首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human telomeric G-quadruplex structures are known to be promising targets for an anticancer therapy. In the past decade, several research groups have been focused on the design of new ligands trying to optimize the interactions between these small molecules and the G-quadruplex motif. In most of these studies, the target structures were the single quadruplex units formed by short human DNA telomeric sequences (typically 21-26 nt). However, the 3′-terminal single-stranded human telomeric DNA is actually 100-200 bases long and can form higher-order structures by clustering several consecutive quadruplex units (multimers). Despite the increasing number of structural information on longer DNA telomeric sequences, very few data are available on the binding properties of these sequences compared with the shorter DNA telomeric sequences.In this paper we use a combination of spectroscopic (CD, UV and fluorescence) and calorimetric techniques (ITC) to compare the binding properties of the (TTAGGG)8TT structure formed by two adjacent quadruplex units with the binding properties of the (AG3TT)4 single quadruplex structure. The three side-chained triazatruxene derivative azatrux and TMPyP4 cationic porphyrin were used as quadruplex ligands. We found that, depending on the drug, the number of binding sites per quadruplex unit available in the multimer structure was smaller or greater than the one expected on the basis of the results obtained from individual quadruplex binding studies. This work suggests that the quadruplex units along a multimer structure do not behave as completely independent. The presence of adjacent quadruplexes results in a diverse binding ability not predictable from single quadruplex binding studies. The existence of quadruplex-quadruplex interfaces in the full length telomeric overhang may provide an advantageous factor in drug design to enhance both affinity and selectivity for DNA telomeric quadruplexes.  相似文献   

2.
DNA minor groove binding drugs such as Hoechst 33258 have been shown to bind to a number of RNA structures. Similarly, RNA binding ligands such as neomycin have been shown by us to bind to a number of A-form DNA structures. A neomycin–Hoechst 33258 conjugate was recently shown to bind B-DNA, where Hoechst exhibits high affinity for the minor groove of A/T tract DNA and neomycin docks into the major groove. Further studies now indicate that the Hoechst moiety of the conjugate can be driven to bind RNA duplex as a consequence of neomycin binding in the RNA major groove. This is the first example of Hoechst 33258 binding to RNA duplex not containing bulges or loop motifs.  相似文献   

3.
Compounds that stabilize the G-quadruplexes formed by human telomeres can inhibit the telomerase activity and are potential cancer therapies. We have developed an assay for the screening of compounds with high affinity for human telomeric G-quadruplexes (HTG). The assay uses a thiazole orange fluorescent reporter molecule conjugated to the aminoglycoside, neomycin, as a probe in a fluorescence displacement assay. The conjugation of the planar base stacking thiazole orange with the groove binding neomycin results in high affinity probe that can determine the relative binding affinity of high affinity HTG binding drugs in a high throughput format. The robust assay is applicable for the determination of the binding affinity of HTG in the presence of K+ or Na+.  相似文献   

4.
R Lyng  A Rodger  B Nordén 《Biopolymers》1991,31(14):1709-1720
A systematic theoretical study of the CD of double-stranded poly(dG-dC) and its complexes with small molecules is presented. The intrinsic CD of the polymer and the induced CD of a transition belonging to a molecule bound to DNA are calculated using the matrix method. The calculations show considerable differences between pyrimidine-purine and purine-pyrimidine binding sites, and we find that the induced CD of a groove bound molecule is one order of magnitude stronger than that of an intercalated molecule. The results form a sound basis for interpreting the CD of ligand-DNA systems in terms of molecular geometry, interactions, and spectroscopy.  相似文献   

