首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is the first structure of a biological homodimer of disintegrin. Disintegrins are a class of small (4-14 kDa) proteins that bind to transmembrane integrins selectively. The present molecule is the first homodimer that has been isolated from the venom of Echis carinatus. The monomeric chain contains 64 amino acid residues. The three-dimensional structure of schistatin has been determined by the multiple isomorphous replacement method. It has been refined to an R-factor of 0.190 using all the data to 2.5 A resolution. The two subunits of the disintegrin homodimer are related by a 2-fold crystallographic symmetry. Thus, the crystallographic asymmetric unit contains a monomer of disintegrin. The monomer folds into an up-down topology with three sets of antiparallel beta-strands. The structure is well ordered with four intramolecular disulfide bonds. the two monomers are firmly linked to each other through two intermolecular disulfide bridges at their N termini together with several other interactions. This structure has corrected the error in the disulfide bond pattern of the two intermolecular disulfide bridges that was reported earlier using chemical methods. Unique sequence and structural features of the schistatin monomers suggest that they have the ability to bind well with both alphaIIb beta3 and alphav beta3 integrins. The N termini anchored two chains of the dimer diverge away at their C termini exposing the Arg-Gly-Asp motif into opposite directions thus enhancing their binding efficiency to integrins. This is one of the unique features of the present disintegrin homodimer and seems to be responsible for the clustering of integrin molecules. The homodimer binds to integrins apparently with a higher affinity than the monomers and also plays a role in the signaling pathway.  相似文献   

2.
Echicetin is a heterodimeric protein from the venom of the Indian saw-scaled viper, Echis carinatus. It binds to platelet glycoprotein Ib (GPIb) and thus inhibits platelet aggregation. It has two subunits, alpha and beta, consisting of 131 and 123 amino acid residues, respectively. The two chains are linked with a disulphide bond. The level of amino acid sequence homology between two subunits is 50%. The protein was purified from the venom of E.carinatus and crystallized using ammonium sulphate as a precipitant. The crystal structure has been determined at 2.4A resolution and refined to an R-factor of 0.187. Overall dimensions of the heterodimer are approximately 80Ax35Ax35A. The backbone folds of the two subunits are similar. The central portions of the polypeptide chains of alpha and beta-subunits move into each other to form a tight dimeric association. The remaining portions of the chains of both subunits fold in a manner similar to those observed in the carbohydrate-binding domains of C-type lectins. In echicetin, the Ca(2+)-binding sites are not present, despite being topologically equivalent to other similar Ca(2+)-binding proteins of the superfamily. The residues Ser41, Glu43 and Glu47 in the calcium-binding proteins of the related family are conserved but the residues Glu126/120 are replaced by lysine at the corresponding sites in the alpha and beta-subunits.  相似文献   

3.
Crystal structure of a barnase-d(GpC) complex at 1.9 A resolution   总被引:6,自引:0,他引:6  
The ribonuclease excreted by Bacillus amyloliquefaciens, Barnase, was co-crystallized with the deoxy-dinucleotide d(GpC). The crystal structure was determined by molecular replacement from a model of free Barnase previously derived by Mauguen et al. Refinement was carried out using data to 1.9 A resolution. The final model, which has a crystallographic R factor of 22%, includes 869 protein atoms, 38 atoms from d(GpC), a sulfate ion and 73 water molecules. Only minor differences from free Barnase are seen in the protein moiety, the root-mean-square C alpha movement being 0.45 A. The dinucleotide has a folded conformation. It is located near the active site of the enzyme, but outside the protein molecule and making crystal packing contacts with neighboring molecules. The guanine base is stacked on the imidazole ring of active site His102, rather than binding to the so-called recognition loop as it does in other complexes of guanine nucleotides with microbial nucleases. The deoxyguanosine is syn, with the sugar ring in C-2'-endo conformation; the deoxycytidine is anti and C-4'-exo. In addition to the stacking interaction, His102 hydrogen bonds to the free 5' hydroxyl, which is located near the position where the 3' phosphate group is found in other inhibitors of microbial ribonucleases. While the mode of binding observed with d(GpC) and Barnase would be non-productive for a dinucleotide substrate, it may define a site for the nucleotide product on the 3' side of the hydrolyzed bond.  相似文献   

