首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tuberculosis (TB) is one of three major infectious diseases, and the control of TB is becoming more difficult because of the emergence of multidrug-resistant and extensively drug-resistant strains. In this study, we explored the (1)H NMR-based metabolomics of TB using an aerobic TB infection model. Global profiling was applied to characterize the responses of C57Bl/6 mice to an aerobic infection with virulent Mycobacterium tuberculosis (MTB). The metabolic changes in organs (i.e., the lung, the target organ of TB, and the spleen and liver, remote systemic organs) and in serum from control and MTB-infected rats were investigated to clarify the host-pathogen interactions in MTB-infected host systems. Principal components analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots showed distinct separation between control and MTB-infected rats for all tissue and serum samples. Several tissue and serum metabolites were changed in MTB-infected rats, as compared to control rats. The precursors of membrane phospholipids, phosphocholine, and phosphoethanolamine, as well as glycolysis, amino acid metabolism, nucleotide metabolism, and the antioxidative stress response were altered based on the presence of MTB infection. This study suggests that NMR-based global metabolite profiling of organ tissues and serum could provide insight into the metabolic changes in host infected aerobically with virulent Mycobacterium tuberculosis.  相似文献   

2.
Liao P  Wei L  Zhang X  Li X  Wu H  Wu Y  Ni J  Pei F 《Analytical biochemistry》2007,364(2):112-121
Metabolic profiling of serum from gadolinium chloride (GdCl(3), 10 and 50 mg/kg body weight, intraperitoneal [i.p.])-treated rats was investigated by the NMR spectroscopic-based metabonomic strategy. Serum samples were collected at 48, 96, and 168h postdose (p.d.) after exposure to GdCl(3). (1)H NMR spectra of serum were analyzed by pattern recognition using principal components analysis. The studies showed that there was a dose-related biochemical effect of GdCl(3) treatment on the levels of a range of low-molecular weight compounds in serum. The liver damage induced by GdCl(3) was characterized by the elevation of lactate, pyruvate, and creatine as well as the decrease of branched-chain amino acids (valine and isoleucine), alanine, glucose, and trimethylamine-N-oxide concentration in serum samples. The biochemical effects of GdCl(3) in rats could be consulted when evaluating the biochemical profile of gadolinium-containing compounds that are being developed for nuclear magnetic resonance imaging.  相似文献   

3.
Metabolic profiling, metabolomic and metabonomic studies mainly involve the multicomponent analysis of biological fluids, tissue and cell extracts using NMR spectroscopy and/or mass spectrometry (MS). We summarize the main NMR spectroscopic applications in modern metabolic research, and provide detailed protocols for biofluid (urine, serum/plasma) and tissue sample collection and preparation, including the extraction of polar and lipophilic metabolites from tissues. 1H NMR spectroscopic techniques such as standard 1D spectroscopy, relaxation-edited, diffusion-edited and 2D J-resolved pulse sequences are widely used at the analysis stage to monitor different groups of metabolites and are described here. They are often followed by more detailed statistical analysis or additional 2D NMR analysis for biomarker discovery. The standard acquisition time per sample is 4-5 min for a simple 1D spectrum, and both preparation and analysis can be automated to allow application to high-throughput screening for clinical diagnostic and toxicological studies, as well as molecular phenotyping and functional genomics.  相似文献   

4.
【目的】探讨鼠衣原体(Chlamydia muridarum)对小鼠溃疡性结肠炎的作用。【方法】取15只雌性C57BL/6J小鼠随机分为3组,每组5只动物,分别为空白对照组(Control)、肠炎模型组(DSS)、实验组(CM+DSS)。选取CM+DSS组小鼠予以2×105 IFU的鼠衣原体灌胃处理,并在其感染后第29天开始,给予DSS组和CM+DSS组的小鼠2%DSS饮水,持续5d,每天监测小鼠体重和肠炎疾病评分,实验结束后检测小鼠结肠长度和结肠组织炎性改变。【结果】肠炎模型组的小鼠均表现出典型的肠炎症状(包括体重减轻、肠炎疾病评分、结肠长度和组织炎性改变);而经鼠衣原体预处理的小鼠(CM+DSS组)肠炎症状显著减轻,表现在肠炎疾病评分降低,体重和结肠长度有所恢复,肠组织炎性损伤减轻。【结论】鼠衣原体对DSS诱导的小鼠溃疡性结肠炎具有改善作用。  相似文献   

