首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prohormone convertases PC1 and PC2 are endoproteases involved in prohormone cleavage at pairs of basic amino acids. There is a report that prohormone convertase exists in the rat anterior pituitary gonadotrophs, where it had previously been considered that proprotein processing does not take place. In addition to luteinizing hormone and follicle-stimulating hormone, rat pituitary gonadotrophs contain chromogranin A (CgA) and secretogranin II (SgII), two members of the family of granin proteins, which have proteolytic sites in their molecules. In the present study we examined whether there is a close correlation between subcellular localization of prohormone convertases and granin proteins. Ultrathin sections of rat anterior pituitary were immunolabeled with anti-PC1 or -PC2 antisera and then stained with immunogold. Immunogold particles for PC1 were exclusively found in large, lucent secretory granules, whereas those for PC2 were seen in both large, lucent and small, dense granules. The double-immunolabeling also demonstrated colocalization of PC2 and SgII in small, dense granules and of PC1, PC2, and CgA in large, lucent granules. These immunocytochemical results suggest that PC2 may be involved in the proteolytic processing of SgII and that both PC1 and PC2 may be necessary to process CgA.  相似文献   

2.
Two major proteoglycans, which appear to be structurally closely related, were isolated from bovine chromaffin granule matrix proteins by ion-exchange chromatography. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis they have apparent average molecular sizes of 35-40 kDa (range of 23-75 kDa) and generate a 14-kDa core glycoprotein after chondroitinase treatment. Previous studies demonstrated that these two major chromaffin granule proteoglycans are very similar in terms of their peptide mapping patterns and carbohydrate composition (having a high proportion of tri- and tetraantennary N-glycosidic oligosaccharides, and O-glycosidic oligosaccharides consisting predominantly of disialyl derivatives of galactosyl(beta 1-3)N-acetylgalactosamine), and that they differed in these respects from the chromogranins. By using antisera to five synthetic peptide fragments of chromogranin A to stain immunoblots of purified chromaffin granule proteoglycans before and after chondroitinase treatment, we have now shown that these major proteoglycans are not immunochemically related to chromogranin A. However, it has recently been reported that some chromogranin A-immunoreactive material disappears after chondroitinase treatment, and our studies demonstrate that approximately 1-2% of the chromogranin A occurs in the form of a 110-kDa proteoglycan, which is converted to a 95-kDa core glycoprotein after chondroitinase treatment. Similar chromogranin A proteoglycans could be detected in rat PC12 pheochromocytoma cells, where they have a molecular size of 115-145 kDa and yield a 105-kDa core protein after chondroitinase treatment. Studies using antibodies to synthetic peptide fragments of chromogranin B (secretogranin I) did not provide any evidence that this related protein occurs in a proteoglycan form.  相似文献   

3.
The chromogranins/secretogranins are a family of neuroendocrine vesicle secretory proteins. Immunohistology and immunoblotting have suggested that a major soluble protein in human chromaffin granules may be chromogranin B (CgB). We purified from pheochromocytoma chromaffin granules an SDS-PAGE 110-120 kDa protein whose N-terminal sequence matched that previously deduced from a human CgB cDNA. An antibody directed against a synthetic human CgB N-terminal region specifically recognized the CgB N-terminus, though not the chromogranin A (CgA) N-terminus or the CgB C-terminus on immunoblots. An antiserum directed against CgB's C-terminus also visualized CgB but not CgA. By immunoblotting, CgB was a quantitatively major protein in human pheochromocytoma chromaffin granules, but a relatively minor in normal bovine adrenal medullary chromaffin granules. In a variety of normal bovine neuroendocrine tissues, the relative abundance of CgB immunoreactivity on immunoblots was: adrenal medulla greater than anterior pituitary greater than pancreas greater than small intestine, hypothalamus. Immunoblotting of neuroendocrine tissues (or their hormone storage vesicle cores) with both anti N-terminal and anti C-terminal CgB antisera suggested bidirectional cleavage or processing of CgB; in the anterior pituitary, a unique 40 kDa C-terminal fragment was observed. Bidirectional CgB cleavage was also suggested on immunoblots of chromaffin tissue from three species (human, bovine, rat). C-terminal processing of CgB was also confirmed by amino acid sequencing of SDS-PAGE-separated, polyvinylidene difluoride membrane-immobilized CgB fragments from pheochromocytoma chromaffin granules. Whether such fragments possess biological activity remains to be investigated.  相似文献   

