首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

One of the current shortcomings of radiofrequency (RF) tumor ablation is its limited performance in regions close to large blood vessels, resulting in high recurrence rates at these locations. Computer models have been used to determine tissue temperatures during tumor ablation procedures. To simulate large vessels, either constant wall temperature or constant convective heat transfer coefficient (h) have been assumed at the vessel surface to simulate convection. However, the actual distribution of the temperature on the vessel wall is non-uniform and time-varying, and this feature makes the convective coefficient variable.  相似文献   

2.
The inability of current catheter ablation procedures to accurately monitor lesion formation limits their safety and efficacy. An advanced fully integrated radiofrequency (RF)/optical coherence tomography (OCT) ablation catheter is developed, which enables real-time monitoring during ablation. An OCT fiber array is especially designed, developed and integrated into an off-the-shelf irrigated RF ablation catheter. In-vitro experimental studies performed on poultry and ovine hearts demonstrate the ability of the integrated RF/OCT system to provide information on the quality and orientation of catheter/wall contact. Experimental results show that adipose tissue can be accurately identified from normal myocardial tissue with 94% accuracy and lesion formation is monitored with an overall accuracy of 93%. The ability to predict pop events is also demonstrated, with an accuracy of 86%.  相似文献   

3.
Ablative techniques have been sought in many circumstances as alternatives to surgical resection/incision. Besides being minimally invasive, potential benefits of ablation include greater speed and improved access to target tissue compared with other surgical techniques. There is a wide variety of ablation technologies currently in use for medical treatment. These include but are not limited to tissue heating by radiofrequency (RF) current, microwaves, laser, and high intensity ultrasound. RF is among the most heavily used because of its relatively low complexity and cost. Ablative techniques have proven to be viable alternatives to surgical resection/incision of tissue. Although there are other means of tissue heating besides RF, RF is the most commonly used technique in operating rooms because of the reliability of transmural lesions and the low complexity of the system. Optimal systems account for the heterogeneous nature of tissue and variations in tissue property through the ablation cycle. It is important to monitor and assure adequate energy delivery by selecting the appropriate configuration of devices. Energy delivery varies between the various generators and systems, some more responsive than others with relative to changes in tissue impedance that will affect the end results of the operation.  相似文献   

4.
The main objective of this study is to assess the feasibility and safety of treating hepatocellular carcinoma (HCC) proximal to the gallbladder using laparoscopic radiofrequency ablation (RFA). Surgical ablation of tumor located adjacent to the gallbladder may damage the gallbladder wall, even with a laparoscope and this ablation method is not precise and incomplete and is frequently combined with alcohol injections with need for further RFA treatment. Four patients were included in this study, with typical HCC where the tumor was present on the left, right, or bed side surrounding the gallbladder. The gallbladder was not separated or removed during larascopic inspection. In the RFA treatment procedure, the tumor lesion was pre-heated for 10 min, and heating was continued for 20 min. The integrity of the gallbladder wall was properly maintained. A follow-up to check for possible local recurrence was carried out 1 year after the RFA. The goal of “one-off” tumor complete RFA is to achieve thorough ablation of the tumor in a single treatment and limiting the possibility of recurrence within 6 months. Seven days after RFA, liver functions of all the patients returned to near-preoperative levels. The patients experienced slight pain in the upper right abdomen, which disappeared in 2–3 days. Results of B ultrasound on days 3–5 showed thickening of the periphery of the ablation area, without significant effusion. Enhanced CT on day 3 showed that RFA low-density area completely covered the lesions. No significant abnormality was observed in the gallbladder and its vicinity. One month after the surgery, B ultrasound and CT examination revealed no significant abnormalities. All patients had an intact gallbladder, and no extrahepatic or intrahepatic bile duct dilatation occurred. There was no evidence of damage to the bile duct or the vessels. Follow-up for 18–32 months found that all patients were in good condition. “One-off” complete RFA can be safely implemented to ablate HCC close to the gallbladder with the assistance of a laparoscope while maintaining integrity and continuity of the gallbladder, and without the need for secondary treatments.  相似文献   