5.
Introduction – Rhodiola rosea is a broadly used medicinal plant with largely unexplored natural variability in secondary metabolite levels. Objective – The aim of this work was to develop a non‐target procedure for 1H NMR spectroscopic fingerprinting of rhizome extracts for pattern recognition analysis and identification of secondary metabolites responsible for differences in sample composition. To achieve this, plants from three different geographic areas (Swiss Alps, Finland, and Altai region in Siberia) were investigated. Results – A sample preparation procedure was developed in order to remove polymeric polyphenols as the 1H NMR analysis of low‐molecular‐weight metabolites was hampered by the presence of tannins. Principal component analysis disclosed tight clustering of samples according to population. PCA models based on the aromatic region of the spectra showed that the first two components reflected changes in the content of salidroside and rosavin, respectively, the rosavin content being negatively correlated to that of rhodiocyanoside A and minor aromatics. Score plots and non‐parametric variance tests demonstrated population‐dependent changes according to harvest time. Data consistency was assessed using score plots and box‐and‐whisker graphs. In addition, a procedure for presenting loadings of PCA models based on bucketed data as high‐resolution plots, which are reminiscent of real 1H NMR spectra and help to identify latent biomarkers, is presented. Conclusion – This study demonstrated the usefulness of the established procedure for multivariate non‐target 1H NMR metabolic profiling of Rhodiola rosea. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
7.
8.
Seed development in Jatropha curcas L. was studied with respect to phenology, oil content, lipid profile and concentration of sterols. Seeds were collected at various stages of development starting from one week after fertilization and in an interval of five days thereafter till maturity. These were classified as stage I to stage VII. Moisture content of the seeds ranged from 8.8 to 90.3%; the lowest in mature seeds in stage VII and highest in stage I. The seed area increased as the seed grew from stage I to stage VI (0.2-10.2mm(2) per seed), however, the seed area shrunk at stage VII. Increase in seed area corresponded to increase in fresh weight of the seeds. (1)H NMR spectroscopy of hexane extracts made at different stages of seed development revealed the presence of free fatty acids (FFA), methyl esters of fatty acids (FAME) and triglycerol esters (TAG), along with small quantity of sterols. The young seeds synthesized predominantly polar lipids. Lipid synthesis was noticed nearly three weeks after fertilization. From the fourth week the seeds actively synthesized TAG. Stage III is a turning point in seed development since at this stage, the concentration of sterols decreased to negligible, there was very little FAME formation, accumulation of TAG increased substantially, and there was a sudden decrease in FFA concentration. The findings can be helpful in understanding the biosynthesis and in efforts to improve biosynthesis of TAG and reduce FFA content in the mature seeds.  相似文献   

9.
Conditions for registration of urinary 1H NMR spectra have been optimized in order to achieve maximal accuracy of quantitative analysis. Urinary samples from patients with acute pancreatitis have been investigated and spectral data of identified urinary metabolites and results of their quantitative determination are given. Employment of 1H NMR spectra is perspective for the development of new laboratory diagnostic methods.  相似文献   

10.
Significant advances in understanding aging have been achieved through studying model organisms with extended healthy lifespans. Employing 1H NMR spectroscopy, we characterized the plasma metabolic phenotype (metabotype) of three long-lived murine models: 30% dietary restricted (DR), insulin receptor substrate 1 null (Irs1-/-), and Ames dwarf (Prop1df/df). A panel of metabolic differences were generated for each model relative to their controls, and subsequently, the three long-lived models were compared to one another. Concentrations of mobile very low density lipoproteins, trimethylamine, and choline were significantly decreased in the plasma of all three models. Metabolites including glucose, choline, glycerophosphocholine, and various lipids were significantly reduced, while acetoacetate, d-3-hydroxybutyrate and trimethylamine-N-oxide levels were increased in DR compared to ad libitum fed controls. Plasma lipids and glycerophosphocholine were also decreased in Irs1-/- mice compared to controls, as were methionine and citrate. In contrast, high density lipoproteins and glycerophosphocholine were increased in Ames dwarf mice, as were methionine and citrate. Pairwise comparisons indicated that differences existed between the metabotypes of the different long-lived mice models. Irs1-/- mice, for example, had elevated glucose, acetate, acetone, and creatine but lower methionine relative to DR mice and Ames dwarfs. Our study identified several potential candidate biomarkers directionally altered across all three models that may be predictive of longevity but also identified differences in the metabolic signatures. This comparative approach suggests that the metabolic networks underlying lifespan extension may not be exactly the same for each model of longevity and is consistent with multifactorial control of the aging process.  相似文献   