4.
The noradrenaline transporter (NAT) is present in noradrenergic neurons and a few other specialized cells such as adrenal medullary chromaffin cells and the rat pheochromocytoma (PC12) cell line. We have raised antibodies to a 49-residue segment (NATM2) of the extracellular region (residues 184-232) of bovine NAT. Affinity-purified NATM2 antibodies specifically recognized an 80-kDa band in PC12 cell membranes by western blotting. Bands of a similar size were also detected in membranes from human neuroblastoma (SK-N-SH) cells expressing endogenous NAT and human embryonic kidney (HEK293) cells stably expressing bovine NAT. Immunocytochemistry of rat adrenal tissue showed that NAT staining was colocalized with tyrosine hydroxylase in medullary chromaffin cells. Most NAT immunoreactivity in rat adrenal chromaffin and PC12 cells was present in the cytoplasm and had a punctate appearance. Cell surface biotinylation experiments in PC12 cells confirmed that only a minor fraction of the NAT was present at the cell surface. Subcellular fractionation of PC12 cells showed that relatively little NAT colocalized with plasma membrane, synaptic-like microvesicles, recycling endosomes, or trans-Golgi vesicles. Most of the NAT was associated with [3H]noradrenaline-containing secretory granules. Following nerve growth factor treatment, NAT was localized to the growing tip of neurites. This distribution was similar to the secretory granule marker secretogranin I. We conclude that the majority of NAT is present intracellularly in secretory granules and suggest that NAT may undergo regulated trafficking in PC12 cells.  相似文献   

5.
The localization of tyrosine hydroxylase (TH) immunoreactivity in rat adrenal chromaffin and pheochromocytoma (PC12) cells was investigated by immunoelectron microscopy using monoclonal and polyclonal antisera against TH purified from rat adrenal medulla. Strong TH immunoreactivity was found uniformly in the granules of the adrenaline cells; the immunoreactivity was visible mainly within the periphery, but not in the clear space of the granules of the noradrenaline cells. In the PC12 cells, strong TH immunoreactivity was also observed uniformly in the granules. In addition, TH immunoreactivity was seen in the cytoplasm, the ribosomes attached to the endoplasmic reticulum and the free ribosomes of both the rat adrenal chromaffin and PC12 cells. These results suggest that TH may be localized in the granules, cytoplasm and ribosomes of rat adrenal chromaffin and PC12 cells.  相似文献   

6.
Synaptophysin is a transmembrane glycoprotein of neuroendocrine vesicles. Its content and distribution in subcellular fractions from cultured PC12 cells, rat brain and bovine adrenal medulla were determined by a sensitive dot immunoassay. Synaptophysin-containing fractions appeared as monodispersed populations similar to synaptic vesicles in density and size distribution. Membranes from synaptic vesicles contained approximately 100-times more synaptophysin than chromaffin granules. In conclusion, synaptophysin is located almost exclusively in vesicles of brain and PC12 cells which are distinct from dense core granules.  相似文献   

7.
Abstract: The molecular forms and membrane association of SPC2, SPC3, and furin were investigated in neuroendocrine secretory vesicles from the anterior, intermediate, and neural lobes of bovine pituitary and bovine adrenal medulla. The major immunoreactive form of SPC2 was the full-length enzyme with a molecular mass of 64 kDa. The major immunoreactive form of SPC3 was truncated at the carboxyl terminus and had a molecular mass of 64 kDa. Full-length 86-kDa SPC3 with an intact carboxyl terminus was found only in bovine chromaffin granules. Immunoreactive furin was also detected in secretory vesicles. The molecular masses of 80 and 76 kDa were consistent with carboxyl-terminal truncation of furin to remove the transmembrane domain. All three enzymes were distributed between the soluble and membrane fractions of secretory vesicles although the degree of membrane association was tissue specific and, in the case of SPC3, dependent on the molecular form of the enzyme. Significant amounts of membrane-associated and soluble forms of SPC2, SPC3, and furin were found in pituitary secretory vesicles, whereas the majority of the immunoreactivity in chromaffin granules was membrane associated. More detailed analyses of chromaffin granule membranes revealed that 86-kDa SPC3 was more tightly associated with the membrane fraction than the carboxyl terminus-truncated 64-kDa form.  相似文献   

