首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 489 毫秒
1.
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immuno-stained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase.  相似文献   

2.
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immunostained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase.  相似文献   

3.
Summary The ultrastructure of the melanophores of Pterophyllum scalare was studied with respect to changes in cell shape during melanosome migration and the number and distribution of microtubules within the cell extensions. Cells were fixed with pigment fully aggregated or fully dispersed. All measurements were carried out on cross sections of cell processes, i.e. sections cut perpendicular to the long axis of the cell extensions. Cross sections of processes of melanophores with dispersed pigment are more or less ovoid in shape, and microtubules are arranged predominantly just below the cell membrane. These microtubules exhibit a relatively constant centre-to-centre spacing of about 55–65 nm. Processes of melanophores with aggregated pigment seem to be collapsed; their volume is substantially decreased but their circumference equals that of dispersed melanophores. The number of microtubules is reduced, and their regular arrangement is lost. The differences in microtubule number associated with the aggregated or dispersed state occur irrespective of the nature of the agent inducing dispersion or aggregation. In addition, apparent insertion of microtubules into the plasma membrane of the cell processes and associations of microtubules with cytoplasmic densities in the cell centre are described.The results indicate a rapid disassembly and assembly of microtubules associated with pigment movements. The possible role of microtubule associations with cell membrane and densities as sites of microtubule polymerization is briefly discussed.This work was supported by a grant from the Deutsche Forschungsgemeinschaft.  相似文献   

4.
Mitotic melanophores of Xenopus laevis larvae at 51-53 stages of development were morphologically studied using light and electron microscopy, with special reference to their microtubule-organizing centers. These melanophores represented a highly branched cell shape in mitosis, each cell process is distributed with melanosomes without exhibiting any responsiveness to hormonal (melatonin) stimulation, and upon completion of mitosis, recovered the ability to translocate these granules in response to such a stimulus. At the metaphase, these cells contained bipolar or multipolar spindles, whose poles were composed of three zones: the centrosome with centrioles; the centrosphere; and an outlying radial arrangement of microtubules and their associated inclusions. In these mitotic melanophores, a number of microtubules are distributed within the radially stretching cell processes, whereas an abundance of microtubules reside in the spindles. Possible origins of the microtubules observed in these cytoplasmic processes are discussed in relation to the loss of the ability of pigment translocation during mitosis.  相似文献   

5.
Isolated melanophores of the angelfish, Pterophyllum scalare, have been used in a morphometric analysis and a quantitative study of their microtubule system. Using transverse sections spaced at regular intervals, the changes associated with the process of pigment aggregation have been determined. Upon the concentration of pigment granules in the central cell region, almost half of the cytoplasmic portion is also withdrawn from the peripheral cell regions. Counts of microtubules within a cell sector in cells with pigment aggregated and dispersed, respectively, reveal (a) a constancy of the number of microtubules in this sector regardless of the distance from the cell center, and (b) a reduction of microtubule number in cells with pigment aggregated by about 58%. On the basis of these counts, the total number of microtubules has been calculated. In the dispersed state, about 2,400 microtubules extend between the center and the periphery of the cell, while their number is about 1,000 in the aggregated state. Using a 13-protofilament model of a microtubule and relevant data on size and molecular weight of microtubule subunits, the amount of tubulin present as microtubules is calculated. In the average, the cells contain 1.95·108 monomers corresponding to 1.78·10?8 mg tubulin. A tentative estimation of the concentration of tubulin inside a melanophore yields values of 6.1 mg/ml for the whole cell and 16.5 mg/ml for the cytoplasm alone (excluding membrane-bound organelles). Based on this estimation, a comparison, with microtubule assembly in vitro is made.  相似文献   

6.
Contacts between small unmyelinated nerve fibres and dermal melanophores of the angelfish, Pterophyllum scalare, exhibit several features characteristic of synapses, including small synaptic vesicles and dense core vesicles, a narrow synaptic cleft, electron-dense material at the postsynaptic membrane (cell membrane of the melanophore) and, occasionally, presynaptic densities. An analysis of serial thin sections shows that the synapses described here represent varicosities of an otherwise more or less straight nerve fibre. A single axon thereby may form several en passant synapses with a single melanophore. It is suggested that the synaptic contacts described here not only represent sites of transmitter release but also play a role as sites of firm attachment between nerves and melanophores which guarantee a stable arrangement of nerve fibres and melanophores.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

