首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lactococcus lactis, a food-grade nonpathogenic lactic acid bacterium, is a good candidate for the production of heterologous proteins of therapeutic interest. We examined host factors that affect secretion of heterologous proteins in L. lactis. Random insertional mutagenesis was performed with L. lactis strain MG1363 carrying a staphylococcal nuclease (Nuc) reporter cassette in its chromosome. This cassette encodes a fusion protein between the signal peptide of the Usp45 lactococcal protein and the mature moiety of a truncated form of Nuc (NucT). The Nuc secretion efficiency (secreted NucT versus total NucT) from this construct is low in L. lactis (approximately 40%). Twenty mutants affected in NucT production and/or in secretion capacity were selected and identified. In these mutants, several independent insertions mapped in the dltA gene (involved in D-alanine transfer in lipoteichoic acids) and resulted in a NucT secretion defect. Characterization of the dltA mutant phenotype with respect to NucT secretion revealed that it is involved in a late secretion stage by causing mature NucT entrapment at the cell surface.  相似文献   

3.
Bifidobacteria constitute up to 3% of the total microbiota and represent one of the most important health-promoting bacterial groups of the human intestinal microflora. The presence of Bifidobacterium in the human gastrointestinal tract has been directly related to several health-promoting activities; however, to date, no information about the specific mechanisms of interaction with the host is available. In order to provide some insight into the molecular mechanisms involved in the interaction with the host, we investigated whether Bifidobacterium was able to capture human plasminogen on the cell surface. By using flow cytometry, we demonstrated a dose-dependent human plasminogen-binding activity for four strains belonging to three bifidobacterial species: Bifidobacterium lactis, B. bifidum, and B. longum. The binding of human plasminogen to Bifidobacterium was dependent on lysine residues of surface protein receptors. By using a proteomic approach, we identified five putative plasminogen-binding proteins in the cell wall fraction of the model strain B. lactis BI07. The data suggest that plasminogen binding to B. lactis is due to the concerted action of a number of proteins located on the bacterial cell surface, some of which are highly conserved cytoplasmic proteins which have other essential cellular functions. Our findings represent a step forward in understanding the mechanisms involved in the Bifidobacterium-host interaction.  相似文献   

4.
We investigated the effects of lactoferrin on the growth of L. acidophilus CH-2, Bifidobacterium breve ATCC 15700, B. longum ATCC 15707, B. infantis ATCC 15697, and B. bifidum ATCC 15696. The growth of L. acidophilus was stimulated by bovine holo-lactoferrin but not by apo-lactoferrin. With bifidobacteria, bovine lactoferrin stimulated growth of three strains: B. breve, B. infantis and B. bifidum under certain conditions. Both apoprotein and holoprotein had similar effects. However, B. longum growth was not affected by lactoferrin. Thus, the mechanism of stimulating growth of bifidobacteria may be different from that of L. acidophilus. By far-western blotting using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin, lactoferrin-binding proteins were detected in the membrane protein fraction of L. acidophilus, B. bifidum, B. infantis and B. breve. The molecular weights of lactoferrin-binding proteins of L. acidophilus were estimated from SDS-polyacrylamide gel electrophoresis to be 27, 41 and 67 kDa, and those of the three bifidobacterial strains were estimated to be 67-69 kDa. However, no such lactoferrin-binding components were detected in the membrane fraction of B. longum. It is interesting that the appearance of lactoferrin-binding proteins in the membrane fraction of these species corresponds to their growth stimulation by lactoferrin.  相似文献   

5.
6.
The capacity to intervene with the host plasminogen system has recently been considered an important component in the interaction process between Bifidobacterium animalis subsp. lactis and the human host. However, its significance in the bifidobacterial microecology within the human gastrointestinal tract is still an open question. Here we demonstrate that human plasminogen favors the B. animalis subsp. lactis BI07 adhesion to HT29 cells. Prompting the HT29 cell capacity to activate plasminogen, tumor necrosis factor alpha (TNF-α) modulated the plasminogen-mediated bacterium-enterocyte interaction, reducing the bacterial adhesion to the enterocytes and enhancing migration to the luminal compartment.  相似文献   

7.
The immunological study of aqueous buffer extracts obtained from 45 strains of bifidobacteria belonging to the species B. bifidum, B. longum, B. adducens, B. breve, B. infantis and B. parvulorum was made. This study revealed 3 levels of the immunological specificity of soluble bifidobacterial proteins: common to the genus Bifidobacterium, common to a limited number of strains belonging to one or several species of bifidobacteria and strain-specific.  相似文献   

