首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The Src homology 3 (SH3) domain of pp60(c-src) (Src) plays dual roles in signal transduction, through stabilizing the repressed form of the Src kinase and through mediating the formation of activated signaling complexes. Transition of the Src SH3 domain between a variety of binding partners during progression through the cell cycle requires adjustment of a delicate free energy balance. Although numerous structural and functional studies of SH3 have provided an in-depth understanding of structural determinants for binding, the origins of binding energy in SH3-ligand interactions are not fully understood. Considering only the protein-ligand interface, the observed favorable change in standard enthalpy (DeltaH=-9.1 kcal/mol) and unfavorable change in standard entropy (TDeltaS=-2.7 kcal/mol) upon binding the proline-rich ligand RLP2 (RALPPLPRY) are inconsistent with the predominantly hydrophobic interaction surface. To investigate possible origins of ligand binding energy, backbone dynamics of free and RLP2-bound SH3 were performed via (15)N NMR relaxation and hydrogen-deuterium (H/(2)H) exchange measurements. On the ps-ns time scale, assuming uncorrelated motions, ligand binding results in a significant reduction in backbone entropy (-1.5(+/-0.6) kcal/mol). Binding also suppresses motions on the micros-ms time scale, which may additionally contribute to an unfavorable change in entropy. A large increase in protection from H/(2)H exchange is observed upon ligand binding, providing evidence for entropy loss due to motions on longer time scales, and supporting the notion that stabilization of pre-existing conformations within a native state ensemble is a fundamental paradigm for ligand binding. Observed changes in motion on all three time scales occur at locations both near and remote from the protein-ligand interface. The propagation of ligand binding interactions across the SH3 domain has potential consequences in target selection through altering both free energy and geometry in intact Src, and suggests that looking beyond the protein-ligand interface is essential in understanding ligand binding energetics.  相似文献   

2.
研究蛋白质和配体相互作用的结构和亲和力,不仅有助于了解蛋白质的功能,而且对药物研发以及药物作用机制的研究,也具有十 分重要的意义。目前,人们通过人工检索和半自动检索的方式,从文献和蛋白质数据库(Protein Data Bank,PDB)中获得了许多蛋白质- 配体亲和力信息和生物相关配体信息,并构建了许多蛋白质-配体相互作用的信息数据库。对3 个蛋白质-配体亲和力数据库和6 个蛋白质 晶体结构-配体生物相关性数据库进行介绍,并对其主要应用进行简述,希望能为实现高效准确地筛选和设计药物提供一定的帮助。  相似文献   

3.
Here we present the high-resolution NMR structure of a chimera (SPCp41) between alpha-spectrin SH3 domain and the decapeptide p41. The tertiary structure mimics perfectly the interactions typically found in SH3-peptide complexes and is remarkably similar to that of the complex between the separate Spc-SH3 domain and ligand p41. Relaxation data confirm the tight binding between the ligand and SH3 part of the chimera. This chimera will serve as a tool for a deeper understanding of the relationship between structure and thermodynamics of binding using a combination of NMR, stability and site-directed mutagenesis studies, which can lead to an effective strategy for ligand design.  相似文献   

4.
Knowledge discovery from the exponentially growing body of structurally characterised protein-ligand complexes as a source of information in structure-based drug design is a major challenge in contemporary drug research. Given the need for powerful data retrieval, integration and analysis tools, Relibase was developed as a database system particularly designed to handle protein-ligand related problems and tasks. Here, we describe the design and functionality of the Relibase core database system. Features of Relibase include, e.g. the detailed analysis of superimposed ligand binding sites, ligand similarity and substructure searches, and 3D searches for protein-ligand and protein-protein interaction patterns. The broad range of functions provided in Relibase and its high level of data integration, along with its flexible and intuitive interface, makes Relibase an invaluable data mining tool which can significantly enhance the drug development process. An example, illustrating a 3D query for quarternary ligand nitrogen atoms interacting with aromatic ring systems in proteins, a pattern found in pharmaceutically relevant target proteins such as, e.g. acetylcholine-esterase, is discussed.  相似文献   

