首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
《The Journal of cell biology》1996,134(5):1209-1218
We have investigated the relationship between lamellipodium protrusion and forward translocation of the cell body in the rapidly moving keratocyte. It is first shown that the trailing, ellipsoidal cell body rotates during translocation. This was indicated by the rotation of the nucleus and the movement of cytoplasmic organelles, as well as of exogenously added beads used as markers. Activated or Con A-coated fluorescent beads that were overrun by cells were commonly endocytosed and rotated with the internal organelles. Alternatively, beads applied to the rear of the cell body via a micropipette adhered to the dorsal cell surface and also moved forward, indicating that both exterior and underlying cortical elements participated in rotation. Manipulation of keratocytes with microneedles demonstrated that pushing or restraining the cell body in the direction of locomotion, and squeezing it against the substrate, which temporarily increased the intracellular pressure, did not effect the rate of lamellipodium protrusion. Rotation and translocation of the cell body continued momentarily after arrest of lamellipodium protrusion by cytochalasin B, indicating that these processes were not directly dependent on actin polymerization. The cell body was commonly flanked by phase-dense "axles," extending from the cell body into the lamellipodium. Phalloidin staining showed these to be comprised of actin bundles that splayed forward into the flanks of the lamellipodium. Disruption of the bundles on one side of the nucleus by traumatic microinjection resulted in rapid retraction of the cell body in the opposite direction, indicating that the cell body was under lateral contractile stress. Myosin II, which colocalizes with the actin bundles, presumably provides the basis of tension generation across and traction of the cell body. We propose that the basis of coupling between lamellipodium protrusion and translocation of the cell body is a flow of actin filaments from the front, where they are nucleated and engage in protrusion, to the rear, where they collaborate with myosin in contraction. Myosin-dependent force is presumably transmitted from the ends of the cell body into the flanks of the lamellipodium via the actin bundles. This force induces the spindle-shaped cell body to roll between the axles that are created continuously from filaments supplied by the advancing lamellipodium.  相似文献   

2.
Retraction is a major rate-limiting step in cell motility, particularly in slow moving cell types that form large stable adhesions. Myosin II dependent contractile forces are thought to facilitate detachment by physically pulling up the rear edge. However, retraction can occur in the absence of myosin II activity in cell types that form small labile adhesions. To investigate the role of contractile force generation in retraction, we performed traction force microscopy during the movement of fish epithelial keratocytes. By correlating changes in local traction stress at the rear with the area retracted, we identified four distinct modes of retraction. “Recoil” retractions are preceded by a rise in local traction stress, while rear edge is temporarily stuck, followed by a sharp drop in traction stress upon detachment. This retraction type was most common in cells generating high average traction stress. In “pull” type retractions local traction stress and area retracted increase concomitantly. This was the predominant type of retraction in keratocytes and was observed mostly in cells generating low average traction stress. “Continuous” type retractions occur without any detectable change in traction stress, and are seen in cells generating low average traction stress. In contrast, to many other cell types, “release” type retractions occur in keratocytes following a decrease in local traction stress. Our identification of distinct modes of retraction suggests that contractile forces may play different roles in detachment that are related to rear adhesion strength. To determine how the regulation of contractility via MLCK or Rho kinase contributes to the mechanics of detachment, inhibitors were used to block or augment these pathways. Modulation of MLCK activity led to the most rapid change in local traction stress suggesting its importance in regulating attachment strength. Surprisingly, Rho kinase was not required for detachment, but was essential for localizing retraction to the rear. We suggest that in keratocytes MLCK and Rho kinase play distinct, complementary roles in the respective temporal and spatial control of rear detachment that is essential for maintaining rapid motility.  相似文献   

3.
Chemoattractant stimulation of polymorphonuclear leucocyte locomotion   总被引:7,自引:0,他引:7  
Chemoattractants stimulate both cell locomotion and the orientation of this locomotion (chemotaxis) in polymorphonuclear leukocytes. Cell locomotion is a complex process which includes the coordinated protrusion of cell processes, formation of attachments to the substrate and contraction of the rear of the cell. To understand how chemoattractants regulate this process, it is helpful to dissect the process into components that can be examined separately. Comparison of these components in cells before and after stimulation with chemoattractant provides information about their regulation. In this review we focus on three components: how chemoattractants induce the development of cell polarity; how chemoattractants modulate cytoskeletal components (especially actin) to cause pseudopod protrusion; and how chemoattractant modulation of cell adhesions might contribute to cell locomotion. Spatial and temporal coordination of these and other components of locomotion result in efficient and directed cell movement. Our treatment of these questions is speculative and not comprehensive. We propose simple hypothetical models which can provide the reader with a conceptual framework that integrates the information available.  相似文献   