8.
The human malarial parasite Plasmodium falciparum exports proteins to destinations within its host erythrocyte, including cytosol, surface and membranous profiles of parasite origin termed Maurer's clefts. Although several of these exported proteins are determinants of pathology and virulence, the mechanisms and trafficking signals underpinning protein export are largely uncharacterized-particularly for exported transmembrane proteins. Here, we have investigated the signals mediating trafficking of STEVOR, a family of transmembrane proteins located at the Maurer's clefts and believed to play a role in antigenic variation. Our data show that, apart from a signal sequence, a minimum of two addition signals are required. This includes a host cell targeting signal for export to the host erythrocyte and a transmembrane domain for final sorting to Maurer's clefts. Biochemical studies indicate that STEVOR traverses the secretory pathway as an integral membrane protein. Our data suggest general principles for transport of transmembrane proteins to the Maurer's clefts and provide new insights into protein sorting and trafficking processes in P. falciparum.  相似文献   

9.
Random insertional mutagenesis performed on a Lactococcus lactis reporter strain led us to identify L. lactis ybdD as a protein-overproducing mutant. In different expression contexts, the ybdD mutant shows increased levels of exported proteins and therefore constitutes a new and attractive heterologous protein production host. This study also highlights the importance of unknown regulatory processes that play a role during protein secretion.  相似文献   

10.
This study presents a simple and fast method for the identification of bifidobacteria using a thin layer chromatographic (TLC) analysis of the short chain fatty acids in a culture broth. When the chromatogram was sprayed with the indicator solution (methyl red-bromophenol blue in 70% ethanol), lactic acid exhibited two red spots, and acetic acid, propionic acid, and butyric acid all produced blue spots. Succinic acid and citric acid produced yellow and dark yellow spot, respectively. In addition, these organic acids showed different R(f) values. The total time taken to analyze the organic acids in the 10 bacterial culture broths using the proposed method was approximately 50 min. The proposed TLC method was used to analyze the organic acids in culture broths of the following strains, five Bifidobacterium species. (Bifidobacterium longum, B. breve, B. infantis, B. bifidum, and B. adolescentis) and five other lactic acid bacteria strains (Lactobacillus casei, L. bulgaricus, L. acidophilus, Streptococcus thermophilus, and S. lactis). Both spots of lactic acid and acetic acid were detected on all the TLC plates from the five bifidobacterial culture broths. The five other lactic acid bacterial culture broths, however, only exhibited lactic acid spots. Accordingly, the proposed TLC method would appear to be a useful tool for rapid identification of Bifidobacterium spp. at the genus level.  相似文献   

11.
The relationship between Bifidobacterium lactis and Bifidobacterium animalis was examined by comparative analysis of tuf and recA gene sequences and by restriction fragment length polymorphism analysis of their internal 16S-23S transcribed spacer region sequences. The bifidobacterial strains investigated could be divided into two distinct groups within a single species based on the tuf, recA, and 16S-23S spacer region sequence analysis. Therefore, all strains of B. lactis and B. animalis could be unified as the species B. animalis and divided into two subspecies, Bifidobacterium animalis subsp. lactis and Bifidobacterium animalis subsp. animalis.  相似文献   

12.
A culture-independent approach based on genus-specific PCR and denaturing gradient gel electrophoresis (DGGE) was used to monitor qualitative changes in fecal bifidobacterial communities in a human feeding trial. DNA was extracted directly from feces and bifidobacterial 16S rDNA sequences were amplified using genus-specific PCR. The PCR fragments were subsequently separated in a sequence-specific manner by DGGE in order to obtain a profile of bifidobacterial fragments. The DGGE profiles revealed that in general, administration for two weeks of galactooligosaccharide and/or Bifidobacterium lactis Bb-12 (8 g and 3 x 10(10) cfu per day, respectively) did not affect the qualitative composition of the indigenous Bifidobacterium population, while B. lactis Bb-12 transiently colonised the gut.  相似文献   

13.
Targeting signals direct proteins to their extra- or intracellular destination such as the plasma membrane or cellular organelles. Here we investigated the structure and function of exceptionally long signal peptides encompassing at least 40 amino acid residues. We discovered a two-domain organization ("NtraC model") in many long signals from vertebrate precursor proteins. Accordingly, long signal peptides may contain an N-terminal domain (N-domain) and a C-terminal domain (C-domain) with different signal or targeting capabilities, separable by a presumably turn-rich transition area (tra). Individual domain functions were probed by cellular targeting experiments with fusion proteins containing parts of the long signal peptide of human membrane protein shrew-1 and secreted alkaline phosphatase as a reporter protein. As predicted, the N-domain of the fusion protein alone was shown to act as a mitochondrial targeting signal, whereas the C-domain alone functions as an export signal. Selective disruption of the transition area in the signal peptide impairs the export efficiency of the reporter protein. Altogether, the results of cellular targeting studies provide a proof-of-principle for our NtraC model and highlight the particular functional importance of the predicted transition area, which critically affects the rate of protein export. In conclusion, the NtraC approach enables the systematic detection and prediction of cryptic targeting signals present in one coherent sequence, and provides a structurally motivated basis for decoding the functional complexity of long protein targeting signals.  相似文献   