11.
Targeted profiling is a library-based method of using mathematically modeled reference spectra for quantification of metabolite concentrations in NMR mixture analysis. Metabolomics studies of biofluids, such as urine, represent a highly complex problem in this area, and for this reason targeted profiling of 1H NMR spectra can be hampered. A number of the issues relating to 1H NMR spectroscopy can be overcome using 13C{1H} NMR spectroscopy. In this work, a 13C{1H} NMR database was created using Chenomx NMR Suite, incorporating 120 metabolites. The 13C{1H} NMR database was standardized through the analysis of a series of metabolite solutions containing varying concentrations of 19 distinct metabolites, where the metabolite concentrations were varied across a range of values including biological ranges. Subsequently, the NMR spectra of urine samples were collected using 13C{1H} NMR spectroscopy and profiled using the 13C{1H} NMR library. In total, about 30 metabolites were conclusively identified and quantified in the urine samples using 13C{1H} NMR targeted profiling. The proton decoupling and larger spectral window provided easier identification and more accurate quantification for specific classes of metabolites, such as sugars and amino acids with overlap in the aliphatic region of the 1H NMR spectrum. We discuss potential application areas in which 13C{1H} NMR targeted profiling may be superior to 1H NMR targeted profiling.  相似文献   

12.
Radiation accidents are rare events that induce radiation syndrome, a complex pathology which is difficult to treat. In medical management of radiation victims, life threatening damage to different physiological systems should be taken into consideration. The present study was proposed to identify metabolic and physiological perturbations in biofluids of mice during different phases of radiation sickness using 1H nuclear magnetic resonance (1H NMR) spectroscopy and pattern recognition (PR) technique. The 1H NMR spectra of the biofluids collected from mice irradiated with 5 Gray (Gy) at different time points during radiation sickness were analysed visually and by principal components analysis. Urine and serum spectral profile clearly showed altered metabolic profiles during different phases of radiation sickness. Increased concentration of urine metabolites viz. citrate, α ketoglutarate, succinate, hippurate, and trimethylamine during prodromal and clinical manifestation phase of radiation sickness shows altered gut microflora and energy metabolism. On the other hand, serum nuclear magnetic resonance (NMR) spectra reflected changes associated with lipid, energy and membrane metabolism during radiation sickness. The metabonomic time trajectory based on PR analysis of 1H NMR spectra of urine illustrates clear separation of irradiated mice group at different time points from pre dose. The difference in NMR spectral profiles depicts the pathophysiological changes and metabolic disturbances observed during different phases of radiation sickness, that in turn, demonstrate involvement of multiple organ dysfunction. This could further be useful in development of multiparametric approach for better evaluation of radiation damage as well as for medical management during radiation sickness.  相似文献   

13.
Macrophages are essential for the maintenance of intestinal homeostasis, and their activation has been proposed to be critical to the pathogenesis of inflammatory bowel disease (IBD). Although there are many recognized mediators of macrophage activation, increasing evidence suggests that macrophages respond to exosome stimulation. Exosomes are 40–150 nm microvesicles released from different cell types and are found in a variety of physiological fluids, including serum. As studies have shown that circulating exosomes participate in intercellular communication and can mediate the immune response, we hypothesized that exosomes may play a role in the pathogenesis of IBD though modulation of macrophage activity. In this study, we used the dextran sulfate sodium (DSS) induced acute colitis mice model to investigate the effect of serum exosomes on macrophages and identify exosome proteins potentially involved in macrophage activation. We treated RAW264.7 macrophages with serum exosomes isolated from dextran sulfate sodium induced mice and found that treatment induced phosphorylation of p38 and ERK and production of tumor necrosis factor α when compared to treatment with exosomes isolated from control mice. Subsequent proteomic analysis identified 56 differentially expressed proteins, a majority of which were acute‐phase proteins and immunoglobulins. Bioinformatics analysis suggested these proteins were mainly involved in the complement and coagulation cascade, which has been implicated in macrophage activation. Our findings provide new insight into the role of circulating serum exosomes in acute colitis and contribute to the understanding of macrophage activation in the pathogenesis of IBD.  相似文献   

14.
15.
YJ Liang  HP Wang  DX Long  YJ Wu 《Biomarkers》2012,17(6):566-574
Carbamate insecticide propoxur is widely used in agriculture and public health programs. To prevent adverse health effects arising from exposure to this insecticide, sensitive methods for detection of early stage organismal changes are necessary. We present here an integrative metabonomic approach to investigate toxic effects of pesticide in experimental animals. Results showed that propoxur even at low dose levels can induce oxidative stress, impair liver function, enhance ketogenesis and fatty acid β-oxidation, and increase glycolysis, which contribute to the hepatotoxocity. These findings highlight the applicability of (1)H NMR spectroscopy and multivariate statistics in elucidating the toxic effects of propoxur.  相似文献   

16.
[目的]旨在探究凝结芽孢杆菌-乳果糖合生元对葡聚糖硫酸钠(dextran sodium sulfate,DSS)诱导的溃疡性结肠炎小鼠临床体征、肠道形态和肠道菌群结构的影响.[方法]选取24只初始体重为(22.96±1.87)g的7周龄雄性C57/BL6小鼠,随机分为4组,每组6只,即CON组、DSS组(连续5 d饮用...  相似文献   