4.
Cell motility is regulated by a balance between forward protrusion and tail retraction. These phenomena are controlled by a spatial asymmetry in signals at the front and the back of the cell. We show here that the protein-tyrosine phosphatase, PTP-PEST, is required for the coupling of protrusion and retraction during cell migration. PTP-PEST null fibroblasts, which are blocked in migration, exhibit exaggerated protrusions at the leading edge and long, unretracted tails in the rear. This altered morphology is accompanied by changes in the activity of Rho GTPases, Rac1 and RhoA, which mediate protrusion and retraction, respectively. PTP-PEST null cells exhibit enhanced Rac1 activity and decreased RhoA activity. We further show that PTP-PEST directly targets the upstream regulators of Rac1 and RhoA, VAV2 and p190RhoGAP. Moreover, we demonstrate that the activities of VAV2 and p190RhoGAP are regulated by PTP-PEST. Finally, we present evidence indicating the VAV2 can be regulated by integrin-mediated adhesion. These data suggest that PTP-PEST couples protrusion and retraction by acting on VAV2 and p190RhoGAP to reciprocally modulate the activity of Rac1 and RhoA.  相似文献   

5.
Tan I  Lai J  Yong J  Li SF  Leung T 《FEBS letters》2011,585(9):1260-1268
Cell movement requires forces generated by non-muscle myosin II (NM II) for coordinated protrusion and retraction. The Cdc42/Rac effector MRCK regulates a specific actomyosin network in the lamella essential for cell protrusion and migration. Together with the Rho effector ROK required for cell rear retraction, they cooperatively regulate cell motility and tumour cell invasion. Despite the increasing importance of ROK inhibitors for both experimental and clinical purposes, there is a lack of specific inhibitors for other related kinases such as MRCK. Here, we report the identification of chelerythrine chloride as a specific MRCK inhibitor. Its ability to block cellular activity of MRCK resulted in the specific loss of NM II-associated MLC phosphorylation in the lamella, and the consequential suppression of cell migration.  相似文献   

6.
Directed cell migration is mediated by cycles of protrusion, adhesion, traction generation on the extracellular matrix and retraction. However, how the events after protrusion are timed, and what dictates their temporal order is completely unknown. We used acute epidermal growth factor (EGF) stimulation of epidermal keratinocytes to initiate the cell migration cycle to study the mechanism of the timing of adhesion, traction generation, and de-adhesion. Using microscopic and biochemical assays, we surprisingly found that at ∼2 min after EGF stimulation protrusion, activation of myosin-II, traction generation, adhesion assembly, and paxillin phosphorylation occurred nearly simultaneously, followed by a 10-min delay during which paxillin became dephosphorylated before cell retraction. Inhibition of myosin-II blocked both the EGF-stimulated paxillin phosphorylation and cell retraction, and a paxillin phosphomimic blocked retraction. These results suggest that EGF-mediated activation of myosin-II acts as a mechanical signal to promote a cycle of paxillin phosphorylation/dephosphorylation that mediates a cycle of adhesion strengthening and weakening that delays cell retraction. Thus, we reveal for the first time a mechanism by which cells may temporally segregate protrusion, adhesion, and traction generation from retraction during EGF-stimulated cell migration.  相似文献   

7.
Cytoskeleton cross-talk during cell motility.   总被引:7,自引:0,他引:7  
Cell crawling entails the co-ordinated creation and turnover of substrate contact sites that interface with the actin cytoskeleton. The initiation and maturation of contact sites involves signalling via the Rho family of small G proteins, whereas their turnover is under the additional influence of the microtubule cytoskeleton. By exerting relaxing effects on substrate contact assemblies in a site- and dose-specific manner, microtubules can promote both protrusion at the front and retraction at the rear, and thereby control cell polarity.  相似文献   