14.
Design of a Protein-Targeting System for Lactic Acid Bacteria   总被引:24,自引:0,他引:24       下载免费PDF全文
We designed an expression and export system that enabled the targeting of a reporter protein (the staphylococcal nuclease Nuc) to specific locations in Lactococcus lactis cells, i.e., cytoplasm, cell wall, or medium. Optimization of protein secretion and of protein cell wall anchoring was performed with L. lactis cells by modifying the signals located at the N and C termini, respectively, of the reporter protein. Efficient translocation of precursor (approximately 95%) is obtained using the signal peptide from the lactococcal Usp45 protein and provided that the mature protein is fused to overall anionic amino acids at its N terminus; those residues prevented interactions of Nuc with the cell envelope. Nuc could be covalently anchored to the peptidoglycan by using the cell wall anchor motif of the Streptococcus pyogenes M6 protein. However, the anchoring step proved to not be totally efficient in L. lactis, as considerable amounts of protein remained membrane associated. Our results may suggest that the defect is due to limiting sortase in the cell. The optimized expression and export vectors also allowed secretion and cell wall anchoring of Nuc in food-fermenting and commensal strains of Lactobacillus. In all strains tested, both secreted and cell wall-anchored Nuc was enzymatically active, suggesting proper enzyme folding in the different locations. These results provide the first report of a targeting system in lactic acid bacteria in which the final location of a protein is controlled and biological activity is maintained.  相似文献   

15.
A survey of infant fecal Bifidobacterium isolates for plasmid DNA revealed that a significant portion of the strains, 17.6%, carry small plasmids. The majority of plasmid-harboring strains belonged to the Bifidobacterium longum/infantis group. Most of the plasmids could be assigned into two groups based on their sizes and the restriction profiles. Three plasmids, pB44 (3.6 kb) from B. longum, pB80 (4.9 kb) from Bifidobacterium bifidum, and pB21a (5.2kb) from Bifidobacterium breve were sequenced. While the former two plasmids were found to be highly similar to previously characterized rolling-circle replicating pKJ36 and pKJ56, respectively, the third plasmid, pB21a, does not share significant nucleotide homology with known plasmids. However, it might be placed into the pCIBb1-like group of bifidobacterial rolling-plasmids based on the homology of its Rep protein and the overall molecular organization. Two sets of Escherichia coli-Bifidobacterium shuttle vectors constructed based on pB44 and pB80 replicons were capable of transforming B. bifidum and B. breve strains with efficiency up to 3x10(4)cfu/microg DNA. Additionally, an attempt was made to employ a broad host range conjugation element, RP4, in developing of E. coli-Bifidobacterium gene transfer system.  相似文献   

16.
A short motif termed Plasmodium export element (PEXEL) or vacuolar targeting signal (VTS) characterizes Plasmodium proteins exported into the host cell. These proteins mediate host cell modifications essential for parasite survival and virulence. However, several PEXEL-negative exported proteins indicate that the currently predicted malaria exportome is not complete and it is unknown whether and how these proteins relate to PEXEL-positive export. Here we show that the N-terminal 10 amino acids of the PEXEL-negative exported protein REX2 (ring-exported protein 2) are necessary for its targeting and that a single-point mutation in this region abolishes export. Furthermore we show that the REX2 transmembrane domain is also essential for export and that together with the N-terminal region it is sufficient to promote export of another protein. An N-terminal region and the transmembrane domain of the unrelated PEXEL-negative exported protein SBP1 (skeleton-binding protein 1) can functionally replace the corresponding regions in REX2, suggesting that these sequence features are also present in other PEXEL-negative exported proteins. Similar to PEXEL proteins we find that REX2 is processed, but in contrast, detect no evidence for N-terminal acetylation.  相似文献   