8.
Proinsulin conversion in the insulin secretory granule is mediated by two sequence-specific endoproteases related to the Kex2 homologues, PC2 and PC3 (Bennett, D. L., Bailyes, E. M., Nielsen, E., Guest, P. C., Rutherford, N. G., Arden, S. D., and Hutton, J. C. (1992) J. Biol. Chem. 267, 15229-15236; Bailyes, E. M., Bennett, D. L., and Hutton, J. C. (1992) Enzyme, in press). Radiolabeling studies using isolated rat islets showed that PC2 was synthesized initially as a 76-kDa glycoprotein which was converted by limited proteolysis to the mature 64-66-kDa form. Conversion was initiated approximately 1 h after synthesis and proceeded via intermediates of 71, 68, and 66 kDa with a t1/2 of 140 min. Release of only the 66- and 64-66-kDa radiolabeled forms of PC2 was induced by glucose and then only at times more than 2 h following synthesis. Proinsulin conversion, by contrast, was more rapid (delay = 30 min, t1/2 = 60 min), and release commenced as soon as 1 h after synthesis with the secreted material being comprised of the precursor, intermediate, and mature forms of insulin. Ultrastructural analysis of islet beta cells showed that PC2 was concentrated in secretory granules. Subcellular fractionation combined with immunoblot analysis showed that insulinoma secretory granules contained only the mature 64-66-kDa form of PC2, whereas fractions enriched in Golgi and endoplasmic reticulum contained a mixture of the 76- and 66-kDa forms of the enzyme. These results indicate that post-translational proteolysis of PC2 is initiated before sorting into the regulated pathway of secretion and that the relative proportions of proinsulin and PC2 packaged into secretory granules will change with physiological conditions.  相似文献   

9.
N-terminal chromogranin A (CGA) contains peptides with vasoinhibitory properties, called vasostatin I (VST) and II [CGA(1–76) and (1–113) in human and bovine; (1–128) in rat]. Three fragments of VST were synthesized and antisera raised: human CGA(68–76) (VST I), rat CGA(121–128) (VST II fragment 2), and bovine/human CGA(83–91) (VST II, fragment 3). Strong immunoreactivity was observed in PC12 cells with antisera to VST II, fragment 3, VST I, and neuron-specific enolase. Little or no immunoreactivity was observed using antisera to synaptophysin, whole molecule CGA, pancreastatin, protein gene product 9.5, somatostatin, pancreatic polypeptide, or with antibodies 875 and 876 to VST II, fragment 2. Most of the VST antisera cross-reacted, with a species of molecular weight, 61 kDa but one, 874, cross-reacted with two species of molecular weights, 7.2 and 12 kDa. Our results show the presence of N-terminally processed CGA in PC12 cells.  相似文献   

10.
Abstract: The possible role of ADP-ribosylation factor (ARF)-activated and constitutive phospholipase D (PLD) activity in regulated exocytosis of preformed secretory granules in adrenal chromaffin and PC12 cells was examined. With use of digitonin-permeabilised cells, the effect of GTP analogues and exogenous ARF1 on PLD activity was determined. No evidence was seen for ARF-stimulated PLD activity in these cell types. Exocytosis from cytosol-depleted permeabilised chromaffin cells was not increased by adding recombinant nonmyristoylated or myristoylated ARF1, and exocytosis from both cell types was resistant to brefeldin A (BFA). Addition of bacterial PLD with demonstrably high activity in permeabilised chromaffin cells did not increase exocytosis in cytosol-depleted chromaffin cells. Diversion of PLD activity from production of phosphatidic acid (PA) due to the presence of 4% ethanol did not inhibit exocytosis triggered by Ca2+ or poorly hydrolysable GTP analogues in permeabilised chromaffin or PC12 cells. These results indicate that exocytosis in these cell types does not appear to require a BFA-sensitive ARF and the triggering of exocytosis does not require PLD activity and formation of PA. These findings rule out a general requirement for PLD activity during regulated exocytosis.  相似文献   