7.
The cortical microtubule array provides spatial information to the cellulose-synthesizing machinery within the plasma membrane of elongating cells. Until now data indicated that information is transferred from organized cortical microtubules to the cellulose-synthesizing complex, which results in the deposition of ordered cellulosic walls. How cortical microtubules become aligned is unclear. The literature indicates that biophysical forces, transmitted by the organized cellulose component of the cell wall, provide a spatial cue to orient cortical microtubules. This hypothesis was tested on tobacco (Nicotiana tabacum L.) protoplasts and suspension-cultured cells treated with the cellulose synthesis inhibitor isoxaben. Isoxaben (0.25–2.5 μm) inhibited the synthesis of cellulose microfibrils (detected by staining with 1 μg mL−1 fluorescent dye and polarized birefringence), the cells failed to elongate, and the cortical microtubules failed to become organized. The affects of isoxaben were reversible, and after its removal microtubules reorganized and cells elongated. Isoxaben did not depolymerize microtubules in vivo or inhibit the polymerization of tubulin in vitro. These data are consistent with the hypothesis that cellulose microfibrils, and hence cell elongation, are involved in providing spatial cues for cortical microtubule organization. These results compel us to extend the microtubule/microfibril paradigm to include the bidirectional flow of information.  相似文献   

8.
It is generally assumed that microtubules in tissue culture cells extend from the centrosome to cell periphery, and the length of individual microtubules averages several dozens of microns. However, direct electron-microscopic measurements have cast some doubt on this assumption. In this study, the average length of microtubules in cultured Vero cells was estimated using a combined approach. The length of free cytoplasmic and centrosomal microtubules was determined by means of electron microscopy in serial sections; concurrently, the length of free microtubules in the lamella was measured in preparations stained with tubulin antibodies (an indirect immunofluorescent method), by tracing saltatory particle movements along the microtubules in living cells. According to the data of immunofluorescent microscopy, microtubule length in the lamella averaged 4.57 +/- 3.69 microns. However, since two or more microtubules can overlap, their length may be slightly overestimated by this method. On the other hand, saltatory movements are easy to monitor and measure fairly accurately, but their range may be shorter than the actual microtubule length because of a limited processiveness of motors (kinesin and dynein). On average, the trajectories of saltatory movements in living cells were 3.85 +/- 0.72 microns long. At the electron-microscopic level, microtubule length was analyzed using pseudo-three-dimensional reconstructions of the microtubule systems around the centrosome and in the lamella. The length of free microtubules in the lamella reached 18 microns, averaging 3.33 +/- 2.43 microns; the average length of centrosomal microtubules was 1.49 +/- 0.82 microns. Good correspondence between the data on microtubule length and arrangement obtained by different methods allows the conclusion that most of free microtubules in Vero cells actually have a length of 2-5 microns; i.e., they are much shorter than the cell radius (about 25 microns). Microtubules extending from the centrosome are shorter still and do not reach the cell periphery. Thus, most microtubules in the lamella of Vero cells are free and their ordered arrangement is not associated with their attachment to the centrosome.  相似文献   

9.
Anti-tubulin antibodies and confocal immunofluorescence microscopy were used to examine the organization and regulation of cytoplasmic and cortical microtubules during the first cell cycle of fertilized Xenopus eggs. Appearance of microtubules in the egg cortex temporally coincided with the outgrowth of the sperm aster. Microtubules of the sperm aster first reached the animal cortex at 0.25, (times normalized to first cleavage), forming a radially organized array of cortical microtubules. A disordered network of microtubules was apparent in the vegetal cortex as early as 0.35. Cortical microtubule networks of both animal and vegetal hemispheres were reorganized at times corresponding to the cortical rotation responsible for specification of the dorsal-ventral (D-V) axis. Optical sections suggest that the cortical microtubules are continuous with the microtubules of the sperm aster in fertilized eggs, or an extensive activation aster in activated eggs. Neither assembly and organization, nor disassembly of the cortical microtubules coincided with MPF activation during mitosis. However, cycloheximide or 6-dimethylaminopurine, which arrest fertilized eggs at interphase, blocked cortical microtubule disassembly. Injection of p13, a protein that specifically inhibits MPF activation, delayed or inhibited cortical microtubule breakdown. In contrast, eggs injected with cyc delta 90, a truncated cyclin that arrest eggs in M-phase, showed normal microtubule disassembly. Finally, injection of partially purified MPF into cycloheximide-arrested eggs induced cortical microtubule breakdown. These results suggest that, despite a lack of temporal coincidence, breakdown of the cortical microtubules is dependent on the activation of MPF.  相似文献   