8.
Cell movement is a complex phenomenon primarily driven by the actin network beneath the cell membrane, and can be divided into three general components: protrusion of the leading edge of the cell, adhesion of the leading edge and deadhesion at the cell body and rear, and cytoskeletal contraction to pull the cell forward. Each of these steps is driven by physical forces generated by unique segments of the cytoskeleton. This review examines the specific physics underlying these phases of cell movement and the origins of the forces that drive locomotion.  相似文献   

9.
Cell locomotion is a result of a series of synchronized chemo-mechanical processes. Previous extensive experimental studies have revealed many chemo-mechanical processes that may contribute to cell locomotion. In parallel, theoretical works have been developed to provide deeper insight. To date, however, direct simulations of cell locomotion on a substrate have not been seen. In this paper, a finite element–based computational model is developed to study amoeboid type of cell crawling phenomenon. Here, a cell is modeled as a 2D fluid-filled elastic vesicle, which establishes its interaction with a rigid substrate through a kinetics-based cellular adhesion model. The cell derives its motion through a differential bond breaking at the trailing edge and bond formation at the leading edge. This mechanism of crawling authenticates the hypothesis that cell locomotion can be facilitated by breaking the adhesive bonds at the rear edge, which was initially proposed by Chen (J Cell Biol 90: 187–200, 1981).  相似文献   

10.
Directed cell migration requires continuous cycles of protrusion of the leading edge and contraction to pull up the cell rear. How these spatially distributed processes are coordinated to maintain a state of persistent protrusion remains unknown. During wound healing responses of epithelial sheets, cells along the wound edge display two distinct morphologies: ‘leader cells’ exhibit persistent edge protrusions, while the greater majority of ‘follower cells’ randomly cycle between protrusion and retraction. Here, we exploit the heterogeneity in cell morphodynamic behaviors to deduce the requirements in terms of cytoskeleton dynamics for persistent and sporadic protrusion events. We used quantitative Fluorescent Speckle Microscopy (qFSM) to compare rates of F-actin assembly and flow relative to the local protrusion and retraction dynamics of the leading edge. Persistently protruding cells are characterized by contractile actomyosin structures that align with the direction of migration, with converging F-actin flows interpenetrating over a wide band in the lamella. Conversely, non-persistent protruders have their actomyosin structures aligned perpendicular to the axis of migration, and are characterized by prominent F-actin retrograde flows that end into transverse arcs. Analysis of F-actin kinetics in the lamellipodia showed that leader cells have three-fold higher assembly rates when compared to followers. To further investigate a putative relationship between actomyosin contraction and F-actin assembly, myosin II was inhibited by blebbistatin. Treated cells at the wound edge adopted a homogeneously persistent protrusion behavior, with rates matching those of leader cells. Surprisingly, we found that disintegration of actomyosin structures led to a significant decrease in F-actin assembly. Our data suggests that persistent protrusion in these cells is achieved by a reduction in overall F-actin retrograde flow, with lower assembly rates now sufficient to propel forward the leading edge. Based on our data we propose that differences in the protrusion persistence of leaders and followers originate in the distinct actomyosin contraction modules that differentially regulate leading edge protrusion-promoting F-actin assembly, and retraction-promoting retrograde flow.  相似文献   

11.
Previous studies have demonstrated a role for calpains in cell migration through their capacity to regulate focal adhesion dynamics and rear retraction. In this study, we provide evidence that calpains also modulate membrane protrusion activity in fibroblasts. We find that an immortalized Capn4(-/-) fibroblast line displays an altered morphology, characterized by numerous thin membrane projections and increased transient membrane activity. Furthermore, we show that protrusion kinetics of lamellipodia at the leading edge are improperly regulated in Capn4(-/-) cells, leading to impaired net forward lamellipodial extension. To address the isoform specific functions of calpain 1 and calpain 2 during cell protrusion, we stably introduced small interfering RNAs (siRNAs) targeting each isoform into a fibroblast cell line. Despite a loss in calpain 1 activity, calpain 1 knockdown cells show normal morphology and membrane protrusion dynamics. However, cells in which calpain 2 is knocked down are characterized by a protrusive morphology, increased transient membrane activity and altered protrusion kinetics, similar to the Capn4(-/-) fibroblasts. Additionally, we find that calpain 2, but not calpain 1, is required for proteolysis of the cytoskeletal and focal adhesion proteins FAK, paxillin, spectrin, and talin. Together, our findings support a novel role for calpain 2 in limiting membrane protrusions and in regulating lamellipodial dynamics at the leading edge of migrating cells.  相似文献   