11.
Synaptotagmin I is a 65 kDa type 1 membrane glycoprotein found in secretory organelles that plays a key role in regulated exocytosis. We have characterised two forms (long and short) of synaptotagmin I that are present in the bovine adrenal medulla. The long form is a type I integral membrane protein which has two cytoplasmic C2 domains and corresponds to the previously characterised full-length synaptotagmin I isoform. The short-form synaptotagmin I-DeltaC2B has the same structure in the lumenal and transmembrane sequences, but synaptotagmin I-DeltaC2B is truncated such that it only has a single cytoplasmic C2 domain. Analysis of synaptotagmin I-DeltaC2B expression indicates that synaptotagmin I-DeltaC2B is preferentially expressed in the bovine adrenal medulla. However, it is absent from the dense core chromaffin granules. Furthermore, when expressed in the rat pheochromocytoma cell line PC12 bovine synaptotagmin I-DeltaC2B is largely absent from dense core granules and synaptic-like microvesicles. Instead, indirect immunofluorescence microscopy reveals the intracellular location of synaptotagmin I-DeltaC2B to be the plasma membrane.  相似文献   

12.
Granin-family proteins, including chromogranin A and secretogranin III, are sorted to the secretory granules in neuroendocrine cells. We previously demonstrated that secretogranin III binds chromogranin A and targets it to the secretory granules in pituitary corticotrope-derived AtT-20 cells. However, secretogranin III has not been identified in adrenal chromaffin and PC12 cells, where chromogranin A is correctly sorted to the secretory granules. In this study, low levels of a large and noncleaved secretogranin III have been identified in PC12 cells and rat adrenal glands. Although the secretogranin III expression was limited in PC12 cells, when the FLAG-tagged secretogranin III lacking the secretory granule membrane-binding domain was expressed excessively, hemagglutinin-tagged chromogranin A was unable to target to the secretory granules at the tips and shifted to the constitutive secretory pathway. Secretogranin III was able to bind the aggregated form of chromogranin A, suggesting that a small quantity of secretogranin III is enough to carry a large quantity of chromogranin A. Furthermore, secretogranin III bound adrenomedullin, a major peptide hormone in chromaffin cells. Indeed, small interfering RNA-directed secretogranin III depletion impaired intracellular retention of chromogranin A and adrenomedullin, suggesting that they are constitutively released to the medium. We suggest that the sorting function of secretogranin III for chromogranin A is common in PC12 and chromaffin cells as well as in other endocrine cells, and a small amount of secretogranin III is able to sort chromogranin A aggregates together with adrenomedullin to secretory granules.  相似文献   

13.
The soluble proteins of bovine chromaffin granules can be resolved into about 40 proteins by two-dimensional electrophoresis. Use of several antisera enabled us to characterize most of these proteins with the immune replica technique. An antiserum against dopamine beta-hydroxylase reacted with one protein of Mr 75,000. Met-enkephalin antisera labeled eight proteins of Mr 23,000-14,000. A new method was developed to obtain highly purified chromogranin A for immunization. The antiserum reacted with chromogranin A and several smaller proteins of similar pI. This specific antiserum did not react with a second family of hitherto undescribed proteins, which we propose to call chromogranins B. An antiserum against these proteins was raised. It labeled several proteins ranging in Mr from 100,000 to 24,000 and focusing at pH 5.2. Subcellular fractionation established that chromogranins B are specifically localized in chromaffin granules of several species. They are secreted from the adrenal medulla during cholinergic stimulation. We conclude that apart from dopamine beta-hydroxylase chromaffin granules contain three families of immunologically unrelated proteins.  相似文献   