5.
目的通过兔VX2模型探讨肿瘤消融治疗后动态变化过程中,磁共振灌注成像动态量化研究的可行性及其价值。方法16只新西兰大白兔分为实验组12只,对照组4只。实验组在兔肝脏种植VX2肿瘤后,观察肿瘤直径超过2.0 cm时行微波消融治疗。对比术后当天7、d、14 d及28 d实验组与对照组磁共振灌注成像量化指标—最大增强斜率(MSI)的动态变化差异,并与病理结果对照分析。结果对照组兔及实验组兔术后当天肝实质灌注MSI差异无显著性;实验组兔术前肿瘤与术后当天残留肿瘤的平均MSI差异无显著性;实验组兔残留肿瘤与良性强化组织的MSI差异有显著性。残留肿瘤的时间-信号强度曲线表现为快速上升型;良性强化组织的时间-信号强度曲线表现为缓慢上升型。结论磁共振灌注成像的动态量化研究是可行的,量化指标MSI与消融治疗后各种组织的病理结果相吻合,可更为准确地量化表达病变组织的病理状态的改变。  相似文献   

6.
Nonthermal irreversible electroporation (NTIRE) is a new minimally invasive technique to treat cancer. It is unique because of its nonthermal mechanism of tumor ablation. Intracranial NTIRE procedures involve placing electrodes into the targeted area of the brain and delivering a series of short but intense electric pulses. The electric pulses induce irreversible structural changes in cell membranes, leading to cell death. We correlated NTIRE lesion volumes in normal brain tissue with electric field distributions from comprehensive numerical models. The electrical conductivity of brain tissue was extrapolated from the measured in vivo data and the numerical models. Using this, we present results on the electric field threshold necessary to induce NTIRE lesions (495–510 V/cm) in canine brain tissue using 90 50-μs pulses at 4 Hz. Furthermore, this preliminary study provides some of the necessary numerical tools for using NTIRE as a brain cancer treatment. We also computed the electrical conductivity of brain tissue from the in vivo data (0.12–0.30 S/m) and provide guidelines for treatment planning and execution. Knowledge of the dynamic electrical conductivity of the tissue and electric field that correlates to lesion volume is crucial to ensure predictable complete NTIRE treatment while minimizing damage to surrounding healthy tissue.  相似文献   

7.

Aims

To determine how the accumulation of drug in mice bearing an extra-hepatic tumor and its therapeutic efficacy are affected by the type of PEGylated liposomal doxorubicin used, treatment modality, and rate of drug release from the liposomes, when combined with radiofrequency (RF) ablation.

Materials and Methods

Two nano-drugs, both long-circulating PEGylated doxorubicin liposomes, were formulated: (1) PEGylated doxorubicin in thermosensitive liposomes (PLDTS), having a burst-type fast drug release above the liposomes’ solid ordered to liquid disordered phase transition (at 42°C), and (2) non-thermosensitive PEGylated doxorubicin liposomes (PLDs), having a slow and continuous drug release. Both were administered intravenously at 8 mg/kg doxorubicin dose to tumor-bearing mice. Animals were divided into 6 groups: no treatment, PLD, RF, RF+PLD, PLDTS, and PLDTS+RF, for intra-tumor doxorubicin deposition at 1, 24, and 72 h post-injection (in total 41, mice), and 31 mice were used for randomized survival studies.

Results

Non-thermosensitive PLD combined with RF had the least tumor growth and the best end-point survival, better than PLDTS+RF (p<0.005) or all individual therapies (p<0.001). Although at 1 h post-treatment the greatest amount of intra-tumoral doxorubicin was seen following PLDTS+RF (p<0.05), by 24 and 72 h the greatest doxorubicin amount was seen for PLD+RF (p<0.05); in this group the tumor also has the longest exposure to doxorubicin.