10.
Microtubules control cell architecture by serving as a scaffold for intracellular transport, signaling, and organelle positioning. Microtubules are intrinsically polarized, and their orientation, density, and post-translational modifications both respond and contribute to cell polarity. Animal cells that can rapidly reorient their polarity axis, such as fibroblasts, immune cells, and cancer cells, contain radially organized microtubule arrays anchored at the centrosome and the Golgi apparatus, whereas stably polarized cells often acquire non-centrosomal microtubule networks attached to the cell cortex, nucleus, or other structures. Microtubule density, longevity, and post-translational modifications strongly depend on the dynamics of their plus ends. Factors controlling microtubule plus-end dynamics are often part of cortical assemblies that integrate cytoskeletal organization, cell adhesion, and secretion and are subject to microtubule-dependent feedback regulation. Finally, microtubules can mechanically contribute to cell asymmetry by promoting cell elongation, a property that might be important for cells with dense microtubule arrays growing in soft environments.  相似文献   

11.
The correct spatial organization of microtubules is of crucial importance for determining the internal architecture of eukaryotic cells. Microtubules are arranged in space by a multitude of biochemical activities and by spatial constraints imposed by the cell boundary. The principles underlying the establishment of distinct intracellular architectures are only poorly understood. Here, we studied the effect of spatial confinement on the self-organization of purified motors and microtubules that are encapsulated in lipid-monolayered droplets in oil, varying in diameter from 5–100 μm, which covers the size range of typical cell bodies. We found that droplet size alone had a major organizing influence. The presence of a microtubule-crosslinking motor protein decreased the number of accessible types of microtubule organizations. Depending on the degree of spatial confinement, the presence of the motor caused either the formation of a cortical array of bent microtubule bundles or the generation of single microtubule asters in the droplets. These are two of the most prominent forms of microtubule arrangements in plant and metazoan cells. Our results provide insights into the combined organizing influence of spatial constraints and cross-linking motor activities determining distinct microtubule architectures in a minimal biomimetic system. In the future, this simple lipid-monolayered droplet system characterized here can be expanded readily to include further biochemical activities or used as the starting point for the investigation of motor-mediated microtubule organization inside liposomes surrounded by a deformable lipid bilayer.  相似文献   

12.
The marine dinoflagellate Oxyrrhis marina has three major microtubular systems: the flagellar apparatus made of one transverse and one longitudinal flagella and their appendages, cortical microtubules, and intranuclear microtubules. We investigated the dynamic changes of these microtubular systems during cell division by transmission and scanning electron microscopy, and confocal fluorescent laser microscopy. During prophase, basal bodies, both flagella and their appendages were duplicated. In the round nucleus situated in the cell centre, intranuclear microtubules appeared radiating toward the centre of the nucleus from densities located in some nuclear pores. During metaphase, both daughter flagellar apparatus separated and moved apart along the main cell axis. Microtubules of ventral cortex were also duplicated and moved with the flagellar apparatus. The nucleus flattened in the longitudinal direction and became discoid-shaped close to the equatorial plane. Many bundles of microtubules ran parallel to the short axis of the nucleus (cell long axis), between which chromosomes were arranged in the same direction. During ana-telophase, the nucleus elongated along the longitudinal axis and took a dumbbell shape. At this stage a contractile ring containing actin was clearly observed in the equatorial cortex. The cortical microtubule network seemed to be cut into two halves at the position of the actin bundle. Shortly after, the nucleus divided into two nuclei, then the cell body was constricted at its equator and divided into one anterior and one posterior halves which were soon rebuilt to produce two cells with two full sets of cortical microtubules. From our observations, several mechanisms for the duplication of the microtubule networks during mitosis in O. marina are discussed.  相似文献   

13.
We have studied the relationship between pH banding and the organization of cortical microtubules in the alga Chara corallina Klein ex Willd. Microtubules were visualized by immunofluorescence and also by imunogold-silver enhancement to allow immediate comparison of microtubule arrangement with visible structural cell features. In cells that are nearing growth completion, microtubule number and alignment change between acidic and alkaline bands over a distance of a few micrometres. Thus, it appears that the still unknown mechanisms for microtubule organization respond to the localized differences in membrane properties. Band formation was not prevented when microtubules were depolymerized with the herbicide oryzalin, demonstrating that microtubules are not necessary for pH bands to develop in these cells.Abbreviations DMSO dimethylsulfoxide - MT microtubule We thank Frank Gubler for helpful advice on immunogold-silver enhancement procedures, Brian Gunning for tuition in confocal microscopy, Ann Cork for assistance with photography and Dean Price for helpful discussions. G.O.W. gratefully acknowledges the receipt of a National Research Fellowship and a Queen Elizabeth II Fellowship from the Australian Research Council.  相似文献   