14.
The biosynthesis of most biologically active peptides involves the action of prohomone convertases, including PC3 (also known as PC1), that catalyze limited proteolysis of precursor proteins. Proteolysis of prohormones occurs mainly in the granules of the regulated secretory pathway. It has been proposed that the targeting of these processing enzymes to secretory granules involves their association with lipid rafts in granule membranes. We now provide evidence for the interaction of the 86 and 64 kDa forms of PC3 with secretory granule membranes. Furthermore, both forms of PC3 were resistant to extraction with TX-100, were floated to low-density fractions in sucrose gradients, and were partially extracted upon cholesterol depletion by methyl-beta-cyclodextrin, indicating that they were associated with lipid rafts in the membranes. Protease protection assays, immunolabeling, and biotinylation of proteins in intact secretory granules identified an approximately 115-residue cytoplasmic tail for 86 kDa PC3. Using two-dimensional gel electrophoresis and a specific antibody, a novel, raft-associated form of 64 kDa PC3 that contains a transmembrane domain consisting of residues 619-638 was identified. This form was designated as 64 kDa PC3-TM, and differs from the 64 kDa mature form of PC3. We present a model of the membrane topology of PC3, where it is anchored to lipid rafts in secretory granule membranes via the transmembrane domain. We demonstrate that the transmembrane domain of PC3 alone was sufficient to target the extracellular domain of the IL2 receptor alpha-subunit (Tac) to secretory granules.  相似文献   

15.
PC12 cells, a cell line derived from a rat pheochromocytoma, have both regulated and constitutive secretory pathways. Regulated secretion occurs via large dense core granules, which are related to chromaffin granules and are abundant in these cells. In addition, PC12 cells also contain small electron-lucent vesicles, whose numbers increase in response to nerve growth factor and which may be related to cholinergic synaptic vesicles. These could characterize a second regulated secretory pathway. We have investigated the trafficking of protein markers for both these organelles. We have purified and characterized the large dense core granules from these cells using sequential velocity and equilibrium gradients. We demonstrate the copurification of the major PC12 soluble regulated secretory protein (secretogranin II) with this organelle. As a marker for the synaptic vesicle-like organelles in this system, we have used the integral membrane glycoprotein p38 or synaptophysin. We show that the p38-enriched fraction of PC12 cells comigrates with rat brain synaptic vesicles on an equilibrium gradient. We also demonstrate that p38 purifies away from the dense core granules; less than 5% of this protein is found in our dense granule fraction. Finally we show that p38 does not pass through the dense granule fraction in pulse-chase experiments. These results rule out the possibility of p38 reaching the small clear vesicles via mature dense granules and imply that these cells may have two independently derived regulated pathways.  相似文献   

16.
In response to an external stimulus, neuronal cells release neurotransmitters from small synaptic vesicles and endocrine cells release secretory proteins from large dense core granules. Despite these differences, endocrine cells express three proteins known to be components of synaptic vesicle membranes. To determine if all three proteins, p38, p65, and SV2, are present in endocrine dense core granule membranes, monoclonal antibodies bound to beads were used to immunoisolate organelles containing the synaptic vesicle antigens. [3H]norepinephrine was used to label both chromaffin granules purified from the bovine adrenal medulla and rat pheochromocytoma (PC12) cells. Up to 80% of the vesicular [3H]norepinephrine was immunoisolated from both labeled purified bovine chromaffin granules and PC12 postnuclear supernatants. In PC12 cells transfected with DNA encoding human growth hormone, the hormone was packaged and released with norepinephrine. 90% of the sedimentable hormone was also immunoisolated by antibodies to all three proteins. Stimulated secretion of PC12 cells via depolarization with 50 mM KCl decreased the amount of [3H]norepinephrine or human growth hormone immunoisolated. Electron microscopy of the immunoisolated fractions revealed large (greater than 100 nm diameter) dense core vesicles adherent to the beads. Thus, large dense core vesicles containing secretory proteins possess all three of the known synaptic vesicle membrane proteins.  相似文献   