Conclusion

Optimizing therapeutic efficacy of PLD requires a better understanding of the relationship between the effect of RF on tumor microenvironment and liposome drug release profile. If drug release is too fast, the benefit of changing the microenvironment by RF on tumor drug localization and therapeutic efficacy may be much smaller than for PLDs having slow and temperature-independent drug release. Thus the much longer circulation time of doxorubicin from PLD than from PLDTS may be beneficial in many therapeutic instances, especially in extra-hepatic tumors.  相似文献   

8.
The aim of this study was to investigate the therapeutic efficacy of percutaneous radiofrequency (RF) ablation versus microwave (MW) ablation for hepatocellular carcinoma (HCC) measuring ≤5 cm in greatest diameter. From January 2006 to December 2006, 78 patients had undergone RF ablation whereas 77 had undergone MW ablation. Complete ablation (CA), local tumour progression (LTP) and distant recurrence (DR) were compared. The overall survival curves were calculated with the Kaplan-Meier technique and compared with the log-rank test. The CA rate was 83.4% (78/93) for RF ablation and 86.7%(91/105 for MW ablation. The LTP rate was 11.8% (11/93) for RF ablation and 10.5% (11/105) for MW ablation. DR was found in 51 (65.4%) in the RF ablation and 62 (80.5%) in the MW ablation. There was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.780) and the 1-, 3-, and 5-year disease-free survival rates (P = 0.123) between RF and MW ablation. At subgroup analyses, for patients with tumors ≤3.0 cm, there was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.067) and the corresponding disease-free survival rates(P = 0.849). For patients with tumor diameters of 3.1–5.0 cm, the 1-, 3-, and 5-year overall survival rates were 87.1%, 61.3%, and 40.1% for RF ablation and 85.4%, 36.6%, and 22% for MW ablation, with no significant difference (P = 0.068). The corresponding disease-free survival rates were 74.2%, 54.8%, and 45.2% for the RF ablation group and 53.3%, 26.8%, and 17.1% for the MW ablation group. The disease-free survival curve for the RF ablation group was significantly better than that for the MW ablation group (P = 0.018). RF ablation and MW ablation are both effective methods in treating hepatocellular carcinomas, with no significant differences in CA, LTP, DR, and overall survival.  相似文献   

9.
Research has indicated that atrial fibrillation (AF) ablation failure is related to the presence of atrial fibrosis. However it remains unclear whether this information can be successfully used in predicting the optimal ablation targets for AF termination. We aimed to provide a proof-of-concept that patient-specific virtual electrophysiological study that combines i) atrial structure and fibrosis distribution from clinical MRI and ii) modeling of atrial electrophysiology, could be used to predict: (1) how fibrosis distribution determines the locations from which paced beats degrade into AF; (2) the dynamic behavior of persistent AF rotors; and (3) the optimal ablation targets in each patient. Four MRI-based patient-specific models of fibrotic left atria were generated, ranging in fibrosis amount. Virtual electrophysiological studies were performed in these models, and where AF was inducible, the dynamics of AF were used to determine the ablation locations that render AF non-inducible. In 2 of the 4 models patient-specific models AF was induced; in these models the distance between a given pacing location and the closest fibrotic region determined whether AF was inducible from that particular location, with only the mid-range distances resulting in arrhythmia. Phase singularities of persistent rotors were found to move within restricted regions of tissue, which were independent of the pacing location from which AF was induced. Electrophysiological sensitivity analysis demonstrated that these regions changed little with variations in electrophysiological parameters. Patient-specific distribution of fibrosis was thus found to be a critical component of AF initiation and maintenance. When the restricted regions encompassing the meander of the persistent phase singularities were modeled as ablation lesions, AF could no longer be induced. The study demonstrates that a patient-specific modeling approach to identify non-invasively AF ablation targets prior to the clinical procedure is feasible.  相似文献   

10.
Multiple ablation technologies are used to treat atrial fibrillation during cardiac operations. All such ablation technologies use locally induced temperature extremes (>50°C or <-20°C) to kill tissue and create a lesion pattern in the atria which blocks activation pathways that initiate and sustain atrial fibrillation. The technologies used to heat tissue have included radiofrequency (RF), microwave, high-intensity focused ultrasound, and infrared laser. RF accounts for more than 95% of the heating-based ablation technology used by cardiac surgeons. Energy delivery with RF is easier to control than with some other technologies, the heating produced by the energy source is well understood, and manufacturing costs are not excessive. Whichever heating technology is used, control of energy delivery is required to ensure both safe and effective heating of the targeted tissue. All targeted tissue needs to be heated above 50°C to achieve cell death. However, the targeted tissue should not be heated above 100°C, as this can cause perforation due to a steam pop. In addition, adjacent noncardiac tissues must not be damaged during the ablation procedure. The best method to achieve this control uses direct measurement of tissue temperature, because the tissue temperature defines both the safe and effective limits for the ablative process.  相似文献   