4.
5.
6.
Human coactosin-like protein (CLP) shares high homology with coactosin, a filamentous (F)-actin binding protein, and interacts with 5LO and F-actin. As a tumor antigen, CLP is overexpressed in tumor tissue cells or cell lines, and the encoded epitopes can be recognized by cellular and humoral immune systems. To gain a better understanding of its various functions and interactions with related proteins, the crystal structure of CLP expressed in Escherichia coli has been determined to 1.9 A resolution. The structure features a central beta-sheet surrounded by helices, with two very tight hydrophobic cores on each side of the sheet. CLP belongs to the actin depolymerizing protein superfamily, and is similar to yeast cofilin and actophilin. Based on our structural analysis, we observed that CLP forms a polymer along the crystallographic b axis with the exact same repeat distance as F-actin. A model for the CLP polymer and F-actin binding has therefore been proposed.  相似文献   

7.
Johnson KA  Kim E  Teeter MM  Suh SW  Stec B 《FEBS letters》2005,579(11):2301-2306
Crystal structure of ubiquitous toxin from barley alpha-hordothionin (alpha-HT) has been determined at 1.9A resolution by X-ray crystallography. The primary sequence as well as the NMR solution structure of alpha-HT firmly established that alpha-HT belongs to a family of membrane active plant toxins-thionins. Since alpha-HT crystallized in a space group (P4(1)2(1)2) that is different from the space group (I422) of previously determined alpha(1)- and beta-purothionins, and visocotoxin A3, therefore, it provided independent information on protein-protein interactions that may be relevant to the toxin mechanism. The structure of alpha-HT not only confirms overall architectural features (crambin fold) but also provides an additional confirmation of the role for crucial solute molecules, that were postulated to be directly involved in the mechanism of toxicity for thionins.  相似文献   

8.
Bites and envenoming by the carpet viper Echis carinatus are common medical emergencies in parts of Nigeria, but the most effective use of the various commercially produced antivenoms in treatment has not been established. Pasteur Paris Echis monospecific and Behringwerke West and North Africa Bitis-Echis-Naja polyspecific antivenoms were compared in two groups of seven patients with incoagulable blood after E carinatus bites. In both groups spontaneous bleeding stopped within a few hours and local swelling subsided within two weeks after the initial antivenom injection. Pasteur antivenom (20-40 ml) restored blood coagulability within 12 hours in all cases, but 60--180 ml of Behringwerke antivenom was effective in only four cases. Persisting venom procoagulant activity was observed in the remaining three cases. Despite its potency in the mouse protection test, Behringwerke antivenom is unreliable and unpredictable in neutralising venom procoagulant in humans bitten by E carinatus.  相似文献   

9.
BACKGROUND: Peptide methionine sulphoxide reductases catalyze the reduction of oxidized methionine residues in proteins. They are implicated in the defense of organisms against oxidative stress and in the regulation of processes involving peptide methionine oxidation/reduction. These enzymes are found in numerous organisms, from bacteria to mammals and plants. Their primary structure shows no significant similarity to any other known protein. RESULTS: The X-ray structure of the peptide methionine sulphoxide reductase from Escherichia coli was determined at 3 A resolution by the multiple wavelength anomalous dispersion method for the selenomethionine-substituted enzyme, and it was refined to 1.9 A resolution for the native enzyme. The 23 kDa protein is folded into an alpha/beta roll and contains a large proportion of coils. Among the three cysteine residues involved in the catalytic mechanism, Cys-51 is positioned at the N terminus of an alpha helix, in a solvent-exposed area composed of highly conserved amino acids. The two others, Cys-198 and Cys-206, are located in the C-terminal coil. CONCLUSIONS: Sequence alignments show that the overall fold of the peptide methionine sulphoxide reductase from E. coli is likely to be conserved in many species. The characteristics observed in the Cys-51 environment are in agreement with the expected accessibility of the active site of an enzyme that reduces methionine sulphoxides in various proteins. Cys-51 could be activated by the influence of an alpha helix dipole. The involvement of the two other cysteine residues in the catalytic mechanism requires a movement of the C-terminal coil. Several conserved amino acids and water molecules are discussed as potential participants in the reaction.  相似文献   

