首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
R D Klein  M A Favreau 《Gene》1991,97(2):183-189
A 4.05-kb DNA fragment containing the ADE2 gene from Schwanniomyces occidentalis was cloned into the pUC19 vector. When an ade2 strain of Sc. occidentalis was transformed with this plasmid, pADE-2 was found to integrate into the host chromosome and was also present in a variety of extrachromosomal species. These extrachromosomal elements were present in multiple copies, varied in molecular mass and were composed of polymerized forms of pADE-2. A fragment containing the ADE2 gene was used to transform a Sc. occidentalis ade2 mutant, as either a linear or circularized molecule. The linear form integrated into the host genome, whereas the circularized form was found as a stably maintained extrachromosomal element with no evidence of integration or detectable loss of the Ade+ phenotype upon subculturing of transformed yeast under nonselective conditions for 60 generations. The ratio of the number of extrachromosomal ADE2 genes to genomic ADE2 ranged from 3.8 to 6.6.  相似文献   

2.
Spheroplasts of Schwanniomyces occidentalis were used for a transformation system. A putative leu2 mutant of S. occidentalis was complemented with the LEU2 gene (YEp13) from Saccharomyces cerevisiae. The transformation efficiency was 10 3 transformants/mg DNA. Although low stability was obtained, YEp13 could be recovered from transformants and kept the same size and restriction enzyme cutting sites like the original one. The replicon of 2 mm plasmid is responsible for the replication of YEp13 in S. occidentalis.  相似文献   

3.
Invertase synthesis in Schwanniomyces occidentalis is regulated by catabolite repression and is derepressed by raffinose and low concentrations of glucose. Efficiency of a carbon source in derepression of invertase is dependent upon the type of culture medium: either raffinose in a rich medium or a low concentration of glucose in a yeast minimal medium. The kinetics of derepression can be modulated by changing the carbon source. When cells are grown in a rich medium with 0.5% raffinose as the sole carbon source, Schwanniomyces occidentalis secretes 80 times more invertase than Saccharomyces cerevisiae grown in the same conditions. About 50% of the total amount of invertase produced by Schwanniomyces occidentalis is secreted in the extracellular medium in contrast to Saccharomyces cerevisiae where only 6 to 15% of the protein is secreted in the medium.  相似文献   

4.
The effect of different carbon sources on the expression in Saccharomyces cerevisiae of the SWA2 alpha-amylase gene from Schwanniomyces occidentalis was studied from constructs containing its 5' region (-223 to +15), which were fused in-frame to the lacZ gene coding sequence. Maximal expression was achieved with the non-fermentable substrates ethanol and/or glycerol, whereas lower levels were found with maltose or galactose. In contrast, glucose repressed it, even in the presence of any of these other carbon sources. Deletion analyses of the -233 to -85 SWA2 promoter region permitted the identification of two fragments involved in both glucose repression and ethanol activation. A possible region required for cAMP regulation was localised. The SWA2 promoter contains a MIG1-binding GC box whose deletion caused a five-fold increase in the glucose-repressed reporter expression. Despite this, expression of the SWA2 promoter was not MIG1-dependent.  相似文献   

5.
目的:将带有完整自身信号肽的西方许旺酵母α-淀粉酶基因克隆到大肠杆菌中,验证西方许旺酵母α-淀粉酶基因能否在大肠杆菌中有效表达。方法:利用PCR扩增带有完整自身信号肽的西方许旺酵母α-淀粉酶基因,并将其接入Zeocin启动子片段,构建了重组表达载体GapZA,转化大肠杆菌,验证得到的阳性克隆菌株是否表达α-淀粉酶活性。结果:阳性克隆菌株均有α-淀粉酶活性。结论:证明了许旺酵母α-淀粉酶能在自身信号肽引导下分泌到大肠杆菌细胞外,并且表现出明显酶活。  相似文献   