14.
Microfibrillar structure, cortical microtubule orientation andthe effect of amiprophos-methyl (APM) on the arrangement ofthe most recently deposited cellulose microfibrils were investigatedin the marine filamentous green alga, Chamaedoris orientalis.The thallus cells of Chamaedoris showed typical tip growth.The orientation of microfibrils in the thick cell wall showedorderly change in longitudinal, transverse and oblique directionsin a polar dependent manner. Microtubules run parallel to thelongitudinally arranged microfibrils in the innermost layerof the wall but they are never parallel to either transverseor obliquely arranged microfibrils. The ordered change in microfibrilorientation is altered by the disruption of the microtubuleswith APM. The walls, deposited in the absence of the microtubules,showed typical helicoidal pattern. However, the original crossedpolylamellate pattern was restored by the removal of APM. Thissuggests that cortical microtubules in this alga do not controlthe direction of microfibril orientation but control the orderedchange of microfibril orientation. Amiprophos-methyl, Chamaedoris orientalis, coenocytic green alga, cortical microtubule, microfibrillar structure, tip growth  相似文献   

15.
Cytokinesis is powered by the contraction of actomyosin filaments within the newly assembled contractile ring. Microtubules are a spindle component that is essential for the induction of cytokinesis. This induction could use central spindle and/or astral microtubules to stimulate cortical contraction around the spindle equator (equatorial stimulation). Alternatively, or in addition, induction could rely on astral microtubules to relax the polar cortex (polar relaxation). To investigate the relationship between microtubules, cortical stiffness, and contractile ring assembly, we used different configurations of microtubules to manipulate the distribution of actin in living silkworm spermatocytes. Mechanically repositioned, noninterdigitating microtubules can induce redistribution of actin at any region of the cortex by locally excluding cortical actin filaments. This cortical flow of actin promotes regional relaxation while increasing tension elsewhere (normally at the equatorial cortex). In contrast, repositioned interdigitating microtubule bundles use a novel mechanism to induce local stimulation of contractility anywhere within the cortex; at the antiparallel plus ends of central spindle microtubules, actin aggregates are rapidly assembled de novo and transported laterally to the equatorial cortex. Relaxation depends on microtubule dynamics but not on RhoA activity, whereas stimulation depends on RhoA activity but is largely independent of microtubule dynamics. We conclude that polar relaxation and equatorial stimulation mechanisms redundantly supply actin for contractile ring assembly, thus increasing the fidelity of cleavage.  相似文献   

16.
Responses of cortical microtubules in spinach (Spinacia oleracea L. cv Bloomsdale) mesophyll cells to freezing, thawing, supercooling, and dehydration were assessed. Microtubules were visualized using a modified procedure for indirect immunofluorescence microscopy. Leaf sections of nonacclimated and cold-acclimated spinach were slowly frozen to various temperatures, fixed while frozen, and microtubules immunolabelled. Both nonacclimated and cold-acclimated cells exhibited nearly complete microtubule depolymerization after ice formation. After 1 hour thawing at 23°C, microtubules in both nonacclimated and cold-acclimated cells repolymerized. With time, however, microtubules in nonacclimated cells again depolymerized. Since microtubules in cells of leaf tissue frozen slowly are subjected to dehydration as well as subzero temperatures, these stresses were applied separately and their effects on microtubules noted. Supercooling induced microtubule depolymerization in both nonacclimated and cold-acclimated cells, but to a smaller extent than did freezing. Exposing leaf sections to solutions of sorbitol (a cell wall-penetrating osmoticum) or polyethylene glycol 10,000 (a nonpenetrating osmoticum) at room temperature caused microtubule depolymerization. The effects of low temperature and dehydration are roughly additive in producing the observed microtubule responses during freezing. Only small differences in microtubule stability were resolved between nonacclimated and cold-acclimated cells.  相似文献   