17.
In order to clarify the distribution of bifidobacterial species in the human intestinal tract, a 16S rRNA-gene-targeted species-specific PCR technique was developed and used with DNAs extracted from fecal samples obtained from 48 healthy adults and 27 breast-fed infants. To cover all of the bifidobacterial species that have been isolated from and identified in the human intestinal tract, species-specific primers for Bifidobacterium longum, B. infantis, B. dentium, and B. gallicum were developed and used with primers for B. adolescentis, B. angulatum, B. bifidum, B. breve, and the B. catenulatum group (B. catenulatum and B. pseudocatenulatum) that were developed in a previous study (T. Matsuki, K. Watanabe, R. Tanaka, and H. Oyaizu, FEMS Microbiol. Lett. 167:113-121, 1998). The specificity of the nine primers was confirmed by PCR, and the species-specific PCR method was found to be a useful means for identifying Bifidobacterium strains isolated from human feces. The results of an examination of bifidobacterial species distribution showed that the B. catenulatum group was the most commonly found taxon (detected in 44 of 48 samples [92%]), followed by B. longum and B. adolescentis, in the adult intestinal bifidobacterial flora and that B. breve, B. infantis, and B. longum were frequently found in the intestinal tracts of infants. The present study demonstrated that qualitative detection of the bifidobacterial species present in human feces can be accomplished rapidly and accurately.  相似文献   

18.
The identification of exported proteins by fusion studies, while well developed for gram-negative bacteria, is limited for gram-positive bacteria, in part due to drawbacks of available export reporters. In this work, we demonstrate the export specificity and use of the Staphylococcus aureus secreted nuclease (Nuc) as a reporter for gram-positive bacteria. Nuc devoid of its export signal (called ΔSPNuc) was used to create two fusions whose locations could be differentiated. Nuclease activity was shown to require an extracellular location in Lactococcus lactis, thus demonstrating the suitability of ΔSPNuc to report protein export. The shuttle vector pFUN was designed to construct ΔSPNuc translational fusions whose expression signals are provided by inserted DNA. The capacity of ΔSPNuc to reveal and identify exported proteins was tested by generating an L. lactis genomic library in pFUN and by screening for Nuc activity directly in L. lactis. All ΔSPNuc fusions displaying a strong Nuc+ phenotype contained a classical or a lipoprotein-type signal peptide or single or multiple transmembrane stretches. The function of some of the predicted signals was confirmed by cell fractionation studies. The fusions analyzed included long (up to 455-amino-acid) segments of the exported proteins, all previously unknown in L. lactis. Homology searches indicate that several of them may be implicated in different cell surface functions, such as nutrient uptake, peptidoglycan assembly, environmental sensing, and protein folding. Our results with L. lactis show that ΔSPNuc is well suited to report both protein export and membrane protein topology.Most exported proteins are targeted for transport by a primary export signal comprising a hydrophobic domain. The signal can be present at the protein N terminus and cleaved during transport (i.e., signal peptide), but it can also remain embedded in the membrane (i.e., transmembrane segment) (63). Exported proteins are estimated to represent about 20% of total cellular proteins in gram-negative bacteria (39, 44), and contribute to various essential processes like nutrient uptake, macromolecular transport and assembly, envelope biogenesis and integrity, motility, cell division, energy generation, scavenging and detoxification, signal transduction, stress resistance, cell communication, and virulence in the case of pathogens.Several years ago, the elegant strategy of translational fusion to an export-specific reporter protein was designed to specifically isolate genes encoding exported proteins. This kind of reporter is translocation competent but unable to direct its own export (it corresponds to a signal peptideless form of an exported protein), and its activity requires an extracytoplasmic location. Among a library of proteins N-terminally fused to such a reporter, only fusions having the proper signal are exported and active. This strategy was first described for Escherichia coli using alkaline phosphatase (PhoA) as a reporter (16, 36); since then it has been applied to many gram-negative bacteria, particularly pathogens (for reviews, see references 24 and 35 and references therein).Export-specific reporters have a potentially important use in gram-positive bacteria, not only for protein identification and structural analyses, but also for technological applications. Most studies directly adopted the gram-negative reporters available, PhoA and the E. coli TEM β-lactamase (BlaM) (5). The Bacillus licheniformis α-amylase, AmyL, has also been used (17). Surprisingly, relatively few fusion studies allowed identification and characterization of the exported proteins (32, 42). In many cases, only the export signal was characterized (17, 18, 43, 51, 54, 55), possibly because only very short polypeptides (60 amino acids) were fused to the reporter.The rather limited results obtained by using reporter fusions may reveal that the reporters used are not fully adapted for use in gram-positive bacteria. (i) Fusions to gram-negative reporters PhoA and BlaM seem to display little activity and/or to be less stable in gram-positive bacteria, probably because of improper folding (42, 54). Both PhoA (active as a dimer) and BlaM folding require disulfide bond formation, which is catalyzed by DsbA in various gram-negative bacteria (3, 22); it is not yet clear whether such a process exists in gram-positive bacteria (19). Furthermore, altered codon usage and GC content may decrease expression of reporter genes. (ii) Selection of BlaM fusions has been routinely performed in E. coli, possibly due to difficulties of direct ampicillin resistance selection in gram-positive bacteria (43, 51, 54). Such preselection may create a bias due to species specificity of export signals, which, for signal peptides, are significantly longer in gram-positive bacteria (65). (iii) AmyL, a reporter of gram-positive origin, may be the best suited for use in gram-positive bacteria. However, the plate detection test results in loss of cell viability (18a), and thus its use requires replica plating (17, 18).The above-mentioned considerations led us to design a protein export reporter which would be suitable for use in a broad host range of gram-positive bacteria. The reporter we chose is based on the Staphylococcus aureus secreted nuclease (Nuc), a small, stable, monomeric, extensively studied enzyme (EC 3.1.31.1 [9]), having a mature form devoid of cysteine residues (50). Nuc is efficiently secreted by various gram-positive bacteria as an active 168-amino-acid polypeptide which may undergo subsequent proteolytic cleavage of the N-terminal 19- to 21-amino-acid propeptide to give rise to another active form, called NucA (27, 30, 31, 38, 58). The enzymatic activity test for Nuc is sensitive and nontoxic to colonies (28, 29, 50). Several features of Nuc thus make it a potentially optimal candidate for reporting protein export in gram-positive bacteria.In this study, we show that a truncated form of Nuc lacking its export signal (called ΔSPNuc) is an export-specific reporter. A shuttle vector, pFUN (for fusion to nuclease), was designed to specifically identify genes encoding exported proteins as translational fusions to ΔSPNuc. pFUN was developed and used to study protein export in Lactococcus lactis, a gram-positive microaerophilic industrial microorganism used in dairy fermentations (37). Despite the technological importance of surface and extracellular proteins in this organism, export of relatively few proteins (excluding plasmid- or transposon-encoded proteins) has been reported to date (4, 6, 12, 13, 15, 26, 40, 6062). In this work, we characterize 16 previously unknown exported L. lactis proteins. Our results confirm that ΔSPNuc is a sensitive and specific export reporter for L. lactis and potentially for other gram-positive bacteria.  相似文献   