5.
Aminoglycosides are an important class of antibiotic that selectively target RNA structural motifs. Recently we have demonstrated copper derivatives of amino-glycosides to be efficient cleavage agents for cognate RNA motifs. To fully develop their potential as pharmaceutical agents it is necessary to understand both the structural mechanisms used by aminoglycosides to target RNA, and the relative contributions of hydrogen bonding and electrostatic interactions to recognition selectivity. Herein we report results from a calorimetric analysis of a stem-loop 23mer RNA aptamer complexed to the aminoglycoside neomycin B. Key thermodynamic parameters for complex formation have been determined by isothermal titration calorimetry, and from the metal-ion dependence of these binding parameters the relative contributions of electrostatics and hydrogen bonding toward binding affinity have been assessed. The principal mechanism for recognition and binding of neomycin B to the RNA major groove is mediated by hydrogen bonding.  相似文献   

6.
S-shaped binding curves often characterize interactions of ligands with nucleic acid molecules as analyzed by different physico-chemical and biophysical techniques. S-shaped experimental binding curves are usually interpreted as indicative of the positive cooperative interactions between the bound ligand molecules. This paper demonstrates that S-shaped binding curves may occur as a result of the "mixed mode" of DNA binding by the same ligand molecule. Mixed mode of the ligand-DNA binding can occur, for example, due to 1) isomerization or dimerization of the ligands in solution or on the DNA lattice, 2) their ability to intercalate the DNA and to bind it within the minor groove in different orientations. DNA-ligand complexes are characterized by the length of the ligand binding site on the DNA lattice (so-called "multiple-contact" model). We show here that if two or more complexes with different lengths of the ligand binding sites could be produced by the same ligand, the dependence of the concentration of the complex with the shorter length of binding site on the total concentration of ligand should be S-shaped. Our theoretical model is confirmed by comparison of the calculated and experimental CD binding curves for bis-netropsin binding to poly(dA-dT) poly(dA-dT). Bis-netropsin forms two types of DNA complexes due to its ability to interact with the DNA as monomers and trimers. Experimental S-shaped bis-netropsin-DNA binding curve is shown to be in good correlation with those calculated on the basis of our theoretical model. The present work provides new insight into the analysis of ligand-DNA binding curves.  相似文献   

7.
Xi H  Davis E  Ranjan N  Xue L  Hyde-Volpe D  Arya DP 《Biochemistry》2011,50(42):9088-9113
Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized as playing an equally important role in DNA recognition. Competition dialysis, UV, flourescent intercalator displacement (FID), computational docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, the results suggest the following. (1) Neomycin binds three RNA structures [16S A site rRNA, poly(rA)·poly(rA), and poly(rA)·poly(rU)] with high affinities (K(a) ~ 10(7) M(-1)). (2) The binding of neomycin to A-form GC-rich oligomer d(A(2)G(15)C(15)T(2))(2) has an affinity comparable to those of RNA structures. (3) The binding of neomycin to DNA·RNA hybrids shows a 3-fold variance that can be attributed to their structural differences [for poly(dA)·poly(rU), K(a) = 9.4 × 10(6) M(-1), and for poly(rA)·poly(dT), K(a) = 3.1 × 10(6) M(-1)]. (4) The interaction of neomycin with DNA triplex poly(dA)·2poly(dT) yields a binding affinity (K(a)) of 2.4 × 10(5) M(-1). (5) Poly(dA-dT)(2) shows the lowest association constant for all nucleic acids studied (K(a) < 10(5)). (6) Neomycin binds to G-quadruplexes with K(a) values of ~10(4)-10(5) M(-1). (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin's affinity for various nucleic acid structures can be ranked as follows: RNAs and GC-rich d(A(2)G(15)C(15)T(2))(2) structures > poly(dA)·poly(rU) > poly(rA)·poly(dT) > T·A-T triplex, G-quadruplex, B-form AT-rich, or GC-rich DNA sequences. The results illustrate the first example of a small molecule-based "shape readout" of different nucleic acid conformations.  相似文献   