10.
The low-molecular-weight protein tyrosine phosphatase (LMWPTPase) belongs to a distinctive class of phosphotyrosine phosphatases widely distributed among prokaryotes and eukaryotes. We report here the crystal structure of LMWPTPase of microbial origin, the first of its kind from Mycobacterium tuberculosis. The structure was determined to be two crystal forms at 1.9- and 2.5-A resolutions. These structural forms are compared with those of the LMWPTPases of eukaryotes. Though the overall structure resembles that of the eukaryotic LMWPTPases, there are significant changes around the active site and the protein tyrosine phosphatase (PTP) loop. The variable loop forming the wall of the crevice leading to the active site is conformationally unchanged from that of mammalian LMWPTPase; however, differences are observed in the residues involved, suggesting that they have a role in influencing different substrate specificities. The single amino acid substitution (Leu12Thr [underlined below]) in the consensus sequence of the PTP loop, CTGNICRS, has a major role in the stabilization of the PTP loop, unlike what occurs in mammalian LMWPTPases. A chloride ion and a glycerol molecule were modeled in the active site where the chloride ion interacts in a manner similar to that of phosphate with the main chain nitrogens of the PTP loop. This structural study, in addition to identifying specific mycobacterial features, may also form the basis for exploring the mechanism of the substrate specificities of bacterial LMWPTPases.  相似文献   

11.
Chondroitin Sulfate ABC lyase I from Proteus vulgaris is an endolytic, broad-specificity glycosaminoglycan lyase, which degrades chondroitin, chondroitin-4-sulfate, dermatan sulfate, chondroitin-6-sulfate, and hyaluronan by beta-elimination of 1,4-hexosaminidic bond to unsaturated disaccharides and tetrasaccharides. Its structure revealed three domains. The N-terminal domain has a fold similar to that of carbohydrate-binding domains of xylanases and some lectins, the middle and C-terminal domains are similar to the structures of the two-domain chondroitin lyase AC and bacterial hyaluronidases. Although the middle domain shows a very low level of sequence identity with the catalytic domains of chondroitinase AC and hyaluronidase, the residues implicated in catalysis of the latter enzymes are present in chondroitinase ABC I. The substrate-binding site in chondroitinase ABC I is in a wide-open cleft, consistent with the endolytic action pattern of this enzyme. The tryptophan residues crucial for substrate binding in chondroitinase AC and hyaluronidases are lacking in chondroitinase ABC I. The structure of chondroitinase ABC I provides a framework for probing specific functions of active-site residues for understanding the remarkably broad specificity of this enzyme and perhaps engineering a desired specificity. The electron density map showed clearly that the deposited DNA sequence for residues 495-530 of chondroitin ABC lyase I, the segment containing two putative active-site residues, contains a frame-shift error resulting in an incorrectly translated amino acid sequence.  相似文献   

12.
Even being a bacterial purine nucleoside phosphorylase (PNP), which normally shows hexameric folding, the Mycobacterium tuberculosis PNP (MtPNP) resembles the mammalian trimeric structure. The crystal structure of the MtPNP apoenzyme was solved at 1.9 A resolution. The present work describes the first structure of MtPNP in complex with phosphate. In order to develop new insights into the rational drug design, conformational changes were profoundly analyzed and discussed. Comparisons over the binding sites were specially studied to improve the discussion about the selectivity of potential new drugs.  相似文献   

13.
1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) is the second enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. The structure of the apo-form of this enzyme from Zymomonas mobilis has been solved and refined to 1.9-A resolution, and that of a binary complex with the co-substrate NADPH to 2.7-A resolution. The subunit of DXR consists of three domains. Residues 1-150 form the NADPH binding domain, which is a variant of the typical dinucleotide-binding fold. The second domain comprises a four-stranded mixed beta-sheet, with three helices flanking the sheet. Most of the putative active site residues are located on this domain. The C-terminal domain (residues 300-386) folds into a four-helix bundle. In solution and in the crystal, the enzyme forms a homo-dimer. The interface between the two monomers is formed predominantly by extension of the sheet in the second domain. The adenosine phosphate moiety of NADPH binds to the nucleotide-binding fold in the canonical way. The adenine ring interacts with the loop after beta1 and with the loops between alpha2 and beta2 and alpha5 and beta5. The nicotinamide ring is disordered in crystals of this binary complex. Comparisons to Escherichia coli DXR show that the two enzymes are very similar in structure, and that the active site architecture is highly conserved. However, there are differences in the recognition of the adenine ring of NADPH in the two enzymes.  相似文献   