19.
Lactobacillus delbrueckii ssp. bulgaricus ( L. bulgaricus ) genome sequence analysis revealed the presence of two genes that encode histone-like HU proteins ( hlbA and hlbB ) showing extensive similarity to other bacterial homologues. These genes were found to be extremely conserved among several L. bulgaricus strains. The hlbA gene was shown to be constitutively transcribed from a unique promoter ( phlbA ) during normal growth, whereas hlbB did not seem to be expressed under usual laboratory conditions. Using a reporter cassette in which the staphylococcal nuclease was fused at its N-terminus to the lactococcal signal peptide Usp45 (SP Usp45), we have demonstrated that phlbA promotes high expression of the reporter in L. bulgaricus , which correlated with an abundant secretion of the mature nuclease in the supernatant fraction. Quantification of the exported enzyme reveals a secretion level approximately threefold higher when the expression of the reporter was under the control of phlbA compared with the lactococcal usp45 promoter. Together, these results indicate that phlbA is suitable for gene expression in L. bulgaricus , that SP Usp45 is functionally recognized and processed by the L. bulgaricus secretion machinery and that the nuclease reporter gene can be used for the identification of exported products in this bacterium.  相似文献   

20.
The effect of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 on the composition of the Lactobacillus group, Bifidobacterium and the total bacterial population in feces from young children with atopic dermatitis was investigated. The study included 50 children randomized to intake of one of the probiotic strain or placebo. Microbial composition was characterized by denaturing gradient gel electrophoresis, quantitative PCR and, in a subset of subjects, by pyrosequencing of the 16S rRNA gene. The core population of the Lactobacillus group was identified as Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus oris, Leuconostoc mesenteroides, while the bifidobacterial community included Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum and Bifidobacterium catenulatum. The fecal numbers of L. acidophilus and B. lactis increased significantly after intervention, indicating survival of the ingested bacteria. The levels of Bifidobacterium correlated positively (P=0.03), while the levels of the Lactobacillus group negatively (P=0.01) with improvement of atopic eczema evaluated by the Severity Scoring of Atopic Dermatitis index. This correlation was observed across the whole study cohort and not attributed to the probiotic intake. The main conclusion of the study is that administration of L. acidophilus NCFM and B. lactis Bi-07 does not affect the composition and diversity of the main bacterial populations in feces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号