12.
Crawling movement in eukaryotic cells requires coordination of leading-edge protrusion with cell body retraction [1-3]. Protrusion is driven by actin polymerization along the leading edge [4]. The mechanism of retraction is less clear; myosin contractility may be involved in some cells [5] but is not essential in others [6-9]. In Ascaris sperm, protrusion and retraction are powered by the major sperm protein (MSP) motility system instead of the conventional actin apparatus [10, 11]. These cells lack motor proteins [12] and so are well suited to explore motor-independent mechanisms of retraction. We reconstituted protrusion and retraction simultaneously in MSP filament meshworks, called fibers, that assemble behind plasma membrane-derived vesicles. Retraction is triggered by depolymerization of complete filaments in the rear of the fiber [13]. The surviving filaments reorganize to maintain their packing density. By packing fewer filaments into a smaller volume, the depolymerizing network shrinks and thereby generates sufficient force to move an attached load. Our work provides direct evidence for motor-independent retraction in the reconstituted MSP motility system of nematode sperm. This mechanism could also apply to actin-based cells and may explain reports of cells that crawl even when their myosin activity is compromised.  相似文献   

13.
The polarisation and locomotion of fibroblasts requires an intact microtubule cytoskeleton [1]. This has been attributed to an influence of microtubule-mediated signals on actin cytoskeleton dynamics, either through the generation of active Rac to promote protrusion of lamellipodia [2], or through the modulation of substrate adhesion via microtubule targeting events [3] [4]. We show here that the polarizing role of microtubules can be mimicked by externally imposing an asymmetric gradient of contractility by local application of the contractility inhibitor ML-7. Apolar fibroblasts lacking microtubules could be induced to polarize and to move by application of ML-7 by micropipette to one side of the cell and then to the trailing vertices that developed. The release and retraction of trailing adhesions could be correlated with a relaxation of traction on the substrate and a differential shortening of stress-fibre bundles, with their distal tips relaxed. Although retraction and protrusion in these conditions resembled control cell locomotion, the normal turnover of adhesion sites that form behind the protruding cell front was blocked. These findings show that microtubules are dispensable for fibroblast protrusion, but are required for the turnover of substrate adhesions that normally occurs during cell locomotion. We conclude that regional contractility is modulated by the interfacing of microtubule-linked events with focal adhesions and that microtubules determine cell polarity via this route.  相似文献   

14.
Mesenchymal cell migration in interstitial tissue is a cyclic process of coordinated leading edge protrusion, adhesive interaction with extracellular matrix (ECM) ligands, cell contraction followed by retraction and movement of the cell rear. During migration through 3D tissue, the force fields generated by moving cells are non-isotropic and polarized between leading and trailing edge, however the integration of protrusion formation, cell–substrate adhesion, traction force generation and cell translocation in time and space remain unclear. Using high-resolution 3D confocal reflectance and fluorescence microscopy in GFP/actin expressing melanoma cells, we here employ time-resolved subcellular coregistration of cell morphology, interaction and alignment of actin-rich protrusions engaged with individual collagen fibrils. Using single fibril displacement as sensitive measure for force generated by the leading edge, we show how a dominant protrusion generates extension–retraction cycles transmitted through multiple actin-rich filopods that move along the scaffold in a hand-over-hand manner. The resulting traction force is oscillatory, occurs in parallel to cell elongation and, with maximum elongation reached, is followed by rear retraction and movement of the cell body. Combined live-cell fluorescence and reflection microscopy of the leading edge thus reveals step-wise caterpillar-like extension–retraction cycles that underlie mesenchymal migration in 3D tissue.  相似文献   

15.
16.
Cell migration is regulated simultaneously by growth factors and extracellular matrix molecules. Although information is continually increasing regarding the relevant signaling pathways, there exists little understanding concerning how these pathways integrate to produce the biophysical processes that govern locomotion. Herein, we report the effects of epidermal growth factor (EGF) and fibronectin (Fn) on multiple facets of fibroblast motility: locomotion speed, membrane extension and retraction activity, and adhesion. A surprising finding is that EGF can either decrease or increase locomotion speed depending on the surface Fn concentration, despite EGF diminishing global cell adhesion at all Fn concentrations. At the same time, the effect of EGF on membrane activity varies from negative to positive to no-effect as Fn concentration and adhesion range from low to high. Taking these effects together, we find that EGF and Fn regulate fibroblast migration speed through integration of the processes of membrane extension, attachment, and detachment, with each of these processes being rate-limiting for locomotion in sequential regimes of increasing adhesivity. Thus, distinct biophysical processes are shown to integrate for overall cell migration responses to growth factor and extracellular matrix stimuli.  相似文献   