6.
Candida albicans is a diploid dimorphic yeast with no known sexual cycle. The development of a DNA transformation system would greatly improve the prospects for genetic analyses of this yeast. Plasmids were isolated from a Candida Sau3A partial library which complements the ade2-1 and ade2-5 mutations in Saccharomyces cerevisiae. These plasmids contain a common region, part of which, when subcloned, produces ade2 complementation. Among the small number of auxotrophs previously isolated in C. albicans, red adenine-requiring mutants had been identified by several groups. In two of these strains, the cloned Candida DNA transformed the mutants to ADE+ at frequencies of 0.5 to 5 transformants per micrograms of DNA. In about 50% of the transformants, plasmid DNA sequences became stably integrated into the host genome and, in the several cases analyzed by Southern hybridization, the DNA was integrated at the site of the ADE2 gene in one of the chromosomal homologs.  相似文献   

7.
8.
A starch-hydrolyzing enzyme from Schwanniomyces occidentalis has been reported to be a novel glucoamylase, but there is no conclusive proof that it is glucoamylase. An enzyme having the hydrolytic activity toward soluble starch was purified from a strain of S. occidentalis. The enzyme showed high catalytic efficiency (k(cat)/K(m)) for maltooligosaccharides, compared with that for soluble starch. The product anomer was alpha-glucose, differing from glucoamylase as a beta-glucose producing enzyme. These findings are striking characteristics of alpha-glucosidase. The DNA encoding the enzyme was cloned and sequenced. The primary structure deduced from the nucleotide sequence was highly similar to mold, plant, and mammalian alpha-glucosidases of alpha-glucosidase family II and other glucoside hydrolase family 31 enzymes, and the two regions involved in the catalytic reaction of alpha-glucosidases were conserved. These were no similarities to the so-called glucoamylases. It was concluded that the enzyme and also S. occidentalis glucoamylase, had been already reported, were typical alpha-glucosidases, and not glucoamylase.  相似文献   

9.
The cloning of α-amylase gene ofS. occidentalis and the construction of starch digestible strain of yeast,S. cerevisiae AS. 2. 1364 with ethanol-tolerance and without auxotrophic markers used in fermentation industry were studied. The yeast/E.coli shuttle plasmid YCEp1 partial library ofS. occidentalis DNA was constructed and α-amylase gene was screened in S.cerevisiae by amylolytic activity. Several transformants with amylolysis were obtained and one of the fusion plasmids had an about 5.0 kb inserted DNA fragment, containing the upstream and downstream sequences of α-amylase gene fromS. occidentalis. It was further confirmed by PCR and sequence determination that this 5.0 kb DNA fragment contains the whole coding sequence of α-amylase. The amylolytic test showed that when this transformant was incubated on plate of YPDS medium containing 1 % glum and 1 % starch at 30°C for 48 h starch degradation zones could be visualized by staining with iodine vapour. α-amylase activity of the culture filtratate is 740–780 mU/mL and PAGE shows that the yeast harboring fusion plasmids efficiently secreted α-amylase into the medium, and the amount of the recombinant α-amylase is more than 12% of the total proteins in the culture filtrate. These results showed that α-amylase gene can be highly expressed and efficiently secreted inS. cerevisiae AS. 2.1364, and the promotor and the terminator of α-amylase gene fromS. occidentalis work well inS. cercvisiac AS. 2.1364.  相似文献   

10.
11.
12.
13.
beta-Fructofuranosidases are powerful tools in industrial biotechnology. We have characterized an extracellular beta-fructofuranosidase from the yeast Schwanniomyces occidentalis. The enzyme shows broad substrate specificity, hydrolyzing sucrose, 1-kestose, nystose and raffinose, with different catalytic efficiencies (k(cat)/K(m)). Although the main reaction catalysed by this enzyme is sucrose hydrolysis, it also produces two fructooligosaccharides (FOS) by transfructosylation. A combination of (1)H, (13)C and 2D-NMR techniques shows that the major product is the prebiotic trisaccharide 6-kestose. The 6-kestose yield obtained with this beta-fructofuranosidase is, to our concern, higher than those reported with other 6-kestose-producing enzymes, both at the kinetic maximum (76gl(-1)) and at reaction equilibrium (44gl(-1)). The total FOS production in the kinetic maximum was 101gl(-1), which corresponded to 16.4% (w/w) referred to the total carbohydrates in the reaction mixture.  相似文献   