5.
Knowledge of protein-ligand binding sites is very important for structure-based drug designs. To get information on the binding site of a targeted protein with its ligand in a timely way, many scientists tried to resort to computational methods. Although several methods have been released in the past few years, their accuracy needs to be improved. In this study, based on the combination of incremental convex hull, traditional geometric algorithm, and solvent accessible surface of proteins, we developed a novel approach for predicting the protein-ligand binding sites. Using PDBbind database as a benchmark dataset and comparing the new approach with the existing methods such as POCKET, Q-SiteFinder, MOE-SiteFinder, and PASS, we found that the new method has the highest accuracy for the Top 2 and Top 3 predictions. Furthermore, our approach can not only successfully predict the protein-ligand binding sites but also provide more detailed information for the interactions between proteins and ligands. It is anticipated that the new method may become a useful tool for drug development, or at least play a complementary role to the other existing methods in this area.  相似文献   

6.
The structure of a recently reported neurotrophic ligand, 3-(3-pyridyl)-1-propyl(2S)-1-(3,3-dimethyl-1, 2-dioxopentyl)-2-pyrrolidinecarboxylate, in complex with FKBP12 was determined using heteronuclear NMR spectroscopy. The inhibitor exhibits a binding mode analogous to that observed for the macrocycle FK506, used widely as an immunosuppressant, with the prolyl ring replacing the pipecolyl moiety and the amide bond in a trans conformation. However, fewer favourable protein-ligand interactions are detected in the structure of the complex, suggesting weaker binding compared with the immunosuppressant drug. Indeed, a micromolar dissociation constant was estimated from the NMR ligand titration profile, in contrast to the previously published nanomolar inhibition activity. Although the inhibitor possesses a remarkable structural simplicity with respect to FK506, 15N relaxation studies show that it induces similar effects on the protein dynamics, stabilizing the conformation of solvent-exposed residues which are important for mediating the interaction of immunophilin/ligand complexes with molecular targets and potentially for the transmission of the neurotrophic action of FKBP12 inhibitors.  相似文献   

7.
Jain T  Jayaram B 《FEBS letters》2005,579(29):6659-6666
We report here a computationally fast protocol for predicting binding affinities of non-metallo protein-ligand complexes. The protocol builds in an all atom energy based empirical scoring function comprising electrostatics, van der Waals, hydrophobicity and loss of conformational entropy of protein side chains upon ligand binding. The method is designed to ensure transferability across diverse systems and has been validated on a heterogenous dataset of 161 complexes consisting of 55 unique protein targets. The scoring function trained on a dataset of 61 complexes yielded a correlation of r=0.92 for the predicted binding free energies against the experimental binding affinities. Model validation and parameter analysis studies ensure the predictive ability of the scoring function. When tested on the remaining 100 protein-ligand complexes a correlation of r=0.92 was recovered. The high correlation obtained underscores the potential applicability of the methodology in drug design endeavors. The scoring function has been web enabled at as binding affinity prediction of protein-ligand (BAPPL) server.  相似文献   

8.
A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower). Amide hydrogen deuterium Exchange mass spectrometry (HDXMS) is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM) and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD).  相似文献   

9.
The mouse major urinary protein (MUP) has proved to be an intriguing test bed for detailed studies on protein-ligand recognition. NMR, calorimetric, and modeling investigations have revealed that the thermodynamics of ligand binding involve a complex interplay between competing enthalpic and entropic terms. We performed six independent, 1.2 μs molecular-dynamics simulations on MUP—three replicates on the apo-protein, and three on the complex with the pheromone isobutylmethoxypyrazine. Our findings provide the most comprehensive picture to date of the structure and dynamics of MUP, and how they are modulated by ligand binding. The mechanical pathways by which amino acid side chains can transmit information regarding ligand binding to surface loops and either increase or decrease their flexibility (entropy-entropy compensation) are identified. Dewetting of the highly hydrophobic binding cavity is confirmed, and the results reveal an aspect of ligand binding that was not observed in earlier, shorter simulations: bound ligand retains extensive rotational freedom. Both of these features have significant implications for interpretations of the entropic component of binding. More generally, these simulations test the ability of current molecular simulation methods to produce a reliable and reproducible picture of protein dynamics on the microsecond timescale.  相似文献   