11.
Magnetic Resonance Microscopy (MRM) can provide high microstructural detail in excised human lesions. Previous MRM images on some experimental models and a few human samples suggest the large potential of the technique. The aim of this study was the characterization of specific morphological features of human brain tumor samples by MRM and correlative histopathology. We performed MRM imaging and correlative histopathology in 19 meningioma and 11 glioma human brain tumor samples obtained at surgery. To our knowledge, this is the first MRM direct structural characterization of human brain tumor samples. MRM of brain tumor tissue provided images with 35 to 40 μm spatial resolution. The use of MRM to study human brain tumor samples provides new microstructural information on brain tumors for better classification and characterization. The correlation between MRM and histopathology images allowed the determination of image parameters for critical microstructures of the tumor, like collagen patterns, necrotic foci, calcifications and/or psammoma bodies, vascular distribution and hemorrhage among others. Therefore, MRM may help in interpreting the Clinical Magnetic Resonance images in terms of cell biology processes and tissue patterns. Finally, and most importantly for clinical diagnosis purposes, it provides three-dimensional information in intact samples which may help in selecting a preferential orientation for the histopathology slicing which contains most of the informative elements of the biopsy. Overall, the findings reported here provide a new and unique microstructural view of intact human brain tumor tissue. At this point, our approach and results allow the identification of specific tissue types and pathological features in unprocessed tumor samples.  相似文献   

12.
Since 1987 radiofrequency (RF) catheter ablation has proven to be an effective treatment for many cardiac arrhythmias. However, catheter dislocation during RF delivery may result in an unintentional heating of healthy non-arrhythmogenic tissue. Therefore, a device was developed (15 cm x 9 cm x 3 cm) consisting of a microprocessor, powered by a 9 V battery and to be connected between the indifferent cable of the RF generator and the patient's back electrode that continuously reads the electrode position information using a 3 dimensional electrode visualization system (LocaLisa). A red light indicates a sudden change in electrode position and an electronic switch is activated by the software to interrupt the connection between the indifferent electrode and the RF generator resulting in a high impedance shutdown and termination of RF energy delivery. Four different sensitivity settings (10 is most and 100 is least sensitive) can be selected and were tested in an in vitro tank setup during electrode dragging speeds of 0.5 to 20 cm/sec. For the sensitivity levels 10, 20, 50 and 100, an immediate termination of RF (Atakr II, Medtronic, 25 W) was demonstrated for an electrode dragging speed of greater or equal than 1, 2, 5 and 10 cm/sec, respectively. We conclude that the developed device may improve safety during ablation procedures of cardiac arrhythmias.  相似文献   

13.
Radiofrequency (RF) ablation using high-frequency current has become an important treatment method for patients with non-resectable liver tumors. Tumor recurrence is associated with tissue cooling in the proximity of large blood vessels. This study investigated the influence of blood flow rate on tissue temperature and lesion size during monopolar RF ablation at a distance of 10 mm from single 4- and 6-mm vessels using two different approaches: 1) an ex vivo blood perfusion circuit including an artificial vessel inserted into porcine liver tissue was developed; and 2) a finite element method (FEM) model was created using a novel simplified modeling technique for large blood vessels. Blood temperatures at the inflow/outflow of the vessel and tissue temperatures at 10 and 20 mm from the electrode tip were measured in the ex vivo set-up. Tissue temperature, blood temperature and lesion size were analyzed under physiological, increased and reduced blood-flow conditions. The results show that changes in blood flow rate in large vessels do not significantly affect tissue temperature and lesion size far away from the vessel. Monopolar ablation could not produce lesions surrounding the vessel due to the strong heat-sink effect. Simulated tissue temperatures correlated well with ex vivo measurements, supporting the FEM model.  相似文献   

