M. refringens in mussels using PCR appeared bimodal with two peaks in spring and autumn. Histological observations of PCR-positive mussels revealed the presence of different parasite stages including mature sporangia in spring and autumn. These results suggest that the parasite has two cycles per year in the Thau lagoon and that mussels release parasites into the water column during these two periods. Moreover, PCR detection of the parasite in the copepodid stages of P. grani between June and November supports the hypothesis of the transmission of the parasite from mussels to copepods and conversely. In situ hybridisation performed on copepodites showed labeling in some sections. Unusual M. refringens cells were observed in the digestive tract and the gonad from the third copepodid stage, suggesting that the parasite could infect a copepod by ingestion and be released through the gonad. This hypothesis is supported by the PCR detection of parasite DNA in copepod eggs from PCR-positive females, which suggests that eggs could contribute to the parasite spreading in the water and could allow overwintering of M. refringens. Finally, in order to understand the interactions between mussels and copepods, mussel retention efficiency (number of copepods retained by a mussel) was measured for all P. grani developmental stages. Results showed that all copepod stages could contribute to the transmission of the parasite, especially eggs and nauplii which were retained by up to 90%.  相似文献   

17.
Asian oyster Crassostrea ariakensis is being considered for introduction to Atlantic coastal waters of the USA. Successful aquaculture of this species will depend partly on mitigating impacts by Bonamia sp., a parasite that has caused high C. ariakensis mortality south of Virginia. To better understand the biology of this parasite and identify strategies for management, we evaluated its seasonal pattern of infection in C. ariakensis at two North Carolina, USA, locations in 2005. Small (<50 mm) triploid C. ariakensis were deployed to upwellers on Bogue Sound in late spring (May), summer (July), early fall (September), late fall (November), and early winter (December) 2005; and two field sites on Masonboro Sound in September 2005. Oyster growth and mortality were evaluated biweekly at Bogue Sound, and weekly at Masonboro, with Bonamia sp. prevalence evaluated using parasite-specific PCR. We used histology to confirm infections in PCR-positive oysters. Bonamia sp. appeared in the late spring Bogue Sound deployment when temperatures approached 25 degrees C, six weeks post-deployment. Summer- and early fall-deployed oysters displayed Bonamia sp. infections after 3-4 weeks. Bonamia sp. prevalences were 75% in Bogue Sound, and 60% in Masonboro. While oyster mortality reached 100% in late spring and summer deployments, early fall deployments showed reduced (17-82%) mortality. Late fall and early winter deployments, made at temperatures <20 degrees C, developed no Bonamia sp. infections at all. Seasonal Bonamia sp. cycling, therefore, is influenced greatly by temperature. Avoiding peak seasonal Bonamia sp. activity will be essential for culturing C. ariakensis in Bonamia sp.-enzootic waters.  相似文献   

18.
Molecular detection of Marteilia sydneyi, pathogen of Sydney rock oysters   总被引:2,自引:0,他引:2  
The life cycle of Marteilia sydneyi, the aetiological agent of QX disease in the Sydney rock oyster Saccostrea commercialis, is not known. We have developed and optimised 2 diagnostic assays, the polymerase chain reaction (PCR) and in situ hybridisation, for use in investigating the role of possible alternative hosts in the life cycle of this pathogen. PCR primers, designed within the ITS1 rDNA of M. sydneyi, amplified a 195 bp fragment. Sensitivity of the PCR assay was assessed using DNA extracted from known numbers of sporonts purified from infected oyster digestive gland. DNA equivalent to 0.01 sporonts was detectable following agarose gel electrophoresis. The potential inhibitory effect of the presence of host DNA on the PCR assay was tested by the addition of oyster genomic DNA during amplification. Concentrations of host DNA in excess of 50 ng per 20 microliters reaction reduced the sensitivity of the test. Environmental validation of the PCR assay was demonstrated by the amplification of M. sydneyi DNA from 50 ng of genomic DNA extracted from QX-infected oysters. A DNA probe was constructed using the M. sydneyi unique primers and was able to detect 10 pg of M. sydneyi PCR amplified DNA in dot-blot hybridisations. The probe hybridised with presporulating and sporulating M. sydneyi stages in paraffin sections of oyster digestive gland. No non-specific binding was observed. Hybridisation consistency and signal intensity decreased as sporonts matured. While the high sensitivity and specificity of the PCR test will allow rapid screening of large numbers of potential alternative hosts for the presence of parasite DNA, it does not actually identify infective stages. In situ hybridisation conducted on paraffin sections will determine the location of the parasite within the host for morphological characterisation.  相似文献   

19.
Bonamia ostreae is a protistan parasite of the European flat oyster, Ostrea edulis. Though direct transmission of the parasite can occur between oysters, it is unclear if this represents the complete life cycle of the parasite, and the role of a secondary or intermediate host or carrier species cannot be ruled out. In this preliminary study, benthic macroinvertebrates and zooplankton from a B. ostreae-endemic area were screened for the presence of parasite DNA, using polymerase chain reaction (PCR). Eight benthic macroinvertebrates and nineteen grouped zooplankton samples gave positive results. Certain species, found positive for the parasite DNA, were then used in laboratory transmission trials, to investigate if they could infect na?ve oysters. Transmission of B. ostreae was effected to two na?ve oysters cohabiting with the brittle star, Ophiothrix fragilis.  相似文献   

20.
The genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major have been sequenced, but the phylogenetic relationships of these three protozoa remain uncertain. We have constructed trypanosomatid phylogenies based on genes for glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and small subunit ribosomal RNA (SSU rRNA). Trees based on gGAPDH nucleotide and amino acid sequences (51 taxa) robustly support monophyly of genus Trypanosoma, which is revealed to be a relatively late-evolving lineage of the family Trypanosomatidae. Other trypanosomatids, including genus Leishmania, branch paraphyletically at the base of the trypanosome clade. On the other hand, analysis of the SSU rRNA gene data produced equivocal results, as trees either robustly support or reject monophyly depending on the range of taxa included in the alignment. We conclude that the SSU rRNA gene is not a reliable marker for inferring deep level trypanosome phylogeny. The gGAPDH results support the hypothesis that trypanosomes evolved from an ancestral insect parasite, which adapted to a vertebrate/insect transmission cycle. This implies that the switch from terrestrial insect to aquatic leech vectors for fish and some amphibian trypanosomes was secondary. We conclude that the three sequenced pathogens, T. brucei, T. cruzi and L. major, are only distantly related and have distinct evolutionary histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号