8.
9.
Binding of human immunodeficiency virus type 1 (HIV-1) transactivator (Tat) protein to Tat-responsive RNA (TAR) is essential for viral replication and is considered a promising starting point for the design of anti-HIV drugs. NMR spectroscopy indicated that the aminoglycosides neomycin B and ribostamycin bind to TAR and that neomycin is able to inhibit Tat binding to TAR. The solution structure of the neomycin-bound TAR has been determined by NMR spectroscopy. Chemical shift mapping and intermolecular nuclear Overhauser effects define the binding region of the aminoglycosides on TAR and give strong evidence for minor groove binding. Based on 15 nuclear Overhauser effect-derived intermolecular distance restraints, a model structure of the TAR-neomycin complex was calculated. Neomycin is bound in a binding pocket formed by the minor groove of the lower stem and the uridine-rich bulge of TAR, which adopts a conformation different from those known. The neamine core of the aminoglycoside (rings I and II) is covered with the bulge, explaining the inhibition of Tat by an allosteric mechanism. Neomycin reduces the volume of the major groove in which Tat is bound and thus impedes essential protein-RNA contacts.  相似文献   

10.
The paramagnetic metal ion Mn2+ has been used to probe the electrostatic potentials of a DNA quadruplex that has two quartets with an overall fold of the chair type. A quadruplex with a basket type structure has also been examined. The binding of the paramagnetic ion manganese to these quadruplex DNAs has been investigated by solution state electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies. The EPR results indicate that the DNA aptamer, d(GGTTGGTGTGGTTGG), binds two manganese ions and that the binding constants for each of these sites is approximately 10(5) M-1. The NMR results indicate that the binding sites of the manganese are in the narrow grooves of this quadruplex DNA. The binding sites of the DNA quadruplex formed by dimers of d(GGGGTTTTGGGG) which forms a basket structure are also in the narrow groove. These results indicate that the close approach of phosphates in the narrow minor grooves of the quadruplex structures provide strong binding sites for the manganese ions and that EPR and NMR monitoring of manganese binding can be used to distinguish between the different types of quadruplex structures.  相似文献   

11.
G-quadruplexes are unusual structures formed from guanine-rich sequences of nucleic acids. G-quadruplexes have been postulated to play important roles in a number of biological systems including gene regulation and the inhibition of enzyme function. Recently, our laboratory reported on the synthesis and evaluation of a triaza-cyclopentaphenanthrene compound which bound to G-quadruplexes with good affinity and selectivity. This compound contains a 4-pyridone group which has not been previously utilized in other quadruplex binding agents. In this Letter, we describe the synthesis and evaluation of 4-pyridone containing 2- and 3-carboxy-benzoquinolines as G-quadruplex binding agents. We find that these compounds are capable of binding G-quadruplexes with a Ka in the range of 3 × 105 M?1 and with a 10-fold selectivity for quadruplex over duplex DNA.  相似文献   

12.
Y Long  Z Li  JH Tan  TM Ou  D Li  LQ Gu  ZS Huang 《Bioconjugate chemistry》2012,23(9):1821-1831
In order to improve the selectivity of 5-N-methyl quindoline (cryptolepine) derivatives as telomeric quadruplex binding ligands versus duplex DNA, a series of peptidyl-benzofuroquinoline (P-BFQ) conjugates (2a-2n) were designed and synthesized. Their interactions with telomeric quadruplex and duplex DNA were examined by using the fluorescence resonance energy transfer (FRET) melting assay, surface plasmon resonance (SPR), circular dichroism spectroscopy (CD), and molecular modeling studies. Introduction of a peptidyl group at 11-position of the aromatic benzofuroquinoline scaffold not only effectively increased its binding affinity, but also significantly improved its selectivity toward telomeric quadruplex versus duplex DNA. Combined with the data for their inhibitory effects on telomerase activity, their structure-activity relationships (SARs) studies showed that the types of amino acid residues and the length of the peptidyl side chains were important for the improvement of their interactions with the telomeric G-quadruplex. Long-term exposure of human cancer cells to 2c showed a remarkable cessation in population growth and cellular senescence phenotype, and accompanied by a shortening of the telomere length.  相似文献   