14.
Two non-Saccharomyces yeasts have been developed as hosts for heterologous gene expression. The celD gene from Clostridium thermocellum, encoding a heat-stable cellulase, served as the test sequence. The first system is based on the amylolytic species Schwanniomyces occidentalis, the second on the xylolytic species Pichia stipitis. The systems comprise auxotrophic host strains (trp5 in the case of S. occidentalis; trp5–10, his3 in the case of P. stipitis) and suitable transformation vectors. Vector components consist of an S. occidentalis-derived autonomously replicating sequence (SwARS) and the Saccharomyces cerevisiae-derived TRP5 sequence for plasmid propagation and selection in the yeast hosts, an ori and an ampicillin-resistance sequence for propagation and selection in a bacterial host. A range of vectors has been engineered employing different promoter elements for heterologous gene expression control in both species. Homologous elements derived from highly expressed genes of the respective hosts appeared to be of superior quality: in the case of S. occidentalis that of the GAM1 gene, in the case of P. stipitis that of the XYL1 gene. Further elements tested are the S. cerevisiae-derived ADH1 and PDC1 promoter sequences. Received: 20 March 1998 / Received revision: 19 May 1998 / Accepted: 21 May 1998  相似文献   

15.
The yeast Schwanniomyces occidentalis produces a killer toxin lethal to sensitive strains of Saccharomyces cerevisiae. Killer activity is lost after pepsin and papain treatment, suggesting that the toxin is a protein. We purified the killer protein and found that it was composed of two subunits with molecular masses of approximately 7.4 and 4.9 kDa, respectively, but was not detectable with periodic acid-Schiff staining. A BLAST search revealed that residues 3 to 14 of the 4.9-kDa subunit had 75% identity and 83% similarity with killer toxin K2 from S. cerevisiae at positions 271 to 283. Maximum killer activity was between pH 4.2 and 4.8. The protein was stable between pH 2.0 and 5.0 and inactivated at temperatures above 40°C. The killer protein was chromosomally encoded. Mannan, but not β-glucan or laminarin, prevented sensitive yeast cells from being killed by the killer protein, suggesting that mannan may bind to the killer protein. Identification and characterization of a killer strain of S. occidentalis may help reduce the risk of contamination by undesirable yeast strains during commercial fermentations.  相似文献   

16.
The use of yeast as an expression system for heterologous proteins offers several potential advantages with respect to industrial scale-up and genetics over other expression systems, but suffers from several drawbacks. For example, the secreted proteins of S. cerevisiae, found in the periplasm, are hyperglycosylated and the organism has a limited range of usable substrates. Other yeasts have similar disadvantages in addition to producing a variety of proteases. We have investigated the use of Schwanniomyces occidentalis as a host for developing a gene expression system in which these and several disadvantages are minimized. The present paper describes the isolation and characterization of an invertase from cell free supernatants of the yeast Schwanniomyces occidentalis grown on lactose. The enzyme is a beta-D-fructofuranoside-fructohydrolyase, composed of two identical subunits of 76,000 to 78,000 da. with a native molecular mass of 125,000 +/- 25,000 da. of which approximately 17% can be attributed to N-linked carbohydrate. The enzyme has a Vmax of 0.49 +/- 0.025 units, a Km of 21 +/- 1.5 mM, and temperature and pH optima of 55 degrees C and 3.9-4.5, respectively. The amino acid sequences of the amino terminal region and an internal tryptic peptide support an 81% identity with the invertase from Saccharomyces cerevisiae. The enzyme is induced by low glucose and is catabolite repressed.  相似文献   