17.
《Genomics》2023,115(2):110585
BackgroundThe incidence of inflammatory bowel disease (IBD) is growing in the population. At present, the etiology of inflammatory bowel disease remains unclear, and there is no effective and low-toxic therapeutic drug. The role of the PHD-HIF pathway in relieving DSS-induced colitis is gradually being explored.MethodsWild-type C57BL/6 mice were used as a model of DSS-induced colitis to explore the important role of Roxadustat in alleviating DSS-induced colitis. High-throughput RNA-Seq and qRT-PCR methods were used to screen and verify the key differential genes in the colon of mice between normal saline (NS) and Roxadustat groups.ResultsRoxadustat could alleviate DSS-induced colitis. Compared with the mice in the NS group, TLR4 were significantly up-regulated in the Roxadustat group. TLR4 KO mice were used to verify the role of TLR4 in the alleviation of DSS-induced colitis by Roxadustat.ConclusionRoxadustat has a repairing effect on DSS-induced colitis, and may alleviate DSS-induced colitis by targeting the TLR4 pathway and promote intestinal stem cell proliferation.  相似文献   

18.
Methylthioadenosine (MTA) is a precursor of the methionine salvage pathway and has been shown to have anti-inflammatory properties in various models of acute and chronic inflammation. However, the anti-inflammatory properties of MTA in models of intestinal inflammation are not defined. We hypothesized that orally administered MTA would be bioavailable and reduce morbidity associated with experimental colitis. We examined clinical, histological, and molecular markers of disease in mice provided oral MTA before (preventative) or after (therapy) the induction of colitis with 3% dextran sulfate sodium (DSS). We found a reduction in disease activity, weight loss, myeloperoxidase activity, and histological damage in mice given preventative MTA compared with DSS alone. We also found that equivalent supplementation with methionine could not reproduce the anti-inflammatory effects of MTA, and that MTA had no detectable adverse effects in control or DSS mice. Expression microarray analysis of colonic tissue showed several dominant pathways related to inflammatory cytokines/chemokines and extracellular matrix remodeling were upregulation by DSS and suppressed in MTA-supplemented mice. MTA is rapidly absorbed in the gastrointestinal tract and disseminated throughout the body, based on a time course analysis of an oral bolus of MTA. This effect is transient, with MTA levels falling to near baseline within 90 min in most organs. Moreover, MTA did not lead to increased blood or tissue methionine levels, suggesting that its effects are specific. However, MTA provided limited therapeutic benefit when administered after the onset of colitis. Our results show that oral MTA supplementation is a safe and effective strategy to prevent inflammation and tissue injury associated with DSS colitis in mice. Additional studies in chronic inflammatory models are necessary to determine if MTA is a safe and beneficial option for the maintenance of remission in human inflammatory bowel disease.  相似文献   

19.
Proton NMR based metabolic profile of serum associated with different gallbladder pathologies is presented. Quantitative and qualitative variations in the metabolic profile of serum in control samples and three different pathologies of gallbladder, chronic cholecystitis, xanthogranulomatous cholecystitis and carcinoma of gallbladder has been evaluated by use of 1H NMR based metabonomics and multivariate chemometric methods. Multivariate partial least square discriminant analysis of 1H NMR spectra showed a clear discrimination between control and diseased groups on the basis of quantitative and qualitative metabolic variations. Increased levels of lactate and pyruvate whereas decreased levels of glucose, some amino acids and low density lipoprotein/very low density lipoprotein (LDL/VLDL) were observed. These metabolites, responsible for class discrimination, from different metabolic pathways could be considered as the signatures of the carcinoma of gallbladder.  相似文献   

20.
The membrane location of the local anesthetics (LA) lidocaine, dibucaine, tetracaine, and procaine hydrochloride as well as their influence on phospholipid bilayers were studied by (31)P and (1)H magic-angle spinning (MAS) NMR spectroscopy. The (31)P NMR spectra of the LA/lipid preparations confirmed that the overall bilayer structure of the membrane remained preserved. The relation between the molecular structure of the LAs and their membrane localization and orientation was investigated quantitatively using induced chemical shifts, nuclear Overhauser enhancement spectroscopy, and paramagnetic relaxation rates. All three methods revealed an average location of the aromatic rings of all LAs in the lipid-water interface of the membrane, with small differences between the individual LAs depending on their molecular properties. While lidocaine is placed in the upper chain/glycerol region of the membrane, for dibucaine and procaine the maximum of the distribution are slightly shifted into the glycerol region. Finally for tetracaine the aromatic ring is placed closest to the aqueous phase in the glycerol/headgroup region of the membrane. The hydrophobic side chains of the LA molecules dibucaine and tetracaine were located deeper in the membrane and showed an orientation towards the hydrocarbon core. In contrast the side chains of lidocaine and procaine are oriented towards the aqueous phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号