13.
This work studies the binding properties of distamycin and its carbamoyl analog, containing four pyrrole units, with the [d(TGGGGT)](4) quadruplex by means of isothermal titration calorimetry (ITC). Analysis of the ITC data reveals that drug/quadruplex binding stoichiometry is 1:1 for both interactions and that distamycin analog gives approximately a 10-fold increase in the quadruplex affinity.  相似文献   

14.
The interest in DNA quadruplex structures has been fueled by the recognition that telomeres, the 3' single stranded guanine-rich overhangs found at the termini of chromosomes, are likely to form G-tetrads type structures important in cell senescence and cancer. In addition to their presence in telomeres, where they may play a role in maintaining the stability and integrity of chromosomes, guanine-rich regions are found in other region of the genome, amongst these is intron 6 of hTERT a gene codifying for the enzyme telomerase. Interestingly, the formation of G-quadruplexes in this region is involved in the down-regulation of telomerase activity caused by an alteration of the hTERT splicing pattern. Therefore, we have analyzed several sequences of that intron by (1)H-NMR and CD spectroscopy, and we have found that the sequence d(GGGGTGAAAGGGG) is able to fold in a single well-defined antiparallel quadruplex structure consisting of four G-tetrads, possessing a twofold symmetry, and containing four Gs in a syn glycosidic conformation.  相似文献   

15.
We report in this article the interactions of five N-(1,10-phenanthrolin-5-yl)-β-glycopyranosylamine copper(II) complexes with G-quadruplex DNA. Specifically, the interactions of these compounds with a human telomeric oligonucleotide have been assessed by fluorescence-based assays (FRET melting and G4-FID), circular dichroism and competitive equilibrium dialysis experiments. The metal complexes bind and stabilize G-quadruplex DNA structures with apparent association constants in the order of 104–105 M−1 and the affinity observed is dependent on the ionic conditions utilized and the specific nature of the carbohydrate moiety tethered to the 1,10-phenanthroline system. The compounds showed only a slight preference to bind G-quadruplex DNA over duplex DNA when the quadruplex DNA was folded in sodium ionic conditions. However, the binding affinity and selectivity, although modest, were notably increased when the G-quadruplex DNA was folded in the presence of potassium metal ions. Moreover, the study points towards a significant contribution of groove and/or loop binding in the recognition mode of quadruplex structures by these non-classical quadruplex ligands. The results reported herein highlight the potential and the versatility of carbohydrate bis-phenanthroline metal-complex conjugates to recognize G-quadruplex DNA structures.  相似文献   

16.
Human replication protein A unfolds telomeric G-quadruplexes   总被引:6,自引:4,他引:2  
G-quadruplex structures inhibit telomerase activity and must be disrupted for telomere elongation during S phase. It has been suggested that the replication protein A (RPA) could unwind and maintain single-stranded DNA in a state amenable to the binding of telomeric components. We show here that under near-physiological in vitro conditions, human RPA is able to bind and unfold G-quadruplex structures formed from a 21mer human telomeric sequence. Analyses by native gel electrophoresis, cross-linking and fluorescence resonance energy transfer indicate the formation of both 1:1 and 2:1 complexes in which G-quadruplexes are unfolded. In addition, quadruplex opening by hRPA is much faster than observed with the complementary DNA, demonstrating that this protein efficiently unfolds G-quartets. A two-step mechanism accounting for the binding of hRPA to G-quadruplexes is proposed. These data point to the involvement of hRPA in regulation of telomere maintenance.  相似文献   