10.
Solution- and solid-state NMR studies of GPCRs and their ligands   总被引:1,自引:0,他引:1  
G protein-coupled receptors (GPCRs) represent one of the major targets of new drugs on the market given their roles as key membrane receptors in many cellular signalling pathways. Structure-based drug design has potential to be the most reliable method for novel drug discovery. Unfortunately, GPCR-ligand crystallisation for X-ray diffraction studies is very difficult to achieve. However, solution- and solid-state NMR approaches have been developed and have provided new insights, particularly focussing on the study of protein-ligand interactions which are vital for drug discovery. This review provides an introduction for new investigators of GPCRs/ligand interactions using NMR spectroscopy. The guidelines for choosing a system for efficient isotope labelling of GPCRs and their ligands for NMR studies will be presented, along with an overview of the different sample environments suitable for generation of high resolution structural information from NMR spectra.  相似文献   

11.
Simulation studies have been performed to evaluate the utility of site-directed spin labeling for determining the structures of protein-ligand complexes, given a known protein structure. Two protein-ligand complexes were used as model systems for these studies: a 1.9-A-resolution x-ray structure of a dihydrofolate reductase mutant complexed with methotrexate, and a 1.5-A-resolution x-ray structure of the V-Src tyrosine kinase SH2 domain complexed with a five-residue phosphopeptide. Nitroxide spin labels were modeled at five dihydrofolate reductase residue positions and at four SH2 domain residue positions. For both systems, after energy minimization, conformational ensembles of the spin-labeled residues were generated by simulated annealing while holding the remainder of the protein-ligand complex fixed. Effective distances, simulating those that could be obtained from (1)H-NMR relaxation measurements, were calculated between ligand protons and the spin labels. These were converted to restraints with several different levels of precision. Restrained simulated annealing calculations were then performed with the aim of reproducing target ligand-binding modes. The effects of incorporating a few supplementary short-range (< or =5.0 A) distance restraints were also examined. For the dihydrofolate reductase-methotrexate complex, the ligand-binding mode was reproduced reasonably well using relatively tight spin-label restraints, but methotrexate was poorly localized using loose spin-label restraints. Short-range and spin-label restraints proved to be complementary. For the SH2 domain-phosphopeptide complex without the short-range restraints, the peptide did not localize to the correct depth in the binding groove; nevertheless, the orientation and internal conformation of the peptide was reproduced moderately well. Use of the spin-label restraints in conjunction with the short-range restraints resulted in relatively well defined structural ensembles. These results indicate that restraints derived from site-directed spin labeling can contribute significantly to defining the orientations and conformations of bound ligands. Accurate ligand localization appears to require either a few supplementary short-range distance restraints, or relatively tight spin-label restraints, with at least one spin label positioned so that some of the restraints draw the ligand into the binding pocket in the latter case.  相似文献   

12.
NMR spectroscopy has evolved dramatically over the past 15 years, establishing a new, reliable methodology for studying biomacromolecules at atomic resolution. The three-dimensional structure and dynamics of a biomolecule or a biomolecular complex is only one of the main types of information available using NMR. The spectral assignment to the specific nuclei of a biostructure is a very precise reflection of their electronic environment. Any change in this environment due to a structural change, the binding of a ligand or the redox state of a redox cofactor, will be very sensitively reported by changes in the different NMR parameters. The capabilities of the NMR method are currently expanding dramatically and it is turning into a powerful means to study biosystems dynamically in exchange between different conformations, exchanging ligands, transient complexes, or the activation/inhibition of regulated enzymes. We review here several NMR studies that have appeared during the past 5 or 6 years in the field of redox proteins of plants, yeasts and photosynthetic bacteria. These new results illustrate the recent biomolecular NMR evolution and provide new physiological models for understanding the different types of electron transfer, including glutaredoxins, thioredoxins and their dependent enzymes, the ferredoxin-NADP oxidoreductase complex, flavodoxins, the plastocyanin-cytochrome f complex, and cytochromes c.  相似文献   