14.
The Bowman-Birk trypsin inhibitor from barley seeds (BBBI) consists of 125 amino acid residues with two inhibitory loops. Its crystal structure in the free state has been determined by the multiwavelength anomalous diffraction (MAD) method and has been refined to a crystallographic R-value of 19.1 % for 8.0-1.9 A data. This is the first report on the structure of a 16 kDa double-headed Bowman-Birk inhibitor (BBI) from monocotyledonous plants and provides the highest resolution picture of a BBI to date. The BBBI structure consists of 11 beta-strands and the loops connecting these beta-strands but it lacks alpha-helices. BBBI folds into two compact domains of similar tertiary structure. Each domain shares the same overall fold with 8 kDa dicotyledonous BBIs. The five disulfide bridges in each domain are a subset of the seven disulfide bridges in 8 kDa dicotyledonous BBIs. Two buried water molecules form hydrogen bonds to backbone atoms in the core of each domain. One interesting feature of this two-domain inhibitor structure is that the two P1 residues (Arg17 and Arg76) are approximately 40 A apart, allowing the two reactive-site loops to bind to and to inhibit two trypsin molecules simultaneously and independently. The conformations of the reactive-site loops of BBBI are highly similar to those of other substrate-like inhibitors. This structure provides the framework for modeling of the 1:2 complex between BBBI and trypsin.  相似文献   

15.
Haemoglobin from donkey was purified and crystallized in space group C2. The present donkey haemoglobin model comprises of two subunits alpha and beta. These alpha and beta subunits comprise of 141 and 146 amino acid residues, respectively, and the haem groups. The donkey haemoglobin differs from horse only in two amino acids of alpha-chain (His20 to Asn and Tyr24 to Phe) and these substitutions do not significantly change the secondary structural features of donkey haemoglobin. The haem group region and subunit contacts are closely resemble with that of horse methaemoglobin.  相似文献   

16.
The crystal structure of human ornithine transcarbamylase (OTCase) complexed with carbamoyl phosphate (CP) and L-norvaline (NOR) has been determined to 1.9-A resolution. There are significant differences in the interactions of CP with the protein, compared with the interactions of the CP moiety of the bisubstrate analogue N-(phosphonoacetyl)-L-ornithine (PALO). The carbonyl plane of CP rotates about 60 degrees compared with the equivalent plane in PALO complexed with OTCase. This positions the side chain of NOR optimally to interact with the carbonyl carbon of CP. The mixed-anhydride oxygen of CP, which is analogous to the methylene group in PALO, interacts with the guanidinium group of Arg-92; the primary carbamoyl nitrogen interacts with the main-chain carbonyl oxygens of Cys-303 and Leu-304, the side chain carbonyl oxygen of Gln-171, and the side chain of Arg-330. The residues that interact with NOR are similar to the residues that interact with the ornithine (ORN) moiety of PALO. The side chain of NOR is well defined and close to the side chain of Cys-303 with the side chains of Leu-163, Leu-200, Met-268, and Pro-305 forming a hydrophobic wall. C-delta of NOR is close to the carbonyl oxygen of Leu-304 (3.56 A), S-gamma atom of Cys-303 (4.19 A), and carbonyl carbon of CP (3.28 A). Even though the N-epsilon atom of ornithine is absent in this structure, the side chain of NOR is positioned to enable the N-epsilon of ornithine to donate a hydrogen to the S-gamma atom of Cys-303 along the reaction pathway. Binding of CP and NOR promotes domain closure to the same degree as PALO, and the active site structure of CP-NOR-enzyme complex is similar to that of the PALO-enzyme complex. The structures of the active sites in the complexes of aspartate transcarbamylase (ATCase) with various substrates or inhibitors are similar to this OTCase structure, consistent with their common evolutionary origin.  相似文献   