17.
Li J  Wang X  Qin T  Zhang Y  Liu X  Sun J  Zhou Y  Zhu L  Zhang Z  Yuan M  Mao T 《The Plant cell》2011,23(12):4411-4427
The regulation of hypocotyl elongation is important for plant growth. Microtubules play a crucial role during hypocotyl cell elongation. However, the molecular mechanism underlying this process is not well understood. In this study, we describe a novel Arabidopsis thaliana microtubule-destabilizing protein 25 (MDP25) as a negative regulator of hypocotyl cell elongation. We found that MDP25 directly bound to and destabilized microtubules to enhance microtubule depolymerization in vitro. The seedlings of mdp25 mutant Arabidopsis lines had longer etiolated hypocotyls. In addition, MDP25 overexpression resulted in significant overall shortening of hypocotyl cells, which exhibited destabilized cortical microtubules and abnormal cortical microtubule orientation, suggesting that MDP25 plays a crucial role in the negative regulation of hypocotyl cell elongation. Although MDP25 localized to the plasma membrane under normal conditions, increased calcium levels in cells caused MDP25 to partially dissociate from the plasma membrane and move into the cytosol. Cellular MDP25 bound to and destabilized cortical microtubules, resulting in their reorientation, and subsequently inhibited hypocotyl cell elongation. Our results suggest that MDP25 exerts its function on cortical microtubules by responding to cytoplasmic calcium levels to mediate hypocotyl cell elongation.  相似文献   

18.
J Marc  CL Granger  J Brincat  DD Fisher  Th Kao  AG McCubbin    RJ Cyr 《The Plant cell》1998,10(11):1927-1940
Microtubules influence morphogenesis by forming distinct geometrical arrays in the cell cortex, which in turn affect the deposition of cellulose microfibrils. Although many chemical and physical factors affect microtubule orientation, it is unclear how cortical microtubules in elongating cells maintain their ordered transverse arrays and how they reorganize into new geometries. To visualize these reorientations in living cells, we constructed a microtubule reporter gene by fusing the microtubule binding domain of the mammalian microtubule-associated protein 4 (MAP4) gene with the green fluorescent protein (GFP) gene, and transient expression of the recombinant protein in epidermal cells of fava bean was induced. The reporter protein decorates microtubules in vivo and binds to microtubules in vitro. Confocal microscopy and time-course analysis of labeled cortical arrays along the outer epidermal wall revealed the lengthening, shortening, and movement of microtubules; localized microtubule reorientations; and global microtubule reorganizations. The global microtubule orientation in some cells fluctuates about the transverse axis and may be a result of a cyclic self-correcting mechanism to maintain a net transverse orientation during cellular elongation.  相似文献   

19.
Siegrist SE  Doe CQ 《Cell》2005,123(7):1323-1335
Cortical polarity regulates cell division, migration, and differentiation. Microtubules induce cortical polarity in yeast, but few examples are known in metazoans. We show that astral microtubules, kinesin Khc-73, and Discs large (Dlg) induce cortical polarization of Pins/Galphai in Drosophila neuroblasts; this cortical domain is functional for generating spindle asymmetry, daughter-cell-size asymmetry, and distinct sibling fates. Khc-73 localizes to astral microtubule plus ends, and Dlg/Khc-73 and Dlg/Pins coimmunoprecipitate, suggesting that microtubules induce Pins/Galphai cortical polarity through Dlg/Khc-73 interactions. The microtubule/Khc-73/Dlg pathway acts in parallel to the well-characterized Inscuteable/Par pathway, but each provides unique spatial and temporal information: The Inscuteable/Par pathway initiates at prophase to coordinate neuroblast cortical polarity with CNS tissue polarity, whereas the microtubule/Khc-73/Dlg pathway functions at metaphase to coordinate neuroblast cortical polarity with the mitotic spindle axis. These results identify a role for microtubules in polarizing the neuroblast cortex, a fundamental step for generating cell diversity through asymmetric cell division.  相似文献   

20.
Proper orientation of the mitotic spindle is critical for successful cell division in budding yeast. To investigate the mechanism of spindle orientation, we used a green fluorescent protein (GFP)–tubulin fusion protein to observe microtubules in living yeast cells. GFP–tubulin is incorporated into microtubules, allowing visualization of both cytoplasmic and spindle microtubules, and does not interfere with normal microtubule function. Microtubules in yeast cells exhibit dynamic instability, although they grow and shrink more slowly than microtubules in animal cells. The dynamic properties of yeast microtubules are modulated during the cell cycle. The behavior of cytoplasmic microtubules revealed distinct interactions with the cell cortex that result in associated spindle movement and orientation. Dynein-mutant cells had defects in these cortical interactions, resulting in misoriented spindles. In addition, microtubule dynamics were altered in the absence of dynein. These results indicate that microtubules and dynein interact to produce dynamic cortical interactions, and that these interactions result in the force driving spindle orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号