13.
This review surveys recent investigations of conformational fluctuations of proteins in solution using NMR techniques. Advances in experimental methods have provided more accurate means of characterizing fast and slow internal motions as well as overall diffusion. The information obtained from NMR dynamics experiments provides insights into specific structural changes or configurational energetics associated with function. A variety of applications illustrate that studies of protein dynamics provide insights into protein-protein interactions, target recognition, ligand binding, and enzyme function.  相似文献   

14.
To predict structural and energetic effects of point mutations on ligand binding is of considerable interest in biochemistry and pharmacology. This is not only useful in connection with site-directed mutagenesis experiments, but could also allow interpretation and prediction of individual responses to drug treatment. For G-protein coupled receptors systematic mutagenesis has provided the major part of functional data as structural information until recently has been very limited. For the pharmacologically important A2A adenosine receptor, extensive site-directed mutagenesis data on agonist and antagonist binding is available and crystal structures of both types of complexes have been determined. Here, we employ a computational strategy, based on molecular dynamics free energy simulations, to rationalize and interpret available alanine-scanning experiments for both agonist and antagonist binding to this receptor. These computer simulations show excellent agreement with the experimental data and, most importantly, reveal the molecular details behind the observed effects which are often not immediately evident from the crystal structures. The work further provides a distinct validation of the computational strategy used to assess effects of point-mutations on ligand binding. It also highlights the importance of considering not only protein-ligand interactions but also those mediated by solvent water molecules, in ligand design projects.  相似文献   

15.
Lee J  Seok C 《Proteins》2008,70(3):1074-1083
Computational prediction of protein-ligand binding modes provides useful information on the relationship between structure and activity needed for drug design. A statistical rescoring method that incorporates entropic effect is proposed to improve the accuracy of binding mode prediction. A probability function for two sampled conformations to belong to the same broad basin in the potential energy surface is introduced to estimate the contribution of the state represented by a sampled conformation to the configurational integral. The rescoring function is reduced to the colony energy introduced by Xiang et al. (Proc Natl Acad Sci USA 2002;99:7432-7437) when a particular functional form for the probability function is used. The scheme is applied to rescore protein-ligand complex conformations generated by AutoDock. It is demonstrated that this simple rescoring improves prediction accuracy substantially when tested on 163 protein-ligand complexes with known experimental structures. For example, the percentage of complexes for which predicted ligand conformations are within 1 A root-mean-square deviation from the native conformations is doubled from about 20% to more than 40%. Rescoring with 11 different scoring functions including AutoDock scoring functions were also tested using the ensemble of conformations generated by Wang et al. (J Med Chem 2003;46:2287-2303). Comparison with other methods that use clustering and estimation of conformational entropy is provided. Examination of the docked poses reveals that the rescoring corrects the predictions in which ligands are tightly fit into the binding pockets and have low energies, but have too little room for conformational freedom and thus have low entropy.  相似文献   

16.
The ability of proteins to regulate their own enzymatic activity can be facilitated by changes in structure or protein dynamics in response to external regulators. Because many proteins contain SH2 and SH3 domains, transmission of information between the domains is a potential method of allosteric regulation. To determine if ligand binding to one modular domain may alter structural dynamics in an adjacent domain, allowing potential transmission of information through the protein, we used hydrogen exchange and mass spectrometry to measure changes in protein dynamics in the SH3 and SH2 domains of hematopoietic cell kinase (Hck). Ligand binding to either domain had little or no effect on hydrogen exchange in the adjacent domain, suggesting that changes in protein structure or dynamics are not a means of SH2/SH3 crosstalk. Furthermore, ligands of varying affinity covalently attached to SH3/SH2 altered dynamics only in the domain to which they bind. Such results demonstrate that ligand binding may not structurally alter adjacent SH3/SH2 domains and implies that other aspects of protein architecture contribute to the multiple levels of regulation in proteins containing SH3 and SH2 domains.  相似文献   