17.
This is the first crystal structure of a proteolytically generated functional C-lobe of lactoferrin. The purified samples of iron-saturated C-lobe were crystallized in 0.1 M Mes buffer (pH 6.5) containing 25% (v/v) polyethyleneglycol monomethyl ether 550 M and 0.1 M zinc sulphate heptahydrate. The X-ray intensity data were collected with 300 mm imaging plate scanner mounted on a rotating anode generator. The structure was determined by the molecular replacement method using the coordinates of the C-terminal half of bovine lactoferrin as a search model and refined to an R-factor of 0.193 for all data to 1.9A resolution. The final model comprises 2593 protein atoms (residues 342-676 and 681-685), 124 carbohydrate atoms (from ten monosaccharide units, in three glycan chains), one Fe(3+), one CO(3)(2-), two Zn(2+) and 230 water molecules. The overall folding of the C-lobe is essentially the same as that of C-terminal half of bovine lactoferrin but differs slightly in conformations of some of the loops and reveals a number of new interactions. There are 20 Cys residues in the C-lobe forming ten disulphide links. Out of these, one involving Cys481-Cys675 provides an inter-domain link at 2.01A while another Cys405-Cys684 is formed between the main C-lobe 342-676 and the hydrolyzed pentapeptide 681-685 fragment. Six inter-domain hydrogen bonds have been observed in the structure whereas only four were reported in the structure of intact lactoferrin, although domain orientations have been found similar in the two structures. The good quality of electron density has also revealed all the ten oligosaccharide units in the structure. The observation of two metal ions at sites other than the iron-binding cleft is another novel feature of the present structure. These zinc ions stabilize the crystal packing. This structure is also notable for extensive inter-molecular hydrogen bonding in the crystals. Therefore, the present structure appears to be one of the best packed crystal structures among the proteins of the transferrin superfamily.  相似文献   

18.
The crystal structure of asparagine 233-replaced cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011 was determined at 1.9 A resolution. While the wild-type CGTase from the same bacterium produces a mixture of mainly alpha-, beta- and gamma-cyclodextrins, catalyzing the conversion of starch into cyclic or linear alpha-1,4-linked glucopyranosyl chains, site-directed mutation of histidine-233 to asparagine changed the nature of the enzyme such that it no longer produced alpha-cyclodextrin. This is a promising step towards an industrial requirement, i.e. unification of the products from the enzyme. Two independent molecules were found in an asymmetric unit, related by pseudo two-fold symmetry. The backbone structure of the mutant enzyme was very similar to that of the wild-type CGTase except that the position of the side chain of residue 233 was such that it is not likely to participate in the catalytic function. The active site cleft was filled with several water molecules, forming a hydrogen bond network with various polar side chains of the enzyme, but not with asparagine-233. The differences in hydrogen bonds in the neighborhood of asparagine-233, maintaining the architecture of the active site cleft, seem to be responsible for the change in molecular recognition of both substrate and product of the mutant CGTase.  相似文献   

19.
Shu W  Liu J  Ji H  Lu M 《Journal of molecular biology》2000,299(4):1101-1112
The outer membrane lipoprotein of the Escherichia coli cell envelope has characteristic lipid modifications at an amino-terminal cysteine and can exist in a form bound covalently to the peptidoglycan through a carboxyl-terminal lysine. The 56-residue polypeptide moiety of the lipoprotein, designated Lpp-56, folds into a stable, trimeric helical structure in aqueous solution. The 1.9 A resolution crystal structure of Lpp-56 comprises a parallel three-stranded coiled coil including a novel alanine-zipper unit and two helix-capping motifs. The amino-terminal motif forms a hydrogen-bonding network anchoring an umbrella-shaped fold. The carboxyl-terminal motif uses puckering of the tyrosine side-chains as a unique docking arrangement in helix termination. The structure provides an explanation for assembly and insertion of the lipoprotein molecules into the outer membrane of gram-negative bacteria and suggests a molecular target for antibacterial drug discovery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号