17.
We have characterized glycoprotein H (GpH) from bovine adrenal medullary chromaffin granules. Two-dimensional gel electrophoresis was used to purify GpH from an insoluble fraction obtained following extraction of chromaffin granule membranes with lithium diiodosalicylate. The GpH material was recovered from two-dimensional gel spots by concentration and recovery on a one-dimensional gel followed by electro-blotting to a poly(vinylidene difluoride) membrane. This material was subjected to in situ tryptic digestion. The released peptides were purified by microbore high performance liquid chromatography and sequenced. The peptide sequences revealed extensive similarity to the mammalian kex2/subtilisin-related proteases (PC2 and PC3) which have been characterized recently by molecular cloning and sequence analysis (Smeekens, S. P., and Steiner, D. F. (1990) J. Biol. Chem. 265, 2997-3000; Smeekens, S. P., Avruch, A. S., LaMendola, J., Chan, S. J., and Steiner, D. F. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 340-344). The sequence similarity included regions that contain residues equivalent to the aspartic acid and histidine residues which are involved in the active site of the subtilisin family of serine proteases. The sequence data revealed the presence of tryptic peptides derived from both PC2 and PC3. NH2-terminal sequence analysis of GpH gave two sequences which were aligned with residues 110-121 of PC2 and PC3. It is likely that these sequences represent the mature form of PC2 and PC3 in chromaffin granules. These forms would be generated by cleavage at a site which is conserved in mammalian kex2-related enzymes and which would result in the release of approximately 80-residue propeptides. It was concluded that the spot identified as GpH by two-dimensional gel electrophoresis contains the bovine counterparts of both PC2 and PC3. The direct identification of these components in chromaffin granules supports their role in the processing of protein precursors.  相似文献   

18.
Proteinases capable of cleaving proenkephalin into smaller peptides have been identified in bovine adrenal chromaffin granules using [35S]methionine-labeled recombinant rat proenkephalin as a selective substrate in sodium dodecyl sulfate-polyacrylamide gel electrophoresis proteinase radiozymography. This technique was used for the screening of subcellular fractions, general characterization of pH optima, and the mechanistic characterization of proteinases with both reversible and irreversible inhibitors. Two enzymes with approximate molecular masses of 76 and 30 kDa were shown to be localized to the highest-density fractions of chromaffin granules by sucrose density gradient fractionation. Both were enriched in a 1 M NaCl wash of purified chromaffin granule membranes, were active at high pH, and were characterized as serine proteinases based on inhibition by soybean trypsin inhibitor. The 30-kDa enzyme was also inhibited by diisopropyl fluorophosphate, D-Phe-Pro-Arg-CH2Cl, and D-Val-Phe-Lys-CH2Cl and appeared to be the previously described adrenal trypsin-like enzyme. A third enzyme, of 66 kDa, was also associated with the 1 M NaCl wash of purified chromaffin granule membranes but was not localized exclusively to chromaffin granules in sucrose gradients. This proteinase was found to be Ca2+ activated and inhibited by EDTA but not diisopropyl fluorophosphate, soybean trypsin inhibitor, p-chloromercuriphenylsulfonic acid, 1,10-phenanthroline, or pepstatin.  相似文献   

19.
Synaptotagmin I is a 65 kDa type 1 membrane glycoprotein found in secretory organelles that plays a key role in regulated exocytosis. We have characterised two forms (long and short) of synaptotagmin I that are present in the bovine adrenal medulla. The long form is a type I integral membrane protein which has two cytoplasmic C2 domains and corresponds to the previously characterised full-length synaptotagmin I isoform. The short-form synaptotagmin I-ΔC2B has the same structure in the lumenal and transmembrane sequences, but synaptotagmin I-ΔC2B is truncated such that it only has a single cytoplasmic C2 domain. Analysis of synaptotagmin I-ΔC2B expression indicates that synaptotagmin I-ΔC2B is preferentially expressed in the bovine adrenal medulla. However, it is absent from the dense core chromaffin granules. Furthermore, when expressed in the rat pheochromocytoma cell line PC12 bovine synaptotagmin I-ΔC2B is largely absent from dense core granules and synaptic-like microvesicles. Instead, indirect immunofluorescence microscopy reveals the intracellular location of synaptotagmin I-ΔC2B to be the plasma membrane.  相似文献   

20.
Summary The co-localization of various antigens in rat chromaffin granules was investigated by the immunogold staining procedure. In ultrathin serial sections staining of chromaffin granules was obtained with antisera against chromogranin A, chromogranin B, secretogranin II and neuropeptide Y. These results indicated that these antigens are costored within chromaffin granules. To further corroborate this point a double immunogold staining procedure was used. This method unequivocally established that chromogranin A, chromogranin B, secretogranin II and neuropeptide Y are co-localized in the same chromaffin granules. These results are relevant for studies demonstrating changes in the level of these peptides in adrenal medulla. The co-localization makes it likely that such changes lead to a different relative composition of the secretory quanta of chromaffin granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号