17.
The yeast Schwanniomyces occidentalis produces a killer toxin lethal to sensitive strains of Saccharomyces cerevisiae. Killer activity is lost after pepsin and papain treatment, suggesting that the toxin is a protein. We purified the killer protein and found that it was composed of two subunits with molecular masses of approximately 7.4 and 4.9 kDa, respectively, but was not detectable with periodic acid-Schiff staining. A BLAST search revealed that residues 3 to 14 of the 4.9-kDa subunit had 75% identity and 83% similarity with killer toxin K2 from S. cerevisiae at positions 271 to 283. Maximum killer activity was between pH 4.2 and 4.8. The protein was stable between pH 2.0 and 5.0 and inactivated at temperatures above 40 degrees C. The killer protein was chromosomally encoded. Mannan, but not beta-glucan or laminarin, prevented sensitive yeast cells from being killed by the killer protein, suggesting that mannan may bind to the killer protein. Identification and characterization of a killer strain of S. occidentalis may help reduce the risk of contamination by undesirable yeast strains during commercial fermentations.  相似文献   

18.
19.
We used DNA containing the am gene of Neurospora crassa, cloned in the lambda replacement vector lambdaL-47 (this clone is designated lambdaC-10), and plasmid vector subclones of this DNA to transform am deletion and point mutant strains. By means of subcloning, all sequences required for transformation to am prototrophy and expression of glutamate dehydrogenase have been shown to reside on a 2.5-kilobase BamHI fragment. We also characterized several am+ strains that were obtained after transformation with lambdaC-10. These strains showed Mendelian segregation of the am+ gene, although less than 50% of the transformed strains showed the normal linkage relationship of am with inl. In all cases tested, the strains had incorporated lambda DNA as well. The lambda DNA also showed a Mendelian segregation pattern. In one case, the incorporation of am DNA in a novel position was associated with a mutagenic event producing a strain with a very tight colonial morphology. In all cases in which the am+ gene had become the resident of a new chromosome, glutamate dehydrogenase was produced to only 10 to 20% of the wild-type levels.  相似文献   

20.
You F  Ren W  Gu S  Wang W  Zhou L  Zhang Y  Gan W  Chen M 《Gene》2012,504(1):13-21
The finless porpoise (Neophocaena phocaenoides) is one of the smallest cetacean species. Research into the immune system of the finless porpoise is essential to the protection of this species, but, to date, no genes coding for proteins from the tumor necrosis factor family (TNF family) have yet been reported from finless porpoises. The TNF B cell activating factor (BAFF) is critical to B cell survival, proliferation, maturation, and immunoglobulin secretion and to T cell activation. It acts through its three receptors, BAFF-R, BCMA, and TACI. In the present study, the full-length cDNA of BAFF (designated NpBAFF) from the finless porpoise was cloned using RT-PCR and rapid amplification of cDNA ends (RACE) techniques, and its biological activities have been characterized. To our knowledge, this is the first report of any BAFF gene being cloned from an aquatic mammal. The full-length cDNA of NpBAFF consists of 1502 bases including an 852 bp open reading frame encoding 283 amino acids. This protein was found to contain a predicted transmembrane domain, a putative furin protease cleavage site, and a typical TNF homology domain corresponding to other, known BAFF homologues. Sequence comparison indicated that the amino acid sequence of NpBAFF was very similar to its bovine (87.68%), porcine (76.33%), hircine (87.68%) and canine (82.19%) counterparts. The predicted three-dimensional (3D) structure of the NpsBAFF monomer, analyzed by comparative protein modeling, revealed that it was very similar to its human counterpart. Phylogenetic analysis indicated that NpBAFF showed a notable homology with Artiodactyla BAFFs. The SUMO-NpsBAFF was efficiently expressed in Escherichia coli BL21 (DE3) and confirmed by SDS-PAGE and Western blot analysis. Laser scanning confocal microscopy analysis showed that NpsBAFF could bind to its receptors on B cells. In vitro, MTT assays indicated that SUMO-NpsBAFF could promote the survival or proliferation of mouse splenic B cells grown with anti-mouse IgM. These findings indicate that NpBAFF plays an important role in the survival or proliferation of B cells and has functional cross-reactivity among cetaceans and other mammals. The present findings may provide valuable information for research into the immune system of the finless porpoise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号