14.
The physical mechanisms that achieve tissue removal through the delivery of short pulses of high-intensity infrared laser radiation, in a process known as laser ablation, remain obscure. The thermodynamic response of biological tissue to pulsed infrared laser irradiation was investigated by measuring and analyzing the stress transients generated by Q-sw Er:YSGG (lambda = 2.79 microns) and TEA CO2 (lambda = 10.6 microns) laser irradiation of porcine dermis using thin-film piezoelectric transducers. For radiant exposures that do not produce material removal, the stress transients are consistent with thermal expansion of the tissue samples. The temporal structure of the stress transients generated at the threshold radiant exposure for ablation indicates that the onset of material removal is delayed with respect to irradiation. Once material removal is achieved, the magnitude of the peak compressive stress and its variation with radiant exposure are consistent with a model that considers this process as an explosive event occurring after the laser pulse. This mechanism is different from ArF- and KrF-excimer laser ablation where absorption of ultraviolet radiation by the collagenous tissue matrix leads to tissue decomposition during irradiation and results in material removal via rapid surface vaporization. It appears that under the conditions examined in this study, explosive boiling of tissue water is the process that mediates the ablation event. This study provides evidence that the dynamics and mechanism of tissue ablation processes can be altered by targeting tissue water rather than the tissue structural matrix.  相似文献   

15.
Microwave tumor ablation (MTA) offers a new approach for the treatment of hepatic neoplastic disease. Reliable and accurate information regarding the heat distribution inside biological tissue subjected to microwave thermal ablation is important for the efficient design of microwave applicators and for optimizing experiments, which aim to assess the effects of therapeutic treatments. Currently there are a variety of computational methods based on different vascular structures in tissue, which aim to model heat distribution during ablation. This paper presents results obtained from two such computational models for temperature distributions produced by a clinical 2.45 GHz MTA applicator immersed in unperfused ex vivo bovine liver, and compares them with measured results from a corresponding ex vivo experiment. The computational methods used to model the temperature distribution in tissue caused by the insertion of a 5.6 mm diameter "wandlike" microwave applicator are the Green's function method and the finite element method (FEM), both of which provide solutions of the heat diffusion partial differential equation. The results obtained from the coupled field simulations are shown to be in good agreement with a simplified analysis based on the bio-heat equation and with ex vivo measurements of the heat distribution produced by the clinical MTA applicator.  相似文献   

16.
Radiofrequency ablation (RFA) for liver tumors is a minimally invasive procedure that uses electrical energy and heat to destroy cancer cells. One of the critical factors that impedes its successful outcome is the use of inappropriate radiofrequency levels that will not completely destroy the target tumor tissues, resulting in therapy failure. Additionally, the surrounding healthy tissues may suffer from serious damage due to excessive ablation. To address these challenges, this work proposes the employment of injected nanoparticles to thermally promote the ablation efficacy of conventional RFA. A three-dimensional finite difference analysis is employed to simulate the RFA treatment. Based on the data acquired from measured experiments, the simulation results have demonstrated close agreement with experimental data with a maximum discrepancy of within ±8.7%. Several types of nanoparticles were selected to evaluate their influences on liver tissue's thermal and electrical properties. We analysed the effects of nanoparticles on liver RFA via a tumor rending process incorporating several clinically-extracted tumor profiles and vascular systems. Simulations were conducted to explore the temperature difference responses between conventional RFA treatment and one with the inclusion of assisted nanoparticles on several irregularly-shaped tumors. Results have indicated that applying selected nanoparticles with high thermal conductivity and electrical conductivity on the targeted tissue zone promotes heating rate while sustaining a similar ablation zone that experiences lower maximum temperature when compared with the conventional RFA treatment. In sum, incorporating thermally-enhancing nanoparticles promotes heat transfer during the RFA treatment, resulting in improved ablation efficiency.  相似文献   