17.
Abstract

S-shaped binding curves often characterize interactions of ligands with nucleic acid molecules as analyzed by different physicochemical and biophysical techniques. S-shaped experimental binding curves are usually interpreted as indicative of the positive cooperative interactions between the bound ligand molecules. This paper demonstrates that S-shaped binding curves may occur as a result of the “mixed mode” of DNA binding by the same ligand molecule. Mixed mode of the ligand-DNA binding can occur, for example, due to 1) isomerization or dimerization of the ligands in solution or on the DNA lattice, 2) their ability to intercalate the DNA and to bind it within the minor groove in different orientations. DNA- ligand complexes are characterized by the length of the ligand binding site on the DNA lattice (so-called “multiple-contact” model). We show here that if two or more complexes with different lengths of the ligand binding sites could be produced by the same ligand, the dependence of the concentration of the complex with the shorter length of binding site on the total concentration of ligand should be S-shaped. Our theoretical model is confirmed by comparison of the calculated and experimental CD binding curves for bis-netropsin binding to poly(dA-dT) poly(dA-dT). Bis-netropsin forms two types of DNA complexes due to its ability to interact with the DNA as monomers and trimers. Experimental S-shaped bis-netropsin-DNA binding curve is shown to be in good correlation with those calculated on the basis of our theoretical model. The present work provides new insight into the analysis of ligand-DNA binding curves.  相似文献   

18.
Quadruplex structures in nucleic acids.   总被引:9,自引:0,他引:9  
M A Keniry 《Biopolymers》2000,56(3):123-146
DNA oligonucleotides that have repetitive tracts of guanine bases can form G-quadruplex structures that display an amazing polymorphism. Structures of several new G-quadruplexes have been solved recently that greatly expand the known structural motifs observed in nucleic acid quadruplexes. Base triads, base hexads, and quartets that contain cytosine have recently been identified stacked over the familiar G-quartets. The current status of the diverse array of structural features in quadruplexes is described and used to provide insight into the polymorphism and folding pathways. This review also summarizes recent progress in the techniques used to probe the structures of G-quadruplexes and discusses the role of ion binding in quadruplex formation. Several of the quadruplex structures featured in this review can be accessed in the online version of this review as CHIME representations.  相似文献   

19.
Potassium can stabilize the formation of chair- or edge-type quadruplex DNA structures and appears to be the only naturally occurring cation that can do so. As quadruplex DNAs may be important in the structure of telomere, centromere, triplet repeat and other DNAs, information about the details of the potassium–quadruplex DNA interactions are of interest. The structures of the 1:1 and the fully saturated, 2:1, potassium–DNA complexes of d(GGTTGGTGTGGTTGG) have been determined using the combination of experimental NMR results and restrained molecular dynamics simulations. The refined structures have been used to model the interactions at the potassium binding sites. Comparison of the 1:1 and 2:1 potassium:DNA structures indicates how potassium binding can determine the folding pattern of the DNA. In each binding site potassium interacts with the carbonyl oxygens of both the loop thymine residues and the guanine residues of the adjacent quartet.  相似文献   

20.
Guanine-rich DNA sequences are widely dispersed in the eukaryotic genome and are abundant in regions with relevant biological significance. They can form quadruplex structures stabilized by guanine quartets. These structures differ for number and strand polarity, loop composition, and conformation. We report here the syntheses and the structural studies of a set of interconnected d(TG(4)T) fragments which are tethered, with different orientations, to a tetra-end-linker in an attempt to force the formation of specific four-stranded DNA quadruplex structures. Two synthetic strategies have been used to obtain oligodeoxyribonucleotide (ODN) strands linked with their 3'- or 5'-ends to each of the four arms of the linker. The first approach allowed the synthesis of tetra-end-linked ODN (TEL-ODN) containing the four ODN strands with a parallel orientation, while the latter synthetic pathway led to the synthesis of TEL-ODNs each containing antiparallel ODN pairs. The influence of the linker at 3'- or 5'-ODN, on the quadruplex typology and stability, in the presence of sodium or potassium ions, has been investigated by circular dichroism (CD), CD thermal denaturation, (1)H NMR experiments at variable temperature, and molecular modeling. All synthesized TEL-ODNs formed parallel G-quadruplex structures. Particularly, the TEL-ODN containing all parallel ODN tracts formed very stable parallel G-quadruplex complexes, whereas the TEL-ODNs containing antiparallel ODN pairs led to relatively less stable parallel G-quadruplexes. The molecular modeling data suggested that the above antiparallel TEL-ODNs can adopt parallel G-quadruplex structures thanks to a considerable folding of the tetra-end-linker around the whole quadruplex scaffold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号