17.
Crawling cells have characteristic shapes that are a function of their cell types. How their different shapes are determined is an interesting question. Fish epithelial keratocytes are an ideal material for investigating cell shape determination, because they maintain a nearly constant fan shape during their crawling locomotion. We compared the shape and related molecular mechanisms in keratocytes from different fish species to elucidate the key mechanisms that determine cell shape. Wide keratocytes from cichlids applied large traction forces at the rear due to large focal adhesions, and showed a spatially loose gradient associated with actin retrograde flow rate, whereas round keratocytes from black tetra applied low traction forces at the rear small focal adhesions and showed a spatially steep gradient of actin retrograde flow rate. Laser ablation of stress fibers (contractile fibers connected to rear focal adhesions) in wide keratocytes from cichlids increased the actin retrograde flow rate and led to slowed leading-edge extension near the ablated region. Thus, stress fibers might play an important role in the mechanism of maintaining cell shape by regulating the actin retrograde flow rate.  相似文献   

18.
细胞运动、细胞迁移与细胞骨架研究进展   总被引:1,自引:0,他引:1  
苗龙 《生物物理学报》2007,23(4):281-289
细胞定向运动与细胞骨架的动态循环密切相关。运动细胞在其伪足前沿依靠细胞骨架的不断聚合推动细胞膜的前进,在基部靠近细胞体部位通过细胞骨架的不断解聚收缩拖拉细胞体向前运动,细胞骨架的聚合与解聚通过伪足与支撑表面的吸附与解吸附而偶连。肌动蛋白组成的微丝骨架是大多数运动细胞的主要成分。外界刺激引起微丝细胞骨架动态变化的信号通路已逐步明了。线虫精子细胞的运动行为与阿米巴变形运动相似,但是在线虫精子细胞中没有肌动蛋白,而是以精子主要蛋白为基础形成细胞骨架驱动精子细胞的运动。与肌动蛋白不同,精子主要蛋白没有分子极性、ATP结合位点和马达蛋白。通过比较研究以上两种运动体系将有助于在分子水平上进一步阐明细胞运动的机理。  相似文献   

19.
The processes of protrusion and retraction during cell movement are driven by the turnover and reorganization of the actin cytoskeleton. Within a reaction–diffusion model which combines processes along the cell membrane with processes within the cytoplasm a Turing type instability is used to form the necessary polarity to distinguish between cell front and rear and to initiate the formation of different organizational arrays within the cytoplasm leading to protrusion and retraction. A simplified biochemical network model for the activation of GTPase which accounts for the different dimensionality of the cell membrane and the cytoplasm is used for this purpose and combined with a classical Helfrich type model to account for bending and stiffness effects of the cell membrane. In addition streaming within the cytoplasm and the extracellular matrix is taken into account. Combining these phenomena allows to simulate the dynamics of cells and to reproduce the primary phenomenology of cell motility. The coupled model is formulated within a phase field approach and solved using adaptive finite elements.  相似文献   

20.
Filopodia are rodlike extensions generally attributed with a guidance role in cell migration. We now show in fish fibroblasts that filopodia play a major role in generating contractile bundles in the lamella region behind the migrating front. Filopodia that developed adhesion to the substrate via paxillin containing focal complexes contributed their proximal part to stress fiber assembly, and filopodia that folded laterally contributed to the construction of contractile bundles parallel to the cell edge. Correlated light and electron microscopy of cells labeled for actin and fascin confirmed integration of filopodia bundles into the lamella network. Inhibition of myosin II did not subdue the waving and folding motions of filopodia or their entry into the lamella, but filopodia were not then integrated into contractile arrays. Comparable results were obtained with B16 melanoma cells. These and other findings support the idea that filaments generated in filopodia and lamellipodia for protrusion are recycled for seeding actomyosin arrays for use in retraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号