17.
Radiofrequency (RF) ablation (RFA) is a minimally invasive treatment for colorectal-cancer liver metastases (CLM) in selected nonsurgical patients. Unlike surgical resection, RFA is not followed by routine pathological examination of the target tumor and the surrounding liver tissue. The aim of this study was the evaluation of apoptotic events after RFA. Specifically, we evaluated YO-PRO-1 (YP1), a green fluorescent DNA marker for cells with compromised plasma membrane, as a potential, early marker of cell death. YP1 was applied on liver tissue adherent on the RF electrode used for CLM ablation, as well as on biopsy samples from the center and the margin of the ablation zone as depicted by dynamic CT immediately after RFA. Normal pig and mouse liver tissues were used for comparison. The same samples were also immunostained for fragmented DNA (TUNEL assay) and for active mitochondria (anti-OxPhos antibody). YP1 was also used simultaneously with propidium iodine (PI) to stain mouse liver and samples from ablated CLM. Following RFA of human CLM, more than 90 % of cells were positive for YP1. In nonablated, dissected pig and mouse liver however, we found similar YP1 signals (93.1 % and 65 %, respectively). In samples of intact mouse liver parenchyma, there was a significantly smaller proportion of YP1 positive cells (22.7 %). YP1 and PI staining was similar for ablated CLM. However in dissected normal mouse liver there was initial YP1 positivity and complete absence of the PI signal and only later there was PI signal. Conclusion: This is the first time that YP1 was applied in liver parenchymal tissue (rather than cell culture). The results suggest that YP1 is a very sensitive marker of early cellular events reflecting an early and widespread plasma membrane injury that allows YP1 penetration into the cells.  相似文献   

18.
Radio-frequency (RF) ablation is an accepted treatment for cardiac arrhythmias related to abnormal focal cardiac substrate. The penetration depth of the electrode into the endocardium affects lesion size, a critical determinant of success of RF ablation. We measured the relation between the mechanical compliance and the penetration depth of RF ablation catheter electrode at frequently ablated areas of the endocardium and examined the influence of time after death on mechanical properties of the tissue. We measured force versus time for eight insertion depths of the catheter electrode into full-thickness endocardial samples derived from the mitral valve annulus, the left ventricular free wall and the tricuspid valve annulus. We varied the time after death at 15, 40 min, 3, 8, and 18 h and repeated our measurements. At 15 min after death, the first 0.5 mm penetration depth caused the fastest relaxation at 55 s. Force decay decreased dramatically at 15 min after death as the penetration depth increased from 0.5 to 4 mm. We used the force data sampled at 60 s after insertion to approximate the elasticity. We observed the relations between the force versus the insertion depth. The force increased by a factor of 5 for the mitral valve annulus and 8 for the left free wall from 15 min to 18 h. We derived coefficients of a second-order polynomial equation relating the force data to insertion depth with R2>0.99.  相似文献   

19.
20.
Under magnetic resonance (MR) guidance, high intensity focused ultrasound (HIFU) is capable of precise and accurate delivery of thermal dose to tissues. Given the excellent soft tissue imaging capabilities of MRI, but the lack of data on the correlation of MRI findings to histology following HIFU, we sought to examine tumor response to HIFU ablation to determine whether there was a correlation between histological findings and common MR imaging protocols in the assessment of the extent of thermal damage. Female FVB mice (n = 34), bearing bilateral neu deletion tumors, were unilaterally insonated under MR guidance, with the contralateral tumor as a control. Between one and five spots (focal size 0.5 × 0.5 × 2.5 mm3) were insonated per tumor with each spot receiving approximately 74.2 J of acoustic energy over a period of 7 seconds. Animals were then imaged on a 7T MR scanner with several protocols. T1 weighted images (with and without gadolinium contrast) were collected in addition to a series of T2 weighted and diffusion weighted images (for later reconstruction into T2 and apparent diffusion coefficient maps), immediately following ablation and at 6, 24, and 48 hours post treatment. Animals were sacrificed at each time point and both insonated/treated and contralateral tumors removed and stained for NADH-diaphorase, caspase 3, or with hematoxylin and eosin (H&E). We found the area of non-enhancement on contrast enhanced T1 weighted imaging immediately post ablation correlated with the region of tissue receiving a thermal dose CEM43 ≥ 240 min. Moreover, while both tumor T2 and apparent diffusion coefficient values changed from pre-ablation values, contrast enhanced T1 weighted images appeared to be more senstive to changes in tissue viability following HIFU ablation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号