17.
We offer a new titration protocol for determining the dissociation constant and binding stoichiometry of protein-ligand complex, detectable by spectroscopic methods. This approach neither is limited to the range of protein or ligand concentrations employed during titration experiment nor relies on precise determinations of the titration "endpoint," i.e., the maximal signal changes upon saturation of protein by ligand (or vice versa). In this procedure, a fixed concentration of protein (or ligand) is titrated by increasing volumes of a stock ligand (or protein) solution, and the changes in the spectroscopic signal are recorded after each addition of the titrant. The signal for interaction between protein and ligand first increases, reaches a maximum value, and then starts decreasing due to dilution effect. The volume of the titrant required to achieve the maximum signal changes is utilized to calculate the dissociation constant and the binding stoichiometry of the protein-ligand complex according to the theoretical relationships developed herein. This procedure has been tested for the interaction of avidin with a chromophoric biotin analogue, 2-(4'-hydroxyazobenzene)benzoic acid by following the absorption signal of their interaction at 500 nm. The widespread applicability of this procedure to protein-ligand complexes detected by other spectroscopic techniques and its advantages over conventional methods are discussed.  相似文献   

18.
In order to further elucidate structural and dynamic principles of protein self-organization and protein-ligand interactions, a new chimeric protein was designed and a genetically engineered construct was created. SH3-F2 amino acid sequence consists of polyproline ligand mgAPPLPPYSA, GG linker, and the sequence of spectrin SH3 domain circular permutant S19-P20s. Structural and dynamic properties of the protein were studied with high-resolution NMR. According to NMR data, the tertiary structure of the chimeric protein SH3-F2 has a topology that is typical for SH3 domains in the complex with the ligand forming polyproline type II helix located in the conservative region of binding in the orientation II. The polyproline ligand closely adjoins with the protein globule and is stabilized by hydrophobic interactions. However, the interactions of the ligand and the part of globule related to SH3 domain is not too large, because the analysis of protein dynamical characteristics points to the low amplitude, high-frequency ligand tumbling relative to the slow intramolecular motions of the main globule. The constructed chimera allows carrying out further structural and thermodynamic investigations of polyproline helix properties and its interaction with regulatory domains.  相似文献   

19.
Biomolecular NMR: a chaperone to drug discovery   总被引:1,自引:0,他引:1  
Biomolecular NMR now contributes routinely to every step in the development of new chemical entities ahead of clinical trials. The versatility of NMR--from detection of ligand binding over a wide range of affinities and a wide range of drug targets with its wealth of molecular information, to metabolomic profiling, both ex vivo and in vivo--has paved the way for broadly distributed applications in academia and the pharmaceutical industry. Proteomics and initial target selection both benefit from NMR: screenings by NMR identify lead compounds capable of inhibiting protein-protein interactions, still one of the most difficult development tasks in drug discovery. NMR hardware improvements have given access to the microgram domain of phytochemistry, which should lead to the discovery of novel bioactive natural compounds. Steering medicinal chemists through the lead optimisation process by providing detailed information about protein-ligand interactions has led to impressive success in the development of novel drugs. The study of biofluid composition--metabonomics--provides information about pharmacokinetics and helps toxicological safety assessment in animal model systems. In vivo, magnetic resonance spectroscopy interrogates metabolite distributions in living cells and tissues with increasing precision, which significantly impacts the development of anticancer or neurological disorder therapeutics. An overview of different steps in recent drug discovery is presented to illuminate the links with the most recent advances in NMR methodology.  相似文献   

20.
Weber T  Schaffhausen B  Liu Y  Günther UL 《Biochemistry》2000,39(51):15860-15869
The N-terminal src homology 2 (SH2) domain of the p85 subunit of phosphoinositide 3-kinase (PI3K) has a higher affinity for a peptide with two phosphotyrosines than for the same peptide with only one. This unexpected result was not observed for the C-terminal SH2 from the same protein. NMR structural analysis has been used to understand the behavior of the N-SH2. The structure of the free SH2 domain has been compared to that of the SH2 complexed with a doubly phosphorylated peptide derived from polyomavirus middle T antigen (MT). The structure of the free SH2 domain shows some differences from previous NMR and X-ray structures. In the N-SH2 complexed with a doubly phosphorylated peptide, a second site for phosphotyrosine interaction has been identified. Further, line shapes of NMR signals showed that the SH2 protein-ligand complex is subject to temperature-dependent conformational mobility. Conformational mobility is also supported by the spectra of the ligand peptide. A binding model which